An evaluation of web mapping functionality for
simple quantitative hydrologic analysis

by Madeline Merck
a Term Project for

CEE 6440 GIS in Water Resources
December 5, 2014

Introduction

Background

HydroViz is a web-based educational system designed to support active learning in the
field of Hydrology [1]. The purpose of HydroViz is to explore various hydrologic concepts in
the context of solving real world problems. It achieves this through case-based, data- and
simulation-driven learning experiences in the form of modules using data, models and
analysis. One of the modules currently under development is based on a case study of the
Great Salt Lake (GSL) Basin located in Utah, Idaho, and Wyoming. In this module, students
will explore the water balance of a closed basin and characterize interactions involving
inputs, outputs, bathymetry, elevation, and salinity in the functioning of the system. Topics
in the module may include: examination of precipitