Prasanna Dahal
Dr. David Tarboton & Dr. David Maidment
CEE 6400

04 December 2015

Preparing input for the TOPKAPI model

TOPKAPI (TOPographic Kinematic Approximation and Integration) is TOP model based
physically-based fully-distributed rainfall-runoff model deriving from the integration in space of
the kinematic wave model. The geometry of the catchment is described by a lattice of cells over
which the equations are integrated to lead to a cascade of nonlinear reservoirs (Liu and Todini,
2002). This project aims at building a tool to assist preparing input data for the model. There are
five python script in the tool which have to be run from Step 1 through Step 5, with each script
requiring some inputs. The output of the tool will be set of rasters associated with physical

properties of the watershed.

Progea.net [www.progea.net] is distributor or TOPKAPI model, and its explanation to
the utility of the model is “Beside subsurface, overland and channel flow, it includes
components representing infiltration, percolation, evapo-transpiration and snowmelt. It can be
applied at increasing spatial scales without losing model and parameter physical interpretation
Topkapi allows study of evolution of all the hydrological state variables of the catchment, such
as rainfall, temperature, evapotranspiration, soil moisture conditions, snow accumulation and
runoff generation”. The model is foreseen to be suitable for land-use and climate change impact

assessment; for extreme flood analysis, given the possibility of its extension to ungauged

http://www.progea.net/

catchments (Liu and Todini, 2002). The parameter for the TOPKAPI model can be obtained from
digital elevation maps, soil maps and vegetation or land use maps in terms of slope, soil
permeability, roughness and topology after a sequence of GIS processing. For this reason,
preparing input data for TOPKAPI model was chosen as a semester project. An open source
version of TOPKAPI model known as pyTOPKAPI was selected as the variant for study,
because it was free and usable across Windows, Mac OS or LINUX platform. PyTOPAPI is
developed by Theo Vischel & Scott Sinclair. This can be downloaded from
https://github.com/sahg/PyTOPKAPI.git

Although a model with various functionality, it has only been used in handful of cases in
the US. On analysing potential causes of its limited use, one major reason identified was the lack
of input data preparing tools available for data that are specific to the US. PyTOPKAPI has its
own module to prepare its input parameters, but that approach requires input rasters that are not
common in the US, or are much coarser than similar data prepared by the US. The diagrammatic
representation of its recommended input rasters to prepare input parameter is shown in figure 1.
For example, pyTOPKAPI can prepare its parameters if given GLCC (Global Land Cover
Characterization) land cover dataset, soil type raster as defined by SIRI (1987) and soil texture
raster as defined by Midgley et. al. (1984). Although GLCC is available for the US, it is not
regularly updated and is much coarser that NLCD (National Land Cover Dataset), the land cover
rasters adopted in the US. Thus, this project uses NLCD land cover data to prepare the input
parameters. Also, for Soil type and soil texture, US has its own corresponding data management
practice- called SSURGO (Soil Survey Geographic database). This project uses SSURGO data to

prepare much of the soil related parameter used in the model.

(@

DEM Land use/Land cover Soil type
from DLSI (1996) from GLCC (1997) from SIRI (1987)

>

Wma s Q0

S =

e

[[P S—— o .|_.
s

Soil texture

from Midgley et al. (1994)

]
]
I i
]
]

i f \

Liu and Todini (2002) Chow ot al. (1988) i
4

& it

L 2 o .

[l S—

Slope n n Soil
channel overland depth Soil
moisture

Saturated

[

b et Bl

rETrTe

Residual

Soil
moisture

i
/" Maddment (1293},
¥ L]

L

conductivity

Figure 1 a)Catchment data map b)From Catchment data to TOPKAPI model parameter

Source: Viscel & Sinclair et. al.

As outputs from the project, there will be a set of rasters corresponding the parameters:

e Slope (in degree) of overland area and the channel

Soil Depth

e Saturated hydraulic conductivity
e Residual soil moisture content

e Initial Saturation of soil reservoir
e Water content

e overland Slope of overland

e Saturated soil moisture content

e Manning’s coefficient for overland
e Manning’s coefficient for channel
e Bubbling pressure

o Pore size distribution

METHODOLOGY

Study Area: The 1688.4 square km large study area is Provo river located at East-South
of the Salt Lake City, as shown in figure 2 below. It is a small watershed taken for demonstrative
purpose only. The tool is supposed to create the output rasters irrespective of any location the

user wants to use it for.

Project Study Area (Demonstrative)

] [\ N
B?if,&llift,m \\\ i

orth Salt Lake A S

Salt Lake City

[]- //—\\\//\
’::Lasousﬁ;g:_x_/ LAKE

M;\&—LCREEK ; AST MILLCREEK

f
TN‘LORSV:LL&)

RRA K HOLLADAY

-

100

e ®==COTTONWOOD HEIGHTS
MIDVALE

ordan sandy ciy
| SANDY

AN LB;?J

lron {W DRAPER

<| / Alpine
:+X\ 92

)
i

gl IQ_AN FORK
\“\\\\PLEASAN
N Lindon
N (&

Utah
Lake
Strawbq

ces: Esfi, HERE, DeLorme, USGS, Intermap, increment P.Corp., NRGAN¥|
Mapmyindia, ©

11,000 5500 0

long Kong).
tors, and the GIS Us¢

Figure 2 Provo river, the project study area, to the south-east of Salt Lake City

Data Download and preparation: Most of the input parameters are derived from DEM,
land cover data and soil data from SSURGO. They are obtained from:
e DEM data (Downloaded using ArcGIS web services,
http://landscape2.arcgis.com/arcgis),
e NLCD land cover data (Downloaded using ArcGIS web services,
http://landscape2.arcgis.com/arcgis)

e SSURGO soil data (Downloaded from http://websoilsurvey.nrcs.usda.gov or

https://gdg.sc.egov.usda.gov)

*SSURGO stands for Soil Survey Geographic database

For a particular watershed, the input parameters listed above are prepared using Python
scripts bundled together in an ArcGIS toolbox, named “AutoPTPK2”, as shown in figure 2. The
step by step guides to use the tool is provided in Appendix C. There are four python scripts are in
the toolbox.

&3 AutoPTPK2
1’ STEP1: Get Data (Uses ArcGIS senvices)
5 STEPZ: DEM Processing
1’ STEP3:)oin table with texture lockup (Run from environment that has pandas)
%7 STEP4: join S5URGO and export rasters

Figure 2 A snippet of the AutoPTK tool, the result of the term project

The first ‘STEP1: Get Data (Uses ArcGIS service)’ takes as its inputs the ESRI polygon
shapefile of the watershed of our interest, as well as ESRI online account username and
password. This scripts also needs user to input a folder (or preferably a geodatabase) where the

downloaded file will be stored. As the outputs, the scripts downloads DEM and NLCD (2011)

http://websoilsurvey.nrcs.usda.gov/
https://gdg.sc.egov.usda.gov/

data for the region specified and stores them on the output location specified earlier. The python
code of the script is attached in Appendix A-1.

Processing the DEM: The second script of the tool ‘STEP2: DEM Processing’ takes the
DEM (Digital Elevation Model) downloaded in the first step as and a geodatabase or a folder to
store the files it creates. This step processes the input DEM it to come up with a few of the
required input parameter files such as a)flow direction for each cell in the watershed, b)Strahler’s
stream order raster for stream, and c) the stream itself. A part of the workflow of the DEM
processing is demonstrated as Model Builder workflow diagram in figure 3 below. The diamond
figure in blue represents inputs to the DEM processing step. The inputs are DEM, and the
watershed boundary as you can see in the figure below. The outputs are hexagon in grey with red
borders. They are Flow direction raster (based on D-8 method), stream order as described by
Strahler (1957). The yellow rectangles represent ArcGIS tools, while green oval represent data
used by and produced by those tools. Note that this figure however, is just for demonstrative
purpose as python script was used in the step and not model builder. The python code of the

script is attached in Appendix A-2.

7 = .]
i p i
Fill DEM_Proj Project Raster
A
5y
Exiract by Mask

Stream Link

Stream to Feature o

Figure 3 Workflow of DEM processing used in the second script of the tool
The Strahler order raster was reclassified using a table by Liu and Todini (2002) of
Strahler order to Manning’s coefficient n for a channel in the watershed , shown in Table 1:

Tablel: Strahler Order to Manning’s n relation used to during reclassification.

Strahler's Stream Order | Manning's coefficient n
1 0.05
2 0.04
3 0.035
4 0.03
5 0.03
6 0.025

Similar to reclassifying Strahler order raster to get Manning’s n for channel , NLCD data
downloaded earlier is also reclassified to Manning’s n for overland portion of the watershed
based on the look up table by Kalyanapu et. al.(2009) shown below.

Table2: NLCD land cover values Vs Manning’s coefficient n

NLCD Land Cover Code Manning's N
21 0.0404
22 0.0678
23 0.0678
24 0.0404
31 0.0113
41 0.36
42 0.32
43 0.4

52 0.4

71 0.368
81 0.325
90 0.086
95 0.1825

The ArcGIS tools used to achieve this were:

e Fill Flow direction

e Flow Accumulation

e Raster Calculation

e Extract by mask

e StreamLink

e Stream To Feature

e Stream Order (Strahler)

e Join table

e Feature to raster
ArcGIS did not accept values below 1 to be classified. Hence, in this project, reclassification was
done by multiplying the Manning’s value by 10000. Then, the raster-calculator tool was used,
and the value for the raster was divided by 10000 to get the final raster with Manning’s n.
The third script ‘STEP3:Join table with texture lookup (Run from environment that has pandas)’
uses SSURGO database, extracts/cleans data, located in tables in the ‘tabular’ folder of each
SSURGO given folder. The created table is used to create parameter raster for python script,
which will be discussed later.

A briefintroduction to SSURGO database and sample calculations: SSURGO data needs

to be downloaded for the study region from web (https://gdg.sc.egov.usda.gov/ or

http://websoilsurvey.nrcs.usda.gov). One watershed region can have many folders where the

data are present. The path to this folder collection of such folders is passed on as an input to this
script. Each of those folder downloaded, when unzipped, will have two folders ‘Spatial” and
‘Tabular’ and some files in it.

The SSURGO divides our region into multiple polygon called map-units. The shapefile
containing the region is located in the spatial folder under the name soilmu_a xxxx (for example

soilmu_a ut611). Each of those map units have different component of soil in it, whose property

https://gdg.sc.egov.usda.gov/
http://websoilsurvey.nrcs.usda.gov/

is available along with what percentage of a particular component of soil is present in each map
units, but their spatial information is not. So the properties for each component will have to be
averaged out based on percentage given to get one value for one map unit. However, not all
properties of soil are based on component of soil present in a map unit. That is because each
component has one or more layers of soil. Most properties of soil (for example soil type, porosity
etc.) is associated with each of the layers. Thus, first, one representative value for one component
needs to be calculated by taking weighted average based on height of the layer. The calculation
example for finding Ksat (saturated hydraulic conductivity) for one map-unit (map unit 1) is
explained in the Figure 4 below. Notice in the upper portion of the figure where ksat value was
calculated by taking weighted average based on height of the soil layer. The value obtained, 2.95
is value of one of four components present in the map unit we are concerned. To calculated Ksat
representing all of map-unit 1, another weighted average based on component percentage will

need to be done, as shown in the lower part of the figure 4.

-
| | Texture Depth | Ksat Associated to
component
Chorizoni Clay 25 35 4
t cChorizonz Loam 30 25 4

Ksat for this component = 3.5 * 25/(25+30) + 2.5* 30/(25+30) [Weighted Avg]

e

Component 4 =2.95
Map Unit 1
3 % present | Associated to map unit
B
/ - ‘\ | Componentt | 25 1
/ ™~ \ | Component2 |50 1
| “T'Component3 | 30 1
\‘ Map Unit 2 i~ Componentd 20 1
\ IMap Unit 4 i
v
. / Ksat for Map Unit1 =2.95*20% + ... 30% + ...*50% + ...*25% [Weighted Avg]
o o
=3.5

X Map Unit 3 -
\\‘__h _ —

Figure 4 Schematic diagram of SSURGO representation of soil properties, and their calculations

The exact same calculation process is done by the script ‘STEP3:Join table with texture
lookup (to be run from environment that has pandas)’. This script calculates one representing
value for one component of the soil first, taking weighted average based on height of the soil
layer. Then, it uses the values obtained in similar way for all the component, and takes weighted
average based on component percentage to get one value for one map-unit. Same step is repeated
for all the soil properties.

SSURGO table extraction and joining: Ahead of all these calculations, data contained in
the SSURGO, which are organised as relational tables, will have to be managed first. There are
different tables in the folder ‘tabular’ of the data downloaded. The one containing data of each
map unit is named muaggatt.txt (same as table muaggatt in access database), of all the
components present is named comp.txt (same as table component in access database), of each
soil layer is named chorizon.txt (same as table chorizon in access database), of each texture
group is named chtexgrp.txt (same as table Chorizon Texture group in access database) and the
one containing texture information is named chtextur.txt (same as table Chorizon Texture in
access database).

Because this is a SSURGO is a relational database, its tables can be joint based on
primary key for one table to foreign key of another table to create a large table that maps all the
required soil property to map units. The tables, as you can see in the entity relationship diagram
in figure 5 below, was joint in the following order: first joining “Chorizon Texture” table to
“Chorixon Texture Group” based on key Chtxtgrpkey. Then the combined table was joint to

‘Chorizon”, which was then joint to “Component” and then finally all these was joint to

“Muaggatt”. After all these joins, the final table looks like as shown in Figure 6, with each item

in “Chorizon” or in “Chroizon Texture” table mapped to one Map unit.

| CHORIZON v _] chorizon Texture Group ¥
"] COMPONENT ¥
CHKEY INT CHTXTGRPKEY INT
CCKEY INT
Soil Property1 DOUBLE ! CHKEY INT
Component percentage .
Soil Property2 DOUBLE T COKEY INT
. ! CHTXTKEY INT
> >
"] MUAGGAT | Chorizon Texture v
Mukey INT CHTXTKEY INT
T COKEY INT *Texture Mame Y ARCHAR(255)
>
>

Figure 5 Entity relationship diagram of SSURGO tables used in the project

Figure 6 SSURGO extracted table by joint the mentioned three tables

[eueNane CHitarpKEY, |CHTXTKEY [CHKEY AyaWaterCon MUKEY |ComponentPercent MajorComponent |COKEY TopDenth BotmDepth |HerzanDepth sat 1 dathidhar_t
Silty clay loam 69519129 70749678 35401183 0 482190 50/Yes 12395040 15 28 0.42 13
Silty clay loam 695191300 70750735/ 35401184 0 482190 50/Yes 12395040 28 43 0.42 128

69519131 70750736/ 35401185 0] 482190| 50/Yes 12395040 43 102 0.42
Silty clay loam 69519132 70750737 35401186 0 482191 85/Yes 12395042 0 33 0.42 118
Clay 69519146 70750838 35401200 0 482192 5/No 12395048 102 152 0.42 113
Silty clay loam 69519147 70750190 35401201 0 482192 85/Yes 12395050 0 33 0.42 12
Clay 69519148 70749680 35401202 0 482192 85/Yes 12395050 33 99 0.42 12
Silty clay 69519149 70750191 35401203 0 482192 85/Yes 12395050 99 152 0.01 1:2
Silty clay 69519162, 70750553 35401216 0 482193 20/Yes 12395054 99 152 0.42 118
Loam 69519163 70749682 35401217 0 482194 85/Yes 12395055 0 20 14 138
Loam 69519164 70750194 35401218 0 482194 85/Yes 12395055 20 30 14 138
Loam 69519165 70750739 35401219 0 482194 85/Yes 12395055 30 43 14 135
69519166 70750740 35401220 0 482194 85/Yes 12395055 43 69 0
Clay 69519179 70750478 35401233 0 482196 5/No 12395064 33 99 0.42 118
Silty clay 695191800 70749780 35401234 0 482196 5/No 12395064 99 152 0.42 118
Loam 69519181 70750382 35401235 0 482197 85/Yes 12395065 0 15, 4 128
Silt loam 69519182 70750383 35401236 0 482197 85/Yes 12395065 15 30 4 125
Silt loam 69519196 70750384 35401243 0 482199 90/Yes 12395072 15 30 4 125
Silty clay loam 69519197 70750385 35401249 0 482199 90/Yes 12395072 30 48 0.42 123
Silty clay 69519198 70750386/ 35401250 0 482199 90/Yes 12395072 46 79 0.42 14
Silty clay 69519199 70750387 35401251 0 482199 90/ Yes 12395072 79 102 0.42 14
Fine sandy loam 69519213 70750389 35401263 0 482201 90 Yes 12395079 0 25 14 14
Fine sandy loam 69519214 70750390 35401264 0 482201 90/Yes 12395079 25 33 14 14
Clay loam 69519215 70750391 35401265 0 482201 90 Yes 12395079 33 76 0.42 128
Loam 69519216 70750206/ 35401266 0 482201 90/Yes 12395079 76 97 4 15

