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ABSTRACT 

The purpose of this project was to produce a tree canopy cover layer that can be used as an 
input to distributed hydrologic models. The canopy cover layer was developed for a test watershed in 
northwestern Montana using a statistical model, where training data consisted of points representing 
ground-based measurements of tree canopy cover at permanent forest monitoring plots. Predictor 
variables represented elevation and topographic derivatives, including hydrologic proximity measures; 
climate; satellite-based reflectance; soil map units; and existing cover datasets. All predictors were 
transformed to a common spatial reference system and cell resolution using ArcGIS Pro geoprocessing 
tools. The output tree canopy cover layer was statistically modeled and validated using empirical 
Bayesian kriging. The accuracy of the modeled canopy cover layer was evaluated in terms of the mean 
error and root mean square error (RMSE) of predicted versus observed canopy cover at ground-plot 
locations. For comparison purposes, these error metrics were compared to those for the National Land 
Cover Dataset’s (NLCD’s) 2011 Tree Canopy Cover layer relative to ground-based measurements. Both 
RMSE and mean error of the modeled tree canopy cover layer were lower than those for the NLCD layer. 
This result suggests that additional effort may produce an enhanced canopy cover layer at broader 
scales that may be useful for distributed hydrologic modeling.  

 
 
 



INTRODUCTION 

Forest cover is included in many hydrologic models because it affects hydrology via canopy 
interception, evapotranspiration, and effects on snowpack, all of which influence the partitioning of 
precipitation into runoff versus evapotranspiration. Some models account for canopy resistance and 
transpiration at multiple canopy levels (e.g., Tague and Band 2004), which means that they can 
theoretically represent forested watersheds with greater precision than single-level canopy 
representations. However, the ability of models to incorporate this level of detail is frequently 
underutilized due to a lack of detailed vegetation data. 

Currently most vegetation inputs to distributed hydrologic models consist of either fine-scale 
vegetation maps for small watersheds, or national-scale maps with coarse attributes. The primary 
source for data at the latter scale is the National Land Cover Dataset (NLCD), which is updated every 5 
years and includes only 3 forest classes: deciduous, evergreen, and mixed (Homer et al. 2015). 
Simulations of the broad-scale effects of within-class changes, such as fractional decreases in live tree 
cover due to insect epidemics and/or low- to medium-severity wildfires, are not possible without 
expansion of the 3 forest classes to a continuous representation of forest cover. The NLCD also includes 
tree canopy cover (TCC) layers for 2001 and 2011, although documentation warns against comparing 
multiple temporal TCC layers due to methodological and definitional inconsistencies (Homer et al. 2015). 

The existence of a nationwide forest monitoring dataset offers the opportunity to build an 
enhanced representation of forest cover for hydrologic modeling. The Forest Inventory and Analysis 
Program (FIA) of the U.S Forest Service has a network of permanent monitoring plots with a mean point 
spacing of 5 km (Bechtold and Patterson 2005). On each plot, FIA measures vegetation structure 
including tree cover, tree cover reduction in the previous 10 years, mean tree height, basal area, litter 
depth, and height and percent cover of understory vegetation by life form. FIA plot locations are based 
on a probabilistic sampling framework and are re-measured every 5-10 years (Bechtold and Patterson 
2005). Therefore, this dataset represents a robust and ongoing source of high-quality cover data for 
hydrologic modeling purposes. 

The goal of this project was to develop a method for statistically modeling a tree canopy cover 
layer that can be used as an input to distributed hydrologic models. If successful, such an effort could be 
expanded to a broader geographic area in the U.S., repeated to assess fractional changes in tree canopy 
cover over time, and possibly modified to produce similar layers for litter and secondary canopy strata. 
 

STUDY AREA 

A prototype methodology for creating a tree canopy cover layer was tested in the upper 
watershed of the South Fork Flathead River, Montana (Fig. 1). The study area is entirely within the Bob 
Marshall Wilderness Complex and thus is not subject to logging, development, or other changes in land 
use or land cover that may affect tree canopy cover. It is also upstream from Hungry Horse Reservoir, 
which represents the upper-most point of flow regulation in this watershed. The upper watershed was 
delineated and summarized using USGS StreamStats (http://streamstatsags.cr.usgs.gov/streamstats/), a 
web application from which the watershed boundary was exported as a shapefile. Delineation was 
based on the location of the USGS gage at Twin Creek near Hungry Horse MT, which has gage ID number 
12360000. The watershed covers 1,159 mi2 (3,001 km2), with elevations ranging from 3,598 to 9,303 
feet. It receives 49.1 inches of annual precipitation and, based on monthly mean evapotranspiration 
reported by StreamStats, experiences 11.0 inches of evapotranspiration between March and October. 
Eight-three percent of the upper watershed is forested. It contains 119 permanent forest monitoring 
plots with canopy cover percentages ranging from 0 to 87.  

