Grid Analysis using Visual Basic for Applications Exercise
Prepared by David Tarboton, Utah State University.

Purpose
The purpose of this exercise is to learn how to use Visual Basic for Application (VBA) to Extend ArcGIS.

Exercise

It is not always possible to do what is needed using the functionality provided by ArcGIS. Therefore the capability to extend ArcGIS through programming or scripting capability has been developed using Visual Basic for Applications (VBA). This is similar to the concept of Macro's in Excel. Here you will implement a simple VBA Macro to calculate the flow path distance from each point in the watershed to the outlet. [This is something that can actually be achieved using the flowpath command in ArcInfo command line GRID functionality, and perhaps through the spatial analyst object library but programming it is a good learning exercise.]

This exercise will illustrate how to use ArcObjects from a VBA macro that I have written for you. The macro and demo data are in the file vbaex.zip.

From within ArcMAP select Tools/Macros/Macros...
[image: image1.jpg]Tools Window Help

[sZ Editor Toobar 9 |2 | & | K2 | spatial analyst ~
Graphs (327 e
Reports P bls ¥ Network Tools ¥ ApUtiiiies
Geocodng »

£+ Add XY Data
% Add Route Everits,
1 Buffer Wizard

T GeoProcessing Wizard,

& ArcCatalog
EEEE
Customize, 23 Visual Basic Edltor Alt+F11

Enter a Macro name: dist and click Create.
[image: image2.jpg][Macros

Macro name =
it
Cancel
Siep It
Ed.

Defete
Macrosin: [Project (Untitled rxd)

Description

Kl

(K0

Cut and paste the following VBA code into the Visual Basic Editor that opens. Be careful to paste code above, inbetween and below the stub code
Sub dist()

End Sub

that appears. In Visual Basic, comments are indicated starting with a ', and I have used these to try explain what is going on. Some comments are lengthy and may wrap around on your display. These appear as red in the VB editor and after pasting you need to unwrap them, or else the script will not run. You could also copy equivalent code from vba.mxd in the vbaex.zip example file.

' BEGINNING OF CODE

Option Explicit ' This is a command saying that all variables need to be explicitly defined. It is good programming policy

' Global variables. These are declared before the first function or subroutine. These are variables that will be used by the subroutine dist, as well as the subroutine distcalc

 Dim pPixels As Variant

 Dim dPixels

 Dim di(8) As Integer, dj(8) As Integer, dd(8) As Double

 Dim ncol As Long

 Dim nrow As Long

Sub dist()

' Dimensioning variables

 Dim Foldername As String

 Dim OutletShapefilename As String

 Dim pGridname As String, dGridname As String

 Dim i As Long, j As Long, k As Long

'***

' Specifying inputs. YOU WILL NEED TO CHANGE THE FOLDERNAME BELOW TO REFLECT THE LOCATION OF YOUR WORK

 Foldername = "C:\Dave\Ex7"

' YOU WILL NEED TO CHANGE THE FILENAMES BELOW TO REFLECT THE NAMES YOU ARE USING

 OutletShapefilename = "outlet" ' THIS IS THE SHAPEFILE CONTAINING THE OUTLETS

 pGridname = "demp" ' THIS IS THE D8 FLOW DIRECTIONS FILE CREATED BY THE COMMAND 'D8 FLOW DIRECTIONS'

 dGridname = "dist" ' THIS IS THE NAME OF THE GRID FILE THAT WILL BE OUTPUT

'**

' General ArcGIS objects that need to be initiated

 Dim pDoc As IMxDocument

 Set pDoc = ThisDocument

' Create the workspace factory and open shapefile feature class

 Dim pWSF As IWorkspaceFactory ' This says that the name pWSF will refer to a WorkspaceFactory Object

 Dim pFWS As IFeatureWorkspace ' This says that the name pFWS will refer to a Feature Workspace (in this case a folder containing feature datasets)

 Set pWSF = New ShapefileWorkspaceFactory ' This instantiates (creates a new instance of) a WorkspaceFactory object

 Set pFWS = pWSF.OpenFromFile(Foldername, 0) ' The function OpenFromFile that is part of (a method within) the Workspace Factory object is used to open the given folder as a Feature WorkSpace and assign the result to the named FeatureWorkspace object pFWS.