\Very fine sandy loam 69519228 70750392 35401279 0 482203 90/Yes 12395086 a7 122 14 138

Sandy loam 695192300 70750393 35401280 0 482203 90/Yes 12395086 122 152 14 15

In the table “Chorizon Texture”, the soil type in named a texture name, like Loam, Sand,

Clay, Loamy Sand etc. Each of these is a unique name of soil type present in each layer. All type

of soil can be grouped into one of these 11 soil type, as shown from a soil triangle in the figure 7.

And for each of these soil type, tables such as one presented by Rawls et. al. (1982) as shown in

figure 8 provides useful approximation of many soil properties.

100

90 10

100 90 80 70 60 50 40 30 20 10
—«——— Percent Sand

Figure 7 A typical soil triangle

Totad Residual Effective) Wt Wt :’:.Ij::x'
Porndioy { b Waner Costeni Posouty Blakibiing Preswcre ik, Poce Sive Diatrdsution (1) Reisined it Rotainad ol Condurtiviey
Texmre Cl S b M ol i3 EITTR <1300 kPa T
Tewture Clom FTn &
Lty - - e
S 133 218
Lowsy Sand e [
Sandy Loam [y L
am LEL] 53
5 Loam 1308 b8E
Bandy Clay Lasew 498 43
D
Cluy Lo e A S {024,114} -
Silty Clay Loam 559 g i 5
Sandy Clay 45 P .': ._J,I:.. { ..“1.."-:.-:.
1an 1 [F] 4
Sddry Clay iz fAnEL AN % D18 >
ay m4TE 0 0% aIEs RA S0 Y130 s il TS fsms
Clay . 427 52% {018 18y [T =492 P60 (TALIET3) 03] 250 [E Bl iTY [T B LT -
*First line is the mean value, and second is one standard deviation about the mean.
==Antilog of the log mean.

Figure 8 Texture class versus soil property map given by Rawls et al. (1982)

Hence, after altering units to the ones we need, and using must the mean value from the table, a

table as shown in figure 9 was prepared. This lookup table is located in the zipped folder

containing the tool and is named “GREENAMPT LOOKUPTABLE.csv”. This is the file that

has to be passed on as an input to run the script by the user. Other lookup table with additional

parameters or different units for different soil properties too can be passed. But those tables need

to have headers in them, with ‘textureName’ as the name for texture groups field. The scripts

then maps soil properties for each soil map unit.

Sand 0.437
Loamy sand 0.437
Sandy loam 0.453
Silt loam 0.463

Loam 0.501
Sandy clay loam| 0.398
Silty clay loam 0.464

Clay loam 0.474
Sandy clay 043
Silty clay 0.479
Clay 0.475

Figure 9 Rawls's lookup table with units changed as required by TOPKAPI model

0417
0.401
0.415
0434
0.486

0.33

0.39
0.432
0.321
0.423
0.385

0.02
0.035
0.041
0.027
0.015
0.068
0.075

0.04
0.109

0.56

0.09

159.8
205.8

302
4012
508.7
5041
564.3
703.3
7948
765.4

856

126

86.9
146.6
ms
207.6
280.8
258.9
325.6
2917
3419

373

0.694
0.553
0.378
0.252
0.234
0.319
0.242
0.177
0.223

0.15
0.165

0.592
0.474
0.322

0.22
0.211

0.25
0.194
0.151
0.163
0.127
0.131

0.091
0.125
0.207

0.27

0.33
0.255
0.318
0.366
0.339
0.387
0.396

textureName Porosit LiiestivePorosi ResidualWaterGonte? BubblingPressure_arithm2 BubblingPressur PoreSizeDisuibutior PoreSizeDistibutiof WaterRetainee WaterRetaing# Ks

0.033 5.83
0.055 1.7
0.095 0.72
0117 0.37
0.133 0.19
0.148 0.12
0.197 0.06
0.208 0.04
0.239 0.03
0.25 0.03|
0.272/ 0.02

The last script of the tool, ‘STEP4: join SSURGO and export rasters’ The table obtained

after combining tables of SSURGO (as shown in figure 6) is joint to table mapping soil type to

its properties, i.e. table shown in figure 9. Then, weighted average procedure is carried out to

finally obtain a table that has all the weighted averaged soil properties for each map unit. The

table is then saved on user’s hard drive under the name “MUKEY-Vs-Values.csv in the each of

the SSURGO folders. The table looks like the one shown in figure 10 below.

0.127525/ 653420
0.210846022 658421
0.213625 658429

0.0328173872 658440
0.3108/ 653470
0.1516 653471

0.191807772 658472
0.1346 653476

01706323444 659481
0.1869127096 659482
0.2029691479 659506
0.2535685031 659507

0.161802636| 659520
0.2378549452 659531
0.1016727273| 659553
0.2618182796/ 659738
0.2150366167 659741
0.1539607543 659743
0.1837296492 659745

PoreSizeDistributior MUKEY ksat_r_WrtAvg Ks_WrtAvg

7.26887 0.252975
16.354134419 0534143207
14749465 0.456075

0.2010267031[658437] 49909127315 0.237169451

1.914317588) 0.06403704
33.8744 0.9175
9.880025 0.4343
6.3242954404) 0.328212021
10.712035842 0.4602

0.411833114 659480 26.2711056743/2.4110619847

7.83345| 0.333622589
22988518752 0.21748324
8.133242216| 0.274508932
9.1342330888 0.374498707
2.8299112545/0.1151870545
6.6196657785 0.323051458
0.7153190908| 0.027358182

13.68088| 1.058613602
6.9554632946 0.577324386
2.3985993032 0.126509593
6.7037753589/0.2740391107

0.6373695652
0.9453433372
1.035
1.1546668002
0.1701778963
1.2625

058
09519689119
0.4577684211
1.4583634868
0.8205894771
1175142885
1.2335799872
1.40052347
0.91223690693
1.3544741087
0.8565509091
1.3881182796
1.0573525905
1.1847273378
0.88909330043

0.21385
0.2650020808
0.36175
0.4067355657
0.0546577949
0.3568

0.1783
0.3164891192
0.1319
0.4504851974
0.2809760455
0.4018330117
0.4315601884
0.4639554234
0.3083359812
0.4369694688
0.3070318182
0.4739032258
0.3511606858
0.4241599554
0.3910259871

0.202025
0.2401406365
0.345725
0.368264431
0.0454500167
0.3271

01639
0.2826300518
0121
0.4153309759%
0.2630034434
0.3686392788
0.402215844
0.4276000566
0.2726044867
0.4005125401
0.2728227273
0.4444064516
0.3286421929
0.3709933799
0.3503312045

76.71
89.3914810282
130.035
186.380234501
26.488996993
96.385

49.685
138.465336788
29.055
133911222588
109.532975208
200.844152047
202531067904
209.081626185
178.440295845
204.19933407
207.282272727
223.200716846
133.582773733
282.603302957
235.698161004

Figure 10 MUKEY-Vs-Values.csv created with soil values for each texture class

dbthirdbar_r_WtAw dbfifteenbar » Porosity_WtAve EffectivePorosity BubhblingPressure_+PoreSizeDistribution