 

http://streamstatsags.cr.usgs.gov/streamstats/


 
Fig. 1. Study area: The upper South Fork Flathead River watershed in northwestern Montana. 

Backdrop shows (a) landcover classes, and (b) elevations. Points indicate approximate locations 

of FIA plots where tree canopy cover was measured. 



METHODS 

General methods including preparation of response data, processing of predictor data, 
development of a statistical model of canopy cover, and assessment of the output canopy cover layer. 
Each of these steps are described in detail below.  

The spatial reference system used for this project was the equal-area Albers projection, based 
on the North American Datum of 1983, with a central meridian of -96.0°, a latitude of origin of 40.0°, 
first standard parallel of 20.0°, and second standard parallel of 60.0°. All layers that were acquired in 
other spatial reference systems were transformed to this spatial reference prior to any other processing. 
To ensure alignment of raster cells among multiple predictor layers, the DEM raster was used as a snap 
raster in the environment settings for each transformation. 

After transformations to get all layers into the Albers NAD83 spatial reference system, layers 
were clipped to the spatial extent of the study area. Rather than using the topographic boundary of the 
upper South Fork Flathead River watershed, this boundary was buffered by 100 m to create a new 
feature class for clipping. The buffered watershed boundary was used to clip predictor layers to avoid 
edge contamination during topographic analyses. 
 
Response data processing 

Response data consisted of tree canopy cover as measured on permanent FIA plots. Tree canopy 
cover is defined as a vertical projection of tree crowns onto the ground surface (USDA 2013). Values are 
recorded as percentages from 0 to 100 percent; thus, the canopies of multiple trees are not double-
counted, nor are slopes adjusted to provide an oblique estimate of cover. The field procedure for 
measuring canopy cover consists of several transect-intercept samples per plot, where gaps within the 
canopy are not counted toward percent canopy cover (USDA 2013). Percent tree canopy cover, 
geographic plot coordinates, and unique plot identifiers for all plots in eight western states were queried 
from the national FIA database (O’Connell et al. 2016). The resulting text file was imported to ArcGIS 
Pro, displayed as XY coordinates, exported to a point feature class, transformed to Albers NAD83, and 
then clipped to the study area for this project to yield 119 FIA plots (Fig. 1). 
 
Predictor data processing 

Table 1 lists the 18 predictor layers and data sources that were used to model canopy cover. 
Most predictors were downloaded in raster format with 30-m resolution; the two exceptions were the 
climate and soils datasets (described below). Subsequent processing of each predictor layer is described 
in more detail here, with each predictor layer in bold. 

Elevation was represented by a 30-m Digital Elevation Model (DEM). Topographic derivatives 
included slope, aspect, folded aspect, and heat load index. Fig. 2 shows a workflow for calculating folded 
aspect and heat load index in ArcGIS Pro ModelBuilder. Slope and aspect were calculated in this model 
using basic ArcGIS geoprocessing functions, while folded aspect and heat load index were calculated 
using RasterCalculator. Folded aspect and heat load index were described by McCune and Keon (2002) 
as a representation of topography that is meaningful for modeling vegetation. Based on calibration 
against data reported by Buffo et al. (1972), McCune and Keon’s (2002) calculations of folded aspect and 
heat load index assume that heat loading is greatest at aspects facing 225 degrees and lowest at aspects 
of 45 degrees. Note that these formulations are used to model species distributions (e.g., Evans and 
Cushman 2009) despite their lack of a strong physical basis with respect to the use of 45- and 225-
degree aspects as respective minima and maxima of heat loading. Although the folded aspect used here 
was based on a datum axis of 45 and 225 degrees, it can also be formulated using 0 and 180 degrees as 
a datum axis. Both datum axes avoid the problem of representing nearly identical aspects near due 
north (i.e., 0 or 360 degrees) with a maximum possible difference between values (e.g., 1 versus 359 



degrees). Although aspect was used to calculate topographic derivatives, it was not included as a 
predictor; folded aspect was included instead. 