 Dim pFeClass As IFeatureClass ' This says that the name pFeClass will refer to a Feature Class (in this case a shapefile).

 Set pFeClass = pFWS.OpenFeatureClass(OutletShapefilename) ' The function OpenFeatureClass is part of (a method within) the FeatureWorkspace object and here returns the feature class object (in this case shapefile) being worked on.

 ' OutletShapefilename is the shapefile name without suffix like "outlet"

'READ THE COORDINATES FROM THE OUTLET SHAPEFILE

' get the number of features

 Dim nFeCount As Integer

 nFeCount = pFeClass.FeatureCount(Nothing)

 Dim dbXX() As Double, dbYY() As Double ' X and Y coordinates will be stored in double precision arrays

 ReDim dbXX(nFeCount)

 ReDim dbYY(nFeCount)

 Dim pFeature As IFeature ' A feature object variable name

 Dim pPoint As IPoint ' a point object variable name

'Loop through to get the x and y coordinates of each point associated with each feature in the feature class

 For i = 0 To nFeCount - 1

 Set pFeature = pFeClass.GetFeature(i)

 Set pPoint = pFeature.Shape 'if it is a point shapefile

 'to get the coordinate of a point

 dbXX(i) = pPoint.X

 dbYY(i) = pPoint.Y

 MsgBox "Outlet " & dbXX(i) & " " & dbYY(i) ' This pops up a message box giving the coordinates of each outlet

 Next i

' READ THE FLOW DIRECTION GRID

' Now work with the flow direction grid

' Raster workspace factory object

' Dim pWSF As IWorkspaceFactory ' This statement would generally be needed, but is not here because we are reusing the same workspace factory name used above.

 Set pWSF = New RasterWorkspaceFactory

' Raster workspace object

 Dim pRWS As IRasterWorkspace

 Set pRWS = pWSF.OpenFromFile(Foldername, 0)

' Raster dataset object

 Dim pRsDS As IRasterDataset

 Set pRsDS = pRWS.OpenRasterDataset(pGridname)

' Raster object

 Dim pRs As IRaster

 Set pRs = pRsDS.CreateDefaultRaster

' Raster band collection object. Rasters may contain multiple bands

 Dim pRsBC As IRasterBandCollection

 Set pRsBC = pRs

' Raster band object

 Dim pRsBand As IRasterBand

 Set pRsBand = pRsBC.Item(0) ' The first band, i.e. item number 0 in the band collection

' Raster properties object

 Dim pRsProp As IRasterProps

 Set pRsProp = pRsBand

' Get the size and extent of flow direction grid

 Dim xll As Double

 Dim yll As Double

 Dim csize As Double

 xll = pRsProp.Extent.XMin

 yll = pRsProp.Extent.YMin

 ncol = pRsProp.Width

 nrow = pRsProp.Height

 csize = pRsProp.MeanCellSize.X

' CREATE DISTANCE TO OUTLET GRID WITH NO DATA VALUES

' Spatial reference object for new grid

 Dim pOutSR As ISpatialReference ' Get the spatial reference of the input grid

 Set pOutSR = pRsProp.SpatialReference

' Raster workspace object that has method to create new grid

 Dim pRWS2 As IRasterWorkspace2

 Set pRWS2 = pWSF.OpenFromFile(Foldername, 0)

' Origin object for new grid

 Dim nOrigin As IPoint

 Set nOrigin = New Point

 nOrigin.PutCoords xll, yll

' Create new grid as raster dataset object

 Dim pOutDs As IRasterDataset

 Set pOutDs = pRWS2.CreateRasterDataset(dGridname, "GRID", nOrigin, _

 ncol, nrow, csize, csize, 1, PT_FLOAT, pOutSR, True)

' new raster indicated by "d" for distance at the beginning of the name

' new band collection

 Dim dRsBC As IRasterBandCollection

 Set dRsBC = pOutDs

' Raw Pixel objects. These are used to access the raw data in grids

 Dim pRawPixels As IRawPixels, dRawPixels As IRawPixels

 Set pRawPixels = pRsBand

 Set dRawPixels = dRsBC.Item(0)

' new properties

 Dim dRsProp As IRasterProps

 Set dRsProp = dRawPixels

' No data value

 Dim noDataValue As Double

 noDataValue = dRsProp.noDataValue

' Set up double point object specifying the extent of the part of the grid to work with. In this case the entire grid.