0.127525
0.210846022
0.213625
0.2010267031
0.0329173872
0.3108

0.15186
0.191807772
0.1345
0.411883114
0.1706323444
0.1869127096
0.2023691479
0.2535685031
0.161302636
0.2378549452
0.1016727273
0.2615182796
0.2150366167
0.1539607543
0.1837296492

In the next step of the work, the table as shown in figure 10 above, is joint to the attribute

table of spatial file of ssurgo named soilmu_a xxxxx. The joining of fields of shapefile in arcGIS

is shown in the figure 11 below. So now, all the map units have been mapped to one

representative soil properties for the region. The new field added in the attribute table is used to

convert the feature to the raster files. Hence, there will be as many rasters as there are properties

described in the lookup table 10 above.

soilmu_a_utf03

FID | Shape | AREASYMBOL| SPATIALVER | MUSYM| MUKEY | MUKEY aedive Poros ilyfﬁmvgﬁx Ksat_r WtAvg Ks_WitAvg h2oBarOneThird_WtAvg h20Bar15_WtAvg Porosity WtAvg
594 | Polygon | UTB03 3 | MA 482784 432734 0.485 4 0.65 23418182 5009091 0.501
2760 | Polygon | UTBO3 3| MIA 482784 482784 0.486 4 0.65 23.418182 5.005081 0.501
2786 | Polygon | UTBO3 3 [MA 482784 482784 0.486 4 0.65 23.418182 5.0090%1 0.501
2956 | Polygon | UTE03 3 | MIA 482784 482734 0.485 4 0.65 23418182 5005091 0.501
3217 [Polygon | UTBO3 3| MIA 482784 482784 0.4856 4 0.65 23.418182 5.008081 0.501
68 | Polygon | UTB03 3|Rs 482818 482818 0.433045 3808118 0.621086 17.333191 8.240483 0.4859726
192 | Polygon | UTB03 3|Rs 482818 482818 0.483045 3509118 0621086 17.333191 B5.240493 0.459726
288 | Polygon | UTB03 3|Rs 482818 482818 0.483045 3609118 0.621086 17.333191 8240483 0489726
288 | Polygon | UTB03 3|Rs 482818 482818 0.433045 3808118 0.621086 17.333191 8.240483 0.4859726
404 | Polygon | UTB03 3|Rs 482818 482818 0.433045 3808118 0.621086 17.333191 8.240483 0.4859726
654 | Polygon | UTB03 3|Rs 482818 482818 0.483045 3509118 0621086 17.333191 B5.240493 0.459726
785 | Polygon | UTE03 3|Rs 482818 482818 0.483045 3609118 0.621086 17.333191 8240483 0489726
997 | Polygon | UTE03 3|Rs 482818 482818 0.433045 3808118 0.621086 17.333191 8.240483 0.4859726
1148 | Polygon | UTE03 3|Rs 482818 482818 0.483045 3509118 0621086 17.333191 B5.240493 0.459726
1212 | Polygon | UTEO3 3|Rs 482818 482818 0.483045 3609118 0.621086 17.333191 8240483 0489726
1213 | Polygon | UTB03 3|Rs 482818 482818 0.433045 3808118 0.621086 17.333191 8.240483 0.4859726
1221 | Polygon | UTE03 3|Rs 482818 482818 0.483045 3509118 0621086 17.333191 B5.240493 0.459726
1224 | Polygon | UTEO3 3|Rs 482818 482818 0.483045 3609118 0.621086 17.333191 8240483 0489726
1508 | Polygon | UTB03 3|Rs 482818 482818 0.433045 3808118 0.621086 17.333191 8.240483 0.4859726
1522 | Polygon | UTE03 3|Rs 482818 482818 0.483045 3509118 0621086 17.333191 B5.240493 0.459726
1524 | Polygon | UTBO3 3|Rs 482818 482818 0.483045 3609118 0.621086 17.333191 8240483 0489726
1547 | Polygon | UTB03 3|Rs 482818 482818 0.433045 3808118 0.621086 17.333191 8.240483 0.4859726
1582 | Polygon | UTE03 3|Rs 482818 482818 0.483045 3509118 0621086 17.333191 B5.240493 0.459726
1609 | Polygon | UT603 3|Rs 482818 482818 0.483045 3508118 0.621086 17.333191 8240453 0458726
1827 | Polygon | UTEO3 3|Rs 482818 482818 0.483045 3609118 0.621086 17.333191 8240483 0489726
1830 | Polygon | UTB03 3|Rs 482818 482818 0.433045 3808118 0.621086 17.333191 8.240483 0.4859726
1843 | Polygon | UTE03 3|Rs 482818 482818 0.483045 3509118 0621086 17.333191 B5.240493 0.459726
1890 | Polygon | UTEO3 3|Rs 482818 482818 0.483045 3609118 0.621086 17.333191 8240483 0489726
1882 | Polygon | UTB03 3|Rs 482818 482818 0.433045 3808118 0.621086 17.333191 8.240483 0.4859726
1895 | Polygon | UTE03 3|Rs 482818 482818 0.483045 3509118 0621086 17.333191 B5.240493 0.459726
1980 | Polygon | UTEO3 3|Rs 482818 482818 0.483045 3609118 0.621086 17.333191 8240483 0489726
2018 | Polygon | UTB03 3|Rs 482818 482818 0.433045 3808118 0.621086 17.333191 8.240483 0.4859726
2072 | Polygon | UTE03 3|Rs 482818 482818 0.483045 3509118 0621086 17.333191 B5.240493 0.459726
2104 | Polygon | UTBO3 3|Rs 482818 482818 0.483045 3609118 0.621086 17.333191 8240483 0489726
2179 | Polygon | UTB03 3|Rs 482818 482818 0.433045 3808118 0.621086 17.333191 8.240483 0.4859726
2256 | Polygon | UTE03 3|Rs 482818 482818 0.483045 3509118 0621086 17.333191 B5.240493 0.459726
2280 | Polygon | UTBO3 3|Rs 482818 482818 0.483045 3609118 0.621086 17.333191 8240483 0489726
2280 | Polygon | UTB03 3|Rs 482818 482818 0.433045 3808118 0.621086 17.333191 8.240483 0.4859726
2300 | Polygon | UTE03 3|Rs 482818 482818 0.483045 3608118 0.621086 17.333191 8.240483 0.499726
2464 | Polygon | UTE03 3|Rs 482818 482818 0.483045 3509118 0621086 17.333191 B5.240493 0.459726
2582 | Polygon | UTBO3 3|Rs 482818 482818 0.483045 3609118 0.621086 17.333191 8240483 0489726
2637 | Polygon | UTB03 3|Rs 482818 482818 0.433045 3808118 0.621086 17.333191 8.240483 0.4859726
2671 | Polvgon | UTE03 3|Rs 482818 482818 0.483045 3509118 0621086 17.333191 B3.240493 0.459726

tH| 1 |

Figure 11 Table obtained in step3 merged to shapefile based on MUKEY
RESULTS

The result of the term project is that an ArcGIS tool is prepared. The use of the tool is
simple, same drag and drop procedure as other inbuilt GIS tools. This tool produces rasters that
represents properties of the watershed using DEM, NLCD rasters, lookup tables and SSURGO
database. The rasters can now be used as input for pyTOPKAPI model. This might also be used
for some other hydrological models.

The running of the tool on the study region produced the rasters as expected.The
produced rasters are shown below from figure 12 through figure 19. The produced rasters will be
saved in the output folder that the user gives during running the results. The rasters are in TIFF

format. If there are more than one SSURGO folders, these results might need to be joined using.