 
 

Table 1. List of predictor variables and data sources. 
 

Predictor Source 

Elevation (DEM) ESRI Data Services 

Slope DEM/ArcGIS Pro function 

Folded aspect DEM/Raster Calculator 

Heat load index DEM/Raster Calculator 

Wetness index DEM/TauDEM 

Slope over area ratio DEM/TauDEM 

Distance up to ridge DEM/TauDEM 

Distance down to stream DEM/TauDEM 

LANDSAT 7, Band 2 (blue) https://landsatlook.usgs.gov/viewer.html 

LANDSAT 7, Band 3 (green) https://landsatlook.usgs.gov/viewer.html 

LANDSAT 7, Band 4 (red) https://landsatlook.usgs.gov/viewer.html 

LANDSAT 7, Band 5 (near infrared) https://landsatlook.usgs.gov/viewer.html 

Mean annual precipitation http://www.prism.oregonstate.edu 

Maximum annual temperature http://www.prism.oregonstate.edu 

Minimum annual temperature http://www.prism.oregonstate.edu 

STATSGO soil map units http://websoilsurvey.nrcs.usda.gov 

2011 NLCD cover classes http://viewer.nationalmap.gov/viewer/ 

2011 NLCD tree canopy cover http://geoinfo.msl.mt.gov/ 

 
The DEM was also used to calculate several hydrological proximity measures described by Tesfa 

et al. (2011). These included topographic wetness index, slope over area ratio, distance up to ridge, and 
distance down to stream. All were calculated using TauDEM functions (Tesfa et al. 2011) in ArcGIS Pro 
version 1.3. The process of calculating these rasters required a preliminary workflow that is typical for 
hydrological terrain analyses, which I accomplished with the following TauDEM functions: 

 
1) Pit Remove; 
2) D-Infinity Flow Directions; and 
3) D-Infinity Contributing Area. 

 
Topographic wetness index is calculated as the natural log of As/β, where As equals the specific 

catchment area (i.e., the upslope contributing area divided by the width of the grid cell) and β equals 
the local slope of the grid cell. The TauDEM function for D-Infinity Contributing Area produces As in the 
correct units. Topographic wetness index was originally formulated for modeling the response of a basin 
to precipitation inputs (Beven and Kirby 1979), and has also been used for modeling vegetation 
distributions (e.g., Evans and Cushman 2009). The Slope over area ratio function in TauDEM is similar to 
wetness index, but differs in that it calculates the ratio of slope to specific catchment area. Thus it avoids 
the problem of null values resulting when slope equals zero. 
 



 

  

Fig. 2. Structure of the model used to calculate slope, aspect, folded aspect, and heat load index 

using ArcGIS Pro ModelBuilder. Equations for folded aspect and heat load index from McCune 

and Keon (2002) are shown in inset boxes and require conversion of slope, aspect, and latitude 

from degrees to radians. 

 
Distance up to ridge was calculated using TauDEM function “D-infinity distance up”, which 

follows D-infinity flow paths in a reverse, upward direction to find the nearest ridge cell. Distance down 
to stream was calculated using TauDEM function “D-Infinity distance down”, which follows D-infinity 
flow paths downward to the nearest stream cell. Because this function requires a stream raster as an 
input, I used the TauDEM function “Stream definition by threshold” to create a stream raster. The 
threshold was set at 1,000 cells of contributing area, which produced a stream raster that showed 
visually good agreement with perennial streams shown on topographic maps and 1-m National 
Agriculture Imagery Program (NAIP) imagery. Based on my input parameters, the outputs of Distance up 
to ridge and Distance down to stream represented the average distances across the surface, rather than 
minimum or maximum distances of horizontal, vertical, or Pythagorean vectors. 

During processing using TauDEM functions, I encountered the following issue when the 
contributing area function included the option to check for edge contamination: areas known to 
represent streams had values of “no data” in the specific catchment area raster. Based on TauDEM 
documentation advising that this check is unnecessary when the DEM has been clipped to a watershed 
boundary, I re-ran the process without checking for edge contamination. This resulted in a 
topographically and hydrologically valid output raster for contributing area. 