 Dim pPnt As IPnt

 Set pPnt = New DblPnt

 pPnt.SetCoords pRsProp.Width, pRsProp.Height

' Pixel block objects to work with,within extent specified by pPnt (in this case the entire grid).

 Dim pPixelBlock As IPixelBlock, dPixelBlock As IPixelBlock3

 Set pPixelBlock = pRawPixels.CreatePixelBlock(pPnt)

 Set dPixelBlock = dRawPixels.CreatePixelBlock(pPnt)

' Origin of coordinates to be read from raw pixels into pixel block

 Dim pOrigin As IPnt

 Set pOrigin = New DblPnt

 pOrigin.SetCoords 0, 0

' Read block of flow direction pixels into PixelBlock

 pRawPixels.Read pOrigin, pPixelBlock

 dRawPixels.Read pOrigin, dPixelBlock

' Convert PixelBlock into arrays that can be referenced by rows and columns. These are dimensioned before the sub statement so that they are global variables accessible to other modules

 pPixels = pPixelBlock.SafeArray(0)

 dPixels = dPixelBlock.PixelDataByRef(0)

' Initialize the distance pixels to no data

 For i = 0 To nrow - 1

 For j = 0 To ncol - 1

 ' col, row

 dPixels(j, i) = noDataValue

 Next j

 Next i

'PREPARE ARRAYS FOR NAVIGATING GRID

' Set up directions

' row offsets

 di(1) = 0

 di(2) = -1

 di(3) = -1

 di(4) = -1

 di(5) = 0

 di(6) = 1

 di(7) = 1

 di(8) = 1

' column offsets

 dj(1) = 1

 dj(2) = 1

 dj(3) = 0

 dj(4) = -1

 dj(5) = -1

 dj(6) = -1

 dj(7) = 0

 dj(8) = 1

' distances

 For k = 1 To 8

 dd(k) = (((csize * di(k)) ^ 2 + (csize * dj(k)) ^ 2)) ^ 0.5 ' Pythagorous Theorem

 Next k

' CONVERT EACH OUTLET COORDINATE TO ROW AND COLUMN AND START DISTANCE CALCULATION AT IT

 For k = 0 To nFeCount - 1

 i = nrow - Int((dbYY(k) - yll) / csize) - 1

 j = (dbXX(k) - xll) / csize

 dPixels(j, i) = 0

 DistCalc i, j ' This is a recursive subroutine call

 Next k

' Save the result

 Dim dCache

 Set dCache = dRawPixels.AcquireCache

 dRawPixels.Write pOrigin, dPixelBlock

 dRawPixels.ReturnCache dCache

' Add the new raster layer to the document display

 Dim ROutLayer As IRasterLayer

 Set ROutLayer = New RasterLayer

 ROutLayer.CreateFromDataset pOutDs

 pDoc.FocusMap.AddLayer ROutLayer

 pDoc.ActiveView.Refresh

End Sub

'RECURSIVE DISTANCE CALCULATION FUNCTION

Sub DistCalc(i, j)

Dim k As Integer, inb As Long, jnb As Long

For k = 1 To 8 ' for each neighbor

 inb = i + di(k)

 jnb = j + dj(k)

 If (inb >= 0 And inb < nrow And jnb >= 0 And jnb < ncol) Then ' guard against out of domain

 If pPixels(jnb, inb) > 0 Then ' guard against no data

 If (pPixels(jnb, inb) - 4 = k Or pPixels(jnb, inb) + 4 = k) Then

 ' Here we have a grid cell that drains back to the grid cell we are at

 dPixels(jnb, inb) = dPixels(j, i) + dd(k)

 DistCalc inb, jnb ' Call the function for that pixel

 End If

 End If

 End If

Next k

End Sub

Once the code is entered we need some data to test it. Switch back to ArcMap and use the Ascii to Raster tool to import the file dem.asc from vbaex.zip and save as a grid named DEM with output type float.