Figure 14

Figure 13

Legend

Ksat_s_UT622
val

ue
High : §8.3273

- Low : 0.530158

21000 1050 0 21,000 Memrs
- —

Figure 15

Ksat_t_UT622 s
Valu

b Legend
Legend w £ g
" E i [EfPor_t_UT622

—
High : 0.486

Valu

e
High : 3.36719

- Low : 0.2406
- Low: 0.034178

é Legend
W- E %
Y BbIPr_t_UT622 Legend
W- E
valueH\gn 333.307 é Ksat_t_UT622
. s Valu

e
- Low 5214 High : 3.36719

- Low : 0.034178

21,000 10.500 0 21,000 Meers 21000 10500 0 21.000 Meers
[= mm

Figure 18 Figure 19

CONCLUSION

Thus, the term project was completed. Much of ArcGIS tools was learnt. An ArcGIS tool
was prepared that makes input parameters preparation work easier for pyTOPKAPI model. It
might also be useful to other hydrological models. However, the third script may not work from
ArcGIS environment as it may not have python modules pandas installed on it. If so, the script

will have to be run from an environment that has pandas installed in it.

FUTURE WORKS

The tool makes use of ‘pandas’ module which is not present in python that comes with
ArcGIS installation. This creates nuisance to user, having to run a portion of the tool from
another environment, or worse get stuck because of not having pandas in your computer. Hence
rewriting the similar code avoiding pandas module might make life easier for those who want to
use this tool.

The tool can be further simplified for use. There are still a few drag and drops too many
to get the tasks done. With relatively many steps required to get the task done, there is more
chances for error. That could be minimized by slightly better design of the tool.

Also, the tool can be expanded to extract more data from SSURGO database, as core

program is already written to accomplish the task.

Works Cited

GitHub,. (2015). sahg/PyTOPKAPI. Retrieved 5 December 2015, from
https://github.com/sahg/PyTOPKAPI.git
Kalyanapu, A. J., Burian, S. J., & McPherson, T. N. (2010). Effect of land use-based surface roughness on

hydrologic model output. Journal of Spatial Hydrology, 9(2).
Liu, Z., & Todini, E. (2002). Towards a comprehensive physically-based rainfall-runoff model.
Hydrology and Earth System Sciences Discussions, 6(5), 859-881.
Soil Survey Staff, Natural Resources Conservation Service, United States Department of

Agriculture. Web Soil Survey. Available online at http://websoilsurvey.nrcs.usda.gov/. Accessed
12/04/2015

Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Civ. Eng, 101,
1258-1262.

Vischel, T., Pegram, G., Scott Sinclair, S., & Parak, M. (2008). Implementation of the TOPKAPI
model in South Africa: Initial results from the Liebenbergsvlei catchment. Water Sa,

34(3), 331-342.

https://github.com/sahg/PyTOPKAPI.git
https://github.com/sahg/PyTOPKAPI.git

Appendix A

1. STEPI1: Get Data (Uses ArcGIS services) code

import arcpy
import os

import sys

Written initially by Cyndia Castro

Modified by Prasanna Dahal

arcpy.env.overwriteOutput = True
arcpy.CheckOutExtension ("Spatial")
inUsername = arcpy.GetParameterAsText (0)
inPassword = arcpy.GetParameterAsText (1)
outDir = arcpy.GetParameterAsText (2)
wshedDir = arcpy.GetParameterAsText (3)

bufferDi= arcpy.GetParameterAsText (4)

#defaulted, to make things easier
if inUsername == "": inUsername = ""

if inPassword == "": inPassword = ""

Set workspace environment
arcpy.env.workspace = arcpy.env.scratchWorkspace = outDir

arcpy.env.outputCoordinateSystem = arcpy.SpatialReference (102008)

Add Data to Geodatabase

arcpy.FeatureClassToFeatureClass conversion(wshedDir, outDir, "Boundary")

arcpy.MakeFeatureLayer management ("Boundary", "Boundary")

Buffer

arcpy.Buffer analysis ("Boundary", "Buffer", str(bufferDi)+" Meters", "FULL", "ROUND",

"NONE" , nn , "PLANAR")

Connect to ArcGIS Servers

out folder path = 'GIS Servers'

out landscape = 'Landscape.ags'

server landscape = 'https://landscape5.arcgis.com:443/arcgis/services/"
out elevation = 'Elevation.ags'

server elevation = 'https://elevation.arcgis.com:443/arcgis/services/'

arcpy.mapping.CreateGISServerConnectionFile ("USE_GIS_ SERVICES",
out folder path,
out landscape,
server landscape,
"ARCGIS_SERVER",
username=inUsername,
password=inPassword,

save username password=True)

arcpy.mapping.CreateGISServerConnectionFile ("USE_GIS_SERVICES",
out_folder path,
out elevation,

server elevation,

"ARCGIS_SERVER",
username=inUsername,
password=inPassword,

save username password=True)

Extract Image Server Data

""" Land Use """

NLCD ImageServer = "GIS Servers\\Landscape\\USA NLCD 2011.ImageServer"
arcpy.MakeImageServerLayer management (NLCD ImageServer, "NLCD Layer")

arcpy.gp.ExtractByMask sa ("NLCD_Layer", "Buffer", "Land Use")

mwin DEM , 30m NED mmon
NED30m_ ImageServer = "GIS Servers\\Elevation\\NED30m.ImageServer"
arcpy.MakeImageServerLayer management (NED30m ImageServer, "NED30m_ Layer")

arcpy.gp.ExtractByMask sa ("NED30m_Layer", "Buffer", "DEM")

#project DEM to UTM

arcpy.ProjectRaster management (in raster="DEM", out raster="DEM Prj",

out_coor system="PROJCS['NAD 1983 2011 UTM Zone_12N',GEOGCS['GCS_NAD 1983 2011',DATUM[
'D_ NAD 1983 2011',SPHEROID['GRS_1980',6378137.0,298.257222101]],PRIMEM]['Greenwich',0.0
] ,UNIT['Degree',0.0174532925199433]],PROJECTION|['Transverse_Mercator'] ,PARAMETER['Fals
e Easting',500000.0] ,PARAMETER|['False Northing',0.0],PARAMETER['Central Meridian',6-111
.0] ,PARAMETER['Scale_Factor',0.9996] ,PARAMETER|['Latitude Of Origin',0.0],UNIT['Meter’,
1.0]]", resampling type="NEAREST", cell size="30.9220807759341 30.922080775934",
geographic_transform="'WGS_1984_ (ITRF00)_ To NAD 1983 +

WGS_1984 (ITRF08) To NAD 1983 2011'", Registration Point="",

in_coor_system="PROJCS['North America Albers_Equal Area Conic',GEOGCS['GCS_North Ameri
can_1983' ,DATUM['D North American_1983',6SPHEROID['GRS_1980',6378137.0,298.257222101]1],
PRIMEM|['Greenwich',0.0] ,UNIT['Degree',0.0174532925199433]],PROJECTION|['Albers'] , PARAME
TER['False_Easting',0.0] ,PARAMETER['False Northing',0.0],PARAMETER]['Central Meridian',
-96.0] ,PARAMETER|['Standard Parallel 1',20.0],PARAMETER['Standard Parallel 2',60.0],PAR

AMETER['Latitude Of Origin',40.0],UNIT['Meter',1.0]]")

#project Land Use to UTM

arcpy.ProjectRaster_management (in_raster="Land Use", out raster="Land Use Prj",

out coor system="PROJCS['NAD 1983 2011 UTM Zone_ 12N',GEOGCS['GCS_NAD 1983 2011', DATUM[
'D_NAD 1983 2011',6SPHEROID['GRS_1980',6378137.0,298.257222101]] ,PRIMEM['Greenwich',0.0
] ,UNIT['Degree',0.0174532925199433]],PROJECTION|['Transverse Mercator'],PARAMETER]['Fals
e _Easting',500000.0] ,PARAMETER|['False_Northing',0.0] ,PARAMETER['Central Meridian',6-111
.0] ,PARAMETER|['Scale_Factor',0.9996] ,PARAMETER|['Latitude_Of Origin',0.0],UNIT['Meter’',
1.0]]", resampling type="NEAREST", cell size="30.9220807759341 30.922080775934",
geographic_transform="'WGS_1984 (ITRF00)_ To NAD 1983 +