The Landsat 7 ETM+ data used in this project were acquired on July 30, 2015. This date was 
selected based on three criteria: (1) it is within the growing-season; (2) cloud cover was less than 10% of 
the study area; and (3) it is available for download without scan lines (i.e., data gaps to the failure of the 
Landsat 7 scan line corrector have been filled). After downloading the Landsat data for this date, I 
determined there was no visible cloud cover within the study area. Landsat bands 2, 3, 4, and 5 were 
clipped to the study area and projected to Albers NAD83. 

Temperature and precipitation data were downloaded from the website for datasets derived 
using the Parameter-elevation Relationships on Independent Slopes Model, or PRISM (PRISM Climate 
Group 2012). Three variables were included in the tree canopy cover model: mean annual precipitation, 
mean minimum temperature, and mean maximum temperature. Each mean value was based on the 
30-yr period from 1981 to 2010. The resolution of these datasets was 800 m. 

Soil map units were downloaded from the National Resource Conservation Service (NRCS), 
which has produced two major soil map series in the U.S.: SSURGO and STATSGO. Although SSURGO is 
higher resolution than STATSGO, it has not been completed for my study area. Therefore, I used 
STATSGO soil map units. They are available in vector format where soil map units are represented by 
polygons. To prepare soil map units for statistical modeling in ArcGIS Pro, I needed to convert the 
polygon to a zonal raster. After transformation the vector layer to Albers NAD83, I used the “Polygon to 
Raster” tool in ArcGIS Pro to create a zonal raster with 30-m resolution with the DEM as a snap raster. 

The last two predictors were 2011 NLCD cover classes and 2011 NLCD tree canopy cover. The 
cover map was obtained from the National Map Viewer. Because the nationwide tree canopy cover 
layer is a very large file, it was downloaded from a GIS data site maintained by the State of Montana 
(Table 1) where the tree canopy cover layer had already been clipped to the extent of the state. 
 
Statistical analysis and validation 

The ArcGIS Pro Geostatistical Analyst function “EBK regression prediction” (EBK stands for 
empirical Bayesian kriging) was used to create a spatially continuous, 30-m resolution tree canopy cover 
layer for the upper South Fork Flathead River watershed. The EBK regression prediction function differs 
from the standard “empirical Bayesian kriging” function in that it can incorporate multiple predictor 
layers into the model. In other words, the EBK regression prediction function interpolated tree canopy 
cover based on FIA plots and also on the predictors listed in Table 1. In contrast, the more commonly 
used empirical Bayesian kriging function would have interpolated tree canopy cover based solely on FIA 
plots. EBK regression prediction is not available in ArcGIS Desktop and is a new function in ArcGIS Pro. 

The EBK regression prediction function includes an internal validation algorithm. Unfortunately 
the statistical underpinnings of this validation procedure are poorly documented (ESRI 2016). 
Nonetheless, the output of the interpolation includes not only the tree canopy cover layer, but also 
layers representing the standard errors of the modeled values, the difference between modeled and 
observed values at FIA plot locations, and several other diagnostic metrics. 

One parameter required for kriging interpolations is the form of the semivariogram, which 
indicates the degree of spatial correlation among data points. The semivariogram model type was set to 
exponential, which assumes that spatial autocorrelation diminishes quickly with distance (ESRI 2016), 
e.g., due to shifts from the north-facing side of a ridgeline that may have dense forest cover to the 
south-facing side of a ridgeline that may have no forest cover. 

To assess the accuracy of the output tree canopy cover layer, I calculated the root mean square 
error (RMRSE) of model-predicted versus ground-measured tree canopy cover at FIA plot locations. To 
assess whether this layer represents a potential improvement over the NLCD tree canopy cover layer, I 
also assessed the RMSE of NLCD canopy cover vs. FIA-measured canopy cover at plot locations, and then 
compared this RMSE to the RMSE obtained from the EBK regression prediction layer. Additionally, the 
mean percent tree canopy cover was compared among FIA plots, the EBK-modeled layer, and NLCD 



layer. Mean FIA-measured tree canopy cover was determined using the Summary Statistics function in 
ArcGIS Pro, acting on the tree canopy cover field of the attribute table for the point feature class 
representing FIA plots. Mean EBK-modeled and NLCD tree canopy cover percentages were obtained 
from the Statistics shown in the Properties of the respective raster layers. 