[image: image3.png]~ AsCll to Raster

Input ASCII raster file
[CiDave\EdETIdem.asc =

Output raster
[crDaverExBExTIdem =

Output data type (aptional)
[FLoaT

oK Cancel Environments... | | Show Help >>

Use Taudem/Fill Pits to create the grid 'demfel'. (There are no pits in this small 6x8 dataset but this is the easiest way to get the file demfel and be consistent with the naming convention.)

[image: image4.png]T Fill Pits

Input
Bese DEM Grid [C\Dave!\Ex7\dem =

I™ Use Flow Path Gricl

Flow Path Gricl

Output

PitFilled Elevation Grid [C:\Dave\Ex7\demfel =2

Verified Flow Path Grid

¥ Add layer(s) upon completion

Cancel ‘ | "Compute |

Use TauDEM/D8 Flow Directions to create the flow direction grid 'demp'.

[image: image5.png]T DB Flow Directions

Input

PitFilled Grid [C:\Dave\Ex7\dermfel

[~ Use Verified Flow Path Gricl

Flow Path Gricl

=
=

Outputs

D8 Flow Direction Grid [C:\Dave\Ex7\demp
D& Slape Grid C\Dave\Ex7\demsd

v {dd iayer(s) upon compietion

Cancel || Compute

This will serve as the flow direction grid for the calculation of distances to the outlet.

Create a point shapefile with a single point within the grid cell 3rd across in the first row.

[image: image6.png]o
Fle Edt View Insert Selection Tools Window Help

DEed&] + AR R=11

Editor v M [I

Basic Grid Analysis v Network Delneation v Specialzed Grid Analysis v Utities v T2 | Spatial Analyst v

—— =
= & New Data Frame a
= @ Outlet —

= © Bl O
o3]
- «
ms

= O demsds .

Vale
High : 0.303333
3
I Low : 0.0366667

= O demfel “

= B dem &

Display [Source | Selecion DR
Drawing v | K O~ A~ @) Avial ~ S Bz u Av A~

4,11 192.87 Unknown Urits

Switch back to the Visual Basic Editor.

Modify the code at the location about 10 lines from the top where it indicates that changes are needed to set the variables Foldername, OutletShapefilename, pGridname and dGridname to be what you are using. Save your project. Then run the script by clicking on the Run Sub/UserForm arrow
[image: image7.png]& Microsoft Visua
Ele Edt View Insert Format

Q- =Y.

g Run Toos AddIns Window Hep
(@ n21,col21

(=)

If all goes well you should have a new grid that contains distances to the outlet from each point within the watershed that drains to the outlet. I have found that the color scheme scale is not nicely set by this procedure when the layers are added so it may be necessary to remove then add the layer.

[image: image8.png]Fle Edit View Insert Selection Tools Window Help

FEAE|FB@X |0~ |$[0 SZesnn | eREEEBEE

Editor v | M | @] Task; [Create New Feanre

|| varger |

S x @l=

IE
=
I
|

Basic Grid Analysis v

Network Delineation v

Speciaized Grid Andlysis ¥

Utiities v T2

Spatial Aralyst v | Leg

= £ New Data Frame

Value

7 High : 204852814

l Low : 0.000000
=0 demp

Lk}

L E}

ms
= O demsda

< |3

Display [Source | Selection

X R R RS X Fe i Rtocrc)

N

e o

hd |
Drawngv K (4| O~ A~ [@ae <@ ~] B2 U

| 1145.24 179,39 Urkriown Urits |

Congratulations! You have completed a GIS VBA program. Now the only limit on what you can do is your creativity.

Use Insert/Data Frame to insert a new data frame, then remove the old one.

[image: image9.png]Fle Edit View |Insert Selection Tools Window Help

Add the Logan River data from the Logan River Exercise to the new data frame. Run the distance to the outlet function for the Logan River.

Prepare a layout that shows the distance to the outlet of the Logan River. Include the stream network in this layout. Report the longest distance to the outlet from within the Logan River Watershed.

These materials may be used for study, research, and education, but please credit the authors and the Utah Water Research Laboratory, Utah State University. All commercial rights reserved. Copyright 2004 Utah State University.

PAGE
6