WGS_1984 (ITRF08) To NAD 1983 2011'", Registration_ Point="",

in coor system="PROJCS['North America Albers Equal Area Conic',GEOGCS['GCS_North Ameri
can_1983' ,DATUM['D_North American_1983',6SPHEROID['GRS_1980',6378137.0,298.257222101]],
PRIMEM|['Greenwich',0.0] ,UNIT|['Degree',0.0174532925199433]] ,PROJECTION]|['Albers'] ,PARAME
TER['False Easting',0.0],PARAMETER['False Northing',0.0],PARAMETER['Central Meridian',
-96.0] ,PARAMETER['Standard Parallel 1',20.0],PARAMETER|['Standard Parallel 2',60.0],PAR

AMETER['Latitude_Of Origin',40.0],UNIT['Meter',1.0]]")

2. STEP2: DEM Processing

import arcpy
from arcpy import env

from arcpy.sa import *

arcpy.env.overwriteOutput = True
arcpy.CheckOutExtension ("Spatial")

DEM = arcpy.GetParameterAsText (0)

outDir= arcpy.GetParameterAsText (1) #output directory
Basin = arcpy.GetParameterAsText (2) #boundary

threshold = arcpy.GetParameterAsText (3) #Threshold for defining stream

if threshold == "": threshold = "5000"
Set workspace environment
arcpy.env.workspace = arcpy.env.scratchWorkspace = outDir

arcpy.env.outputCoordinateSystem = arcpy.SpatialReference (102008)

fill = "£il11"

fdr = '£dr'

fac = 'fac'

strlnk = 'strlnk'

str = 'str'

strc = 'strec'

drp = 'drp'

Catchment = 'Catchment'
DrainagelLine shp = 'DrainageLine'’
CatchPoly shp = 'CatchPoly'
CatchPolyDissolve shp = 'CatchPolyDissolve'

STRAHLER = "STRAHLER"

arcpy.gp.Fill sa(DEM, fill, "")
arcpy.gp.FlowDirection sa(fill, fdr, "NORMAL", drp)

arcpy.gp.FlowAccumulation sa(fdr, fac, "", "FLOAT")

arcpy.gp.RasterCalculator sa('"fac" > ' + threshold, str)
arcpy.gp.ExtractByMask sa(str, Basin, strc)

arcpy.gp.StreamLink sa(strc, fdr, strlnk)

arcpy.gp.StreamToFeature_sa(strlnk, fdr, DrainagelLine_shp, "NO_SIMPLIFY")

arcpy.gp.Watershed sa(fdr, strlnk, Catchment, "VALUE")
arcpy.RasterToPolygon_conversion (Catchment, CatchPoly shp, "NO_SIMPLIFY", "VALUE")
arcpy.Dissolve management (CatchPoly shp, CatchPolyDissolve shp, "GRIDCODE", "',

"MULTI_PART", "DISSOLVE_LINES")

arcpy.gp.StreamOrder sa("str", "£dr", STRAHLER, "STRAHLER") #the last arameter,
Strahler string, 1is actually a method of ordering stream. NOT A NAME
arcpy.AddField management (in_table="Land Use_Prj", field name="ManningsN",

field type="LONG", field precision="", field scale="", field length="",

field alias="", field is nullable="NULLABLE", field is_required="NON_REQUIRED",

field domain="")

reclassField nlcd = "Land Cover"

#remap nlcd = RemapValue ([["Open Water", 0], ["Developed, Open Space",

0.0404], ["Developed, Low Intensity", 0.0678],['Developed, Medium
Intensity',0.0678],['Developed, High Intensity', 0.0404],['Barren
Land',0.0113], ["Deciduous Forest' , 0.36],['Evergreen Forest' , 0.368],['Mixed
Forest', 0.325],['Shrub/Scrub' ,0.086],['Herbaceuous', 0.1825],['Hay/Pasture'
,0.086],['Cultivated Crops', 0.086],['Woody Wetlands', 0.086],['Emergent Herbaceuous

Wetlands',0.1825]])

remap nlcd = RemapValue ([["Open Water", 0%10000], ["Developed, Open Space',
0.0404*10000], ["Developed, Low Intensity", 0.0678*10000],['Developed, Medium
Intensity',0.0678*%10000], ['Developed, High Intensity', 0.0404*10000],['Barren
Land',0.0113*10000], ['Deciduous Forest' , 0.36*10000],['Evergreen Forest' ,
0.368*10000],['Mixed Forest', 0.325*10000],['Shrub/Scrub' ,0.086*10000],[
'"Herbaceuous', 0.1825*10000],['Hay/Pasture' ,0.086*10000],['Cultivated Crops',
0.086*%10000], ["Woody Wetlands', 0.086*10000],['Emergent Herbaceuous
Wetlands',0.1825*10000]])

outReclassify = Reclassify("Land Use", reclassField nlcd, remap nlcd, "NODATA")

outReclassify.save("n Overland")

reclassField strahler = "Value"

remap strahler =
RemapValue([[1,0.05],([2,0.04],([3,0.035],[4,0.03],([5,0.03],([6,0.025,]])

outReclassify = Reclassify ("STRAHLER", reclassField strahler, remap strahler,
"NODATA")

outReclassify.save("n Channel")

#Straight process reclassification, as above, did not work. so lets multiply mannings
n by 10,000. We will later divide it by 10,000 again
arcpy.gp.Reclassify sa("Land Use_ Prj", "Value", "11 0;21 404;22 678;23 678;24 404;31
113;41 3600;42 3200;43 4000;52 4000;71 3680;81 3250;82 3250;90 860;95 1825",

outDir+"/nx10000_Overl"”, "DATA")

#reclassifyin strahler order to get manninsg for channel in the same way

arcpy.gp.Reclassify sa("STRAHLER", "Value", "1 500;2 400;3 350;4 300;5 300;6 250",

outDir+"/nx10000_Chan", "DATA")

#now calulate the real mannins, divide reclassified raster by 10,000

#NLCD to n

arcpy.gp.RasterCalculator sa(""""nx10000_Overl" /10000.0""", outDir+"/mn_Overland")

#strahler order to n

arcpy.gp.RasterCalculator sa(""""nx10000_Chan" /10000.0""", outDir+"/n_Channel")

3. STEP3:Join table with texture lookup (Run from environment that has pandas)

import pandas as pd
import numpy as np

import os

#Input a folder that has all the folders of names similar to UT012, Ut027 etc.
path2collectionOfssurgoFolders = r"G:\StudyArea SSUROG"

path2lookupTable =
r"C:\Users\Prasanna\Dropbox\CLASSES\Hydroinformatics\PyProject HI\PROJECT RESEARCH\Aut

oPTPK2\GREENAMPT LOOKUPTABLE.csV"

lookupTable = pd.read csv(path2lookupTable , sep=',', skiprows = 0)

#create a list of folders only

folderList = []

[folderList.append(folders) for folders in os.listdir (path2collectionOfssurgoFolders)

if os.path.isdir (os.path.join(path2collectionOfssurgoFolders, folders))]

for folder in folderList:
path2ssurgo= path2collectionOfssurgoFolders + "/" + folder
path2tabular = path2ssurgo+"//tabular"

path2Spatial= path2ssurgo+"//spatial”

#Make changes here!

valuesToAvg =
['ksat_r', 'Ks', 'dbthirdbar_r', 'dbfifteenbar r',6 'Porosity', 'EffectivePorosity’,
'BubblingPressure_Geometric', 'PoreSizeDistribution_ geometric'] #use the
values that we need to average

fileNameColNoListHeaders = [
["comp",[1,5,107,108], ["ComponentPercent", "MajorComponent", "MUKEY", "COKEY"]],