To compare the importance of various predictors, the correlation coefficients of tree canopy 
cover versus each predictor were calculated by the “cor” function in the open-source statistical software 
package R. Data were prepared in ArcGIS Pro by using the function “Extract multi values to points” to 
associated each FIA plot location with all predictor values. The attribute table produced by this function 
was exported and converted to a comma-separated value file in Microsoft Excel.  

 
 

RESULTS 

Fig. 3 shows the tree canopy cover layer produced EBK regression prediction. This layer had 

RMSE=16.7%, compared to RMSE=22.8% for the 2011 NLCD tree canopy cover layer relative to FIA plot 

measurements.  

 

 
 

Fig. 3. Map of EBK-modeled tree canopy cover, with NHDPlus flowlines for perspective. 



The mean difference between the EBK-modeled and FIA-measured canopy cover was 0.68%, 

indicating that the modeled layer is not generally biased toward under- or over-estimating tree canopy 

cover. In contrast, the mean difference between the 2011 NLCD and FIA-measured canopy cover was  

-13.5%, which represents a general over-estimation of tree canopy cover. Based on these results, the 

overall accuracy of the EBK-modeled tree canopy cover layer is higher than the 2011 NLCD layer for the 

upper South Fork Flathead River watershed. The differences between the two canopy cover layers is 

further illuminated by comparisons of mean canopy cover throughout the watershed. The mean percent 

tree canopy cover that was measured at 119 FIA plots was 35.7%. The mean cover in the EBK-modeled 

layer was 34.7%, and the mean of the 2011 NLCD tree canopy cover layer was 46.0%.  

Fig. 4 shows the distribution of modeled versus observed canopy cover values at FIA plot 

locations. This figure further demonstrates that the 2011 NLCD layer over-estimates tree canopy cover 

compared to EBK regression prediction and ground-based measurements. It also illustrates a limitation 

of EBK regression prediction: it was not possible to constrain the model to only predict non-negative 

values. As a result, some negative values of tree canopy cover were predicted; these were truncated to 

zero in Fig. 3. Therefore, future work to produce an enhanced canopy cover layer should use more 

flexible multivariate predictive models than EBK regression prediction. 

 

 
Fig. 4. Scatter plot of modeled versus observed values of canopy cover at FIA plot locations. 

Modeled values are based on either EBK regression prediction or the 2011 NLCD canopy cover 

layer. Observed values are based on ground measurements. 
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Table 2 shows the correlation coefficients of each predictor relative to tree canopy cover. 

LANDSAT reflectance values (particularly band 5), elevation, distance down to stream, 2011 NLCD 

canopy cover, temperature, and slope had the highest correlation coefficients. Because the study area 

has experienced high tree mortality in the past decade due to insects and disease (personal observation, 

confirmed by FIA plot data), correlation coefficients of predictors versus previous canopy cover are also 

presented. Most predictors were more strongly correlated with previous canopy cover than with current 

canopy cover. Thus, it may be important to incorporate predictor layers that represent recent canopy-

reducing disturbances, such as data from the Monitoring Trends in Burn Severity (MTBS) program 

(Eidenshenk et al. 2007) and/or US Forest Service Aerial Detection Surveys (Johnson and Wittwer 2006).  

 

 
Table 2. Correlation coefficients of predictor variables and tree canopy cover. 

 

  Live canopy cover Previous canopy cover 

Live canopy cover  1.000 0.538 

Previous canopy cover  0.538 1.000 

Elevation -0.332 -0.499 

Slope -0.239 -0.388 

Folded aspect -0.032 0.078 

Heat load index -0.030 0.047 

Wetness index -0.024 0.121 

Slope over area ratio -0.085 -0.164 

Distance up to ridge -0.047 0.082 

Distance down to stream -0.294 -0.421 

LANDSAT 7, Band 2 -0.322 -0.490 

LANDSAT 7, Band 3 -0.364 -0.541 

LANDSAT 7, Band 4 -0.255 -0.421 

LANDSAT 7, Band 5 -0.450 -0.496 

Mean annual precipitation -0.091 -0.198 

Mean annual minimum temperature 0.279 0.411 

Mean annual maximum temperature 0.288 0.383 

2011 NLCD tree canopy cover 0.665 0.416 

 

 

One advantage of using EBK regression prediction for this type of modeling is that it produces 

raster layers representing numerous error metrics. Fig. 5 shows the standard error of the canopy cover 

map shown in Fig. 3. Such outputs may be useful for exploratory investigation of the nature and 

distributions of modeling errors. For example, the southern half of the study area appears to have 

smaller standard errors in predicted canopy cover, compared to the northern half. 

Note that both the output tree canopy cover raster and the standard error layer have missing 

data values along some irregular edges of the study area (Figs. 3 and 5). The locations of missing values 

suggest that the algorithm uses a bounding box for the kriging analysis, and therefore the corners of the 

raster used to define the extent should extend beyond the study area.  

 



 
 

Fig. 5. Map of the standard error EBK-modeled tree canopy cover. 

 

DISCUSSION AND FUTURE WORK 

The EBK regression prediction function in ArcGIS Pro seems to be easy-to-use and effective for 

creating a spatially continuous of canopy cover, provided inputs of multiple raster predictor layers 

combined with point data representing ground-based canopy cover measurements. The RMSE of the 

output layer indicated that this method produced a map of tree canopy cover that, for this study area, is 

more accurate than the 2011 NLCD tree canopy cover layer.  

However, this method has some limitations: raster inputs must extend beyond an irregular 

polygon study area boundary to ensure full coverage in the output layer, and negative predictions 

cannot be eliminated. For these reasons, the ideal method for developing a statistical model of canopy 

cover will likely require the use of a more flexible and sophisticated software package, such as the open-

source software R.  

Based on these the results of this project, it seems worthwhile to pursue additional research 

into the following aspects of this study: 

1) Can the output layer be improved by using a more flexible statistical model? 



2) Can additional informative predictors be incorporated?  

3) Can this method be repeated across broader geographic scales? 

4) Can this method be used to produce similar spatially continuous layers representing 

secondary canopy strata and litter layers, based on ground measurements at FIA plots? 

In reference to the first question, the open-source statistical analysis programming language R 

offers the greatest flexibility for predictive modeling. Preparing GIS data for analysis in R will require 

several addition pre-processing steps, some of which were not used here. All data inputs must exist in 

raster format, with identical spatial reference and cell size. Within R, some functions perform automatic 

cross-validation. However, the ideal method for validating a modeled layer such as the tree canopy 

cover map produced here would be using k-fold cross-validation, which is considered one of the most 

efficient, least biased methods of assessing accuracy (Kuhn and Johnson 2013). There is an ample 

number of FIA plots to permit this type of validation with k=5 to 10.  

 In reference to the second question, the specific predictors that could be improved are 
topographic derivatives and climate variables. Future work should investigate a more physically-based 
representation of solar radiation and/or heat load for modeling vegetation. Climatic variables such as 
precipitation and temperature should be represented at temporally finer scales, such as using individual 
years or seasons to calculate moving-averages for multiple years or seasons, based on the knowledge 
that trees may respond to multi-year water or temperature stress (Anderegg et al. 2013). Also, spatial 
scale is an important consideration for climatic predictors. Although PRISM data are fairly high-
resolution at 800 m, statistical modeling in R requires that all inputs have identical cell sizes. Therefore, 
PRISM data must either be downscaled using an appropriate resampling method, or all other variables 
must be resampled to 800 m resolution. 
 This method could theoretically be expanded to broader geographic scales, such as the entire 
western U.S. If geographic patterns are observed in the error structure of the output canopy cover layer, 
then it may be necessary to incorporate predictors that provide geographic separation, such as HUC8 
watershed or some combination of latitude and longitude, which may be conceptualized as regionally-
specific splines in the model. 

Finally, the method used here to produce an enhanced canopy cover layer could be repeated in 

the future as FIA continues re-measurement of permanent plots. That would enable quantification of 

fractional changes in canopy cover over time, such as those caused by partial mortality during drought, 

insect epidemics, or low-severity wildfire.  

As described in Tague and Band’s (2004) description of a spatially distributed hydrologic model, 

multiple canopy layers and a litter layer can be represented explicitly in their hydrologic model, 

presumably because those layers affect the rate of infiltration and thus the partitioning of precipitation 

into evapotranspiration versus runoff. Thus, the capabilities of hydrologic models have exceeded the 

availability of spatially explicit cover data. Because FIA collects detailed information on multiple canopy 

strata as well as litter, it is worth investigation whether the methods used here can also produce 

spatially continuous layers of secondary canopy strata and litter.   
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