["muaggatt", [10,39], ["AvaWaterCon", "MUKEY"]],

["chorizon", [6,9,12,81,72,75,169,170], ["TopDepth", "BottomDepth",

"HorizonDepth", "ksat_r", "dbthirdbar r","dbfifteenbar r", "COKEY", "CHKEY"]],

["chtextur", [0,2,3], ["textureName", "CHtxtgrpKEY", "CHTXTKEY"]],

["chtexgrp", [4,5], ["CHKEY", "CHtxtgrpKEY"]]

def STEP1 rawToRefined(fileName ColNoList Headers, path=path2tabular):
for afileColHdr in fileName ColNoList Headers:
txtFilename= afileColHdr[O0]
colNo = afileColHdr[1]

header = afileColHdr[2]

txtFile = path + "\\" + txtFilename + ".txt" #RETURNS FULL ADDRESS
csvFileData = pd.read csv(txtFile, sep = "|", header=None, comment='#")
reqdData = csvFileData.iloc[:,colNo]

regdData.columns = header

reqgdData.to_csv(path + "\\" + txtFilename + ".csv", index=False)

return reqgdData

def STEP2 mergeCSV(path=path2tabular) :

muaggatt = pd.read csv(path+"/muaggatt.csv") ; print "/muaggatt.csv",
len (muaggatt.index)

component = pd.read_csv(path+"/comp.csv") ; print "/comp.csv",
len (component.index)

chorizon = pd.read_csv(path+"/chorizon.csv") ; print "/chorizon.csv",
len (chorizon.index)

chtextur = pd.read csv(path+"/chtextur.csv") ; print "/chtextur.csv",
len (chtextur.index)

chtexgrp = pd.read csv(path+"/chtexgrp.csv") ; print "/chtexgrp.csv",

len (chtexgrp.index)

component Muaggatt = pd.merge (muaggatt , component, on='MUKEY')
chorizon Component Muaggatt = pd.merge (component Muaggatt , chorizon,
on="COKEY')

chTxt chTxtGrp = pd.merge(chtextur , chtexgrp, on='CHtxtgrpKEY')

merged = pd.merge (chTxt chTxtGrp , chorizon Component Muaggatt, on='CHKEY')

#print chorizonWithComponent
merged.to_csv(path + "/MERGED.csv", index=False)

return merged

main

try:

#take necessary columns from the files, and add headers to them

STEP1 rawToRefined(fileNameColNoListHeaders) ; print "Headers applied to raw
txts"
except Exception, e:
print e
try:
#STEP2 Merge (Chorizon to Component) to Muaggatt —---> result: MERGED.csv
mergdf = STEP2 mergeCSV() ; print "Merging completed"

except Exception, e:

print e

try:

#STEP3 Merge lookup table to the LARGE table ----- >result:

OverallMergedWithTexture.csv

mergeWithLookUp = pd.merge (mergdf, lookupTable, on= 'textureName')

mergeWithLookUp.to csv(path2tabular + "\\OverallMergedWithTexture.csv",

index=False)
print "Merging with texture lookup table completed"
except Exception, e:

print e

try:

#STEP4 Take 1i)Height Weighted Average 1ii)Component % weighted average

result MUKEY-Vs-Values.csv

merged = pd.read csv(path2tabular + "\\OverallMergedWithTexture.csv")

#Caclulation of weighted average

HorizonDepth2 = merged]['BottomDepth'] - merged['TopDepth'] ;

merged.loc[:, '"HorizonDepth2']= HorizonDepth2

#the values whose weighted average we want, needs to be given in the list below
#po——— > MUKEY Vs Value (just one) MUKEY-Value.csv
for valueName in valuesToAvg: #add those values to merged
VxD = merged|['HorizonDepth2']* merged[valueName] ;
merged.loc[:,valueName+"xD_sum"]= VxD
chorizonCalc = merged.groupby ('COKEY') .agg ({valueName+"xD_sum":np.sum ,
'HorizonDepth2' :np.sum, 'ComponentPercent':np.max, 'COKEY' :np.max, 'MUKEY' :np.max })
chorizonCalc=chorizonCalc.rename (columns =
{ 'HorizonDepth2':'HorizonDepth2_ sum'}) #because grouping by cokey, the column name
doesnt match its data
VxD by sum =
chorizonCalc[valueName+"xD_sum"].astype('float').div(chorizonCalc['HorizonDepth2 sum']
.astype ('float'))

chorizonCalc.loc[:,valueName+" avgH"]= VxD_by sum

#percentage weightage
compPerc_X Havg = chorizonCalc['ComponentPercent'].astype('float')/100. *
chorizonCalc[valueName+"_avgH"]

chorizonCalc.loc[:,valueName+" WtAvg"] = compPerc X Havg

#now Group it by MUKEY, and done!

componentPercentageCalc =
chorizonCalc.groupby ('MUKEY') .agg ({ '"MUKEY' :np.max, valueName+" WtAvg":np.sum })

componentPercentageCalc.to_csv(path2tabular+"\\MUKEY—"+ valueName +".csv",

index=False)

#now, function to use the 'valuesToAvg' list above, and merge them against

MUREY

mukeyValues = componentPercentageCalc.MUKEY

except Exception, e:
print e
try:
#STEP5: Merge all the MUKEY Vs Values CcSv ———————-= > result MUKEY-Vs-Values.csv
lastValueFile = pd.read csv(path2tabular+"\\MUKEY-"+ valuesToAvg[-1] +".csv")
for valueName in valuesToAvg:
#1if valueName == valuesToAvg/[-1] : break
fl = pd.read csv(path2tabular+"\\MUKEY-"+ valueName +".csv")
print path2tabular+"\\MUKEY-"+ valueName +".csv"

lastValueFile = pd.merge(lastValueFile, fl, on="MUKEY")

#print mukeyValuesAllMerged
lastValueFile.to csv(path2ssurgo+"\\MUKEY-Vs-Values.csv", index=False)

print 'All values table written down in the ssurgo folder'

#create a schema.ini so that arcGIS can understand the MUKEY field

schema = open (path2ssurgo+"\\schema.ini", "w")

schema.write (" [MUKEY-Vs-Values.csv]"+ "\n" + "Col2=MUKEY Text") #may not
always be column 1 though

schema.close ()

#delete all the csv files made so far, except the MUKEY-Vs-Values.csv
filelist = [£ for f in os.listdir ("path2tabular") if f.endswith(".csv")]

for f in filelist:

os.remove (f)

except Exception, e:

print e

4. STEP4: join SSURGO and export rasters

import arcpy
from arcpy import env

import os

#this program is supposed to take ssurgo datafolder path as input and attach to
soil mu xxx the table combined for MUKEY earlier

#one limitation, you have to open the spatial soilmu a xxxx file for it to work

arcpy.env.overwriteOutput = True

arcpy.CheckOutExtension ("Spatial")

path2ssurgoFolders = arcpy.GetParameterAsText (0)
outDir = arcpy.GetParameterAsText (1) #this is where the output rasters and the
projected polygon shapefile will be saved

cellSize = arcpy.GetParameterAsText (2)

arcpy.env.outputCoordinateSystem = arcpy.SpatialReference (102008)

#create a list of folders only
folderList = []
[folderList.append(folders) for folders in os.listdir (path2ssurgoFolders)

if os.path.isdir (os.path.join(path2ssurgofFolders, folders))]

folderList = folderList

for folder in folderList:
path2ssurgo= path2ssurgoFolders + "/" + folder
path2tabular = path2ssurgo+"/tabular"
path2Spatial= path2ssurgo+"/spatial"

arcpy.env.workspace = arcpy.env.scratchWorkspace = path2ssurgo

muShapefile = os.listdir (path2Spatial) [1].split('.") [0]

#project the shapefile in ssurgo table

arcpy.Project management (in dataset= path2ssurgo+"/spatial/" + muShapefile +".shp"
, out dataset=outDir + "/"+ muShapefile +"_prj",
out coor system="PROJCS['NAD_ 1983 UTM Zone_12N', GEOGCS['GCS_North American_1983',6 DATUM
['D_North American_1983',6SPHEROID['GRS_1980',6378137.0,298.257222101]] ,PRIMEM['Greenwi
ch',0.0] ,UNIT['Degree',0.0174532925199433]],PROJECTION|['Transverse Mercator'],6 PARAMETE
R['False Easting',500000.0] ,PARAMETER]['False Northing',60.0],PARAMETER['Central Meridia
n',-111.0] ,PARAMETER|['Scale Factor',0.9996] ,PARAMETER|['Latitude Of Origin',0.0],UNIT['
Meter',1.0]1", transform method="WGS_1984 (ITRF00)_ To NAD 1983",
in_coor_system="GEOGCS['GCS_WGS_1984' , DATUM['D WGS_1984',6SPHEROID['WGS_1984',6378137.0
,298.257223563]] ,PRIMEM]['Greenwich',0.0] ,UNIT|['Degree',0.0174532925199433]11",

preserve_shape="NO_PRESERVE_ SHAPE", max deviation="")

to add the projected shapefile from ssurgo, as a layer to the map at the bottom
of the TOC in data frame 0

mxd = arcpy.mapping.MapDocument ("CURRENT") # get
the map document

df = arcpy.mapping.ListDataFrames (mxd,"*") [0] #first

dataframe in the document

newlayer = arcpy.mapping.Layer (outDir + "/"+ muShapefile +"_prj"+".shp") #
create a new layer
arcpy.mapping.AddLayer (df, newlayer, "BOTTOM")

muShapefileAsLayer = muShapefile +"_prj"

try:
#join the table that had mUKEY mapped to all soil properties
arcpy.AddJoin management (muShapefileAsLayer, "MUKEY",

path2ssurgo+"/MUKEY-Vs-Values.csv", "MUKEY")

#ssr for ssurgo, and tbl for lookup table

soilProperties = [["ksat _r WtAvg", "Ksat_s "+folder],
["Ks_WtAvg", "Ksat_t "+folder],
["Porosity_WtAvg","Por_t_"+folder 1,
["EffectivePorosity WtAvg","EfPor_t " +folder] ,
["BubblingPressure_Geometric_WtAvg", "BblPr_ t "+folder] ,
["PoreSizeDistribution_geometric_WtAvg y","PoreSz_t "+folder]
]
#soilProperties = [["ksat r WtAvg", "Ksat ssur"], ["Ks WtAvg", "Ksat tbl"],
["dbthirdbar r WtAvg",'"dbthirdbar ssur"]]
for a soil property in soilProperties:
#covert from features to rasters
#take first element of a soil property to find values in joint table, and
second element to name the raster

firstNameOfSoilProperty = a soil property[1l].split('_") [0] #example

Al
Ksat s

if not os.path.exists (outDir+"/"+firstNameOfSoilProperty) :

os.makedirs (outDir+"/"+firstNameOfSoilProperty)

arcpy.FeatureToRaster conversion(in features=muShapefileAsLayer,
field="MUKEY-Vs-Values.csv." + a soil property[0] ,

out raster=outDir+"/"+firstNameOfSoilProperty+"/"+ a soil propertyl[l], cell size=

cellSize) # "2.71097365691884E-03")
newRasterlayer =
arcpy.mapping.Layer (outDir+"/"+firstNameOfSoilProperty+"/"+ a soil propertyl[l]) #

create a new layer

arcpy.mapping.AddLayer (df, newRasterlayer, "BOTTOM")

print "Folder done: ", folder
except Exception, e:

print "failed in folder ", folder

try:
#merge rasters present in outDir

FOLDERSOFRASTERS = [folder.split('Y [0] for folder in (list[1l] for list in

!
soilProperties)]
for afolderOfRaster in FOLDERSOFRASTERS:
arcpy.env.workspace = outDir+"/"+afolderOfRaster
raster list=arcpy.ListRasters("", "tif")

arcpy.CompositeBands management (raster list, afolderOfRaster+".tif") #will save

output on the same folder

newRasterlayer = arcpy.mapping.Layer (outDir+"/"+afolderOfRaster +".tif") #
create a new layer

arcpy.mapping.AddLayer (df, newRasterlayer, "BOTTOM")

except Exception,e

print e

Appendix B

Stepl:

B = test

= ershedBoundary
O

_i' STEP1: Get Data (Uses ArcGIS services)

5 STEP3:Join table with texture lookup (Rur
" STEP4: join SSURGO and export rasters
0 J P

5 STEPL: Get Data [Uses ArcGIS services)

i & 3D Analyst Tools
B Anzlysis Tools
= B AutoPTPK2
5 STEPZ: DEM Processing
' 1
-

=S

Username Please (optional)

Buffer Distance (in Meters)

prasanna_usu

Password Please (optional)

Mo description available

Watershed boundary

| watershedBoundary

% Buffer Distance (in Meters)

ok | [cancel

] [Enwonmems..‘] [<< Hide Help] [Tool Help.]

,
57 STEPZ: DEM Processing

%P Analysis lools
= B AutoPTPK2
i STEPL: Get Dai
0 STEP2: DEMP)

& STEP4: join 58I
@) Cartography Tool
& Conversion Tools
&) Data Interoperabil

agemen

DEM

[DEM_Pyj
Output Workspace

Mo description available

G:\DEMO1\0utputs.gdb

Basin or boundary

| watershedBoundary

Drainage Threshold (o of cell) (optional)
|

ok | [cancel

| [Envirorments... | [<<hiderelp | [Toolteb |

Drainage Threshold (no of cell) (optional)

Step3:

ES\ i ics\PyProject HIPROJECT_RESEARCH\AutoPTPK2\SSURGO_merge_tool2.py

#Input a folder that has all the folders of names similar to UT012, U027 etc.
pathZcollectionOfssurgofolders = \

g
2\ Dropbox\CL2

path2lookupTable = Users\Pras

SSES\Hydroinformatica\r

Ject_HI\PROJECI RESEARCH\

lookupTable = pd.read csv(path2lookupTable , sep=',', skiprows = 0)

#create a list of folders only

foldertist = []

[folderList.append(folders) for folders in os.listdir (path2eollectionOfssurgoFolders)
1f os.path.isdir(os.path.join(path2collectionOfssurgofolders, foldexs))]

or folder in folderList:
path2ssurgo= pathicollectionOfssurgoFolders + "/" + folder
path2tabular = path2ssurgo+"//tabular”
path2Spatial= pathlssurgo+"//spatial®

#Make changes here!

wvaluesTolwg = [‘k=at_r','Ks', 'dbthirdbar r','dbfifteenbar r', 'Poresit
fileNameColNolistHeaders = +[1,5,107,108], ["ComponentPercentc™, "
[10,39], ["AvaWaterCon”, "MUKEY"]],
16,9,12,81,72,75,169,170], ["TopDe;

STEP1_rawToRefined (fileName ColMcList_Headers, path=pach2tabular):
- afileColHdr in fileName ColNoList_Headers:

txtFilename= afileColHdr([0]

colNo = afileColHdr([1]

header = afileColHdr([2]

txtFile = path + "\\" + txtFilename + ".txt" #RETURNS FULL ADDRESS
csvFileData = pd.read_csv(cxtFile, sep = "|", header=lone, commente'$'}

reqdData = csvEileData.ilec(:,colNo]
reqdData.columns = header
reqdbata.to_csv(path + "\\" + txtFilename + ".csv", index=False)

rn reqdData

STEP2_mergeCSV (path=path2tabular):
muaggatt = pd.read csv(path+"/muaggsa
component = pd.read csv(path+"/comp.csv™) "/comp.csv”, len(component.index)
chorizon = pd.read csv(path+"/cherizen.ecsv") ; print "/chorizon.csv", len(chorizon.index)
ARrAVrUY = mA wAAA sam(RATRAN/ARravrny sepfl s nwine Bienrayrne msuf len (Ahrewrnw dndavi

*/muaggatc.csv®, len(muaggatt.index)

'Bubbling

"1,

'PoreSizeDistzxi

i =
Ln: 1/Cok 0

. L U ey oo
test
==} & Analysis Tools b
Boundary| ey
soilmu_a_utb22 Cl it 5
- 57 STEPL: Get Data (Uses ArcGIS services) |8
Bt ©
O Ewes 5 STEP2: DEM Processing &
57 STEP3:loin table with texture lookup (Rur| =
O Land_Use_Prj] 4 &
v % STEP4: join SSURGO and export rasters
& Cartography Tools %
57 STEP4: join SSURGO and export rasters - ‘ —=E
Path to collection of SSURGO “ | cellsize in meters (eg 30m) =
Gi\StudyArea SSUROG @
Directory where rasters and temperory files are to be saved No description available
GiResterStudyires &l
Cell size in meters (eg 30m)
ko
ok J[el][| [<stiderep | [Toolhep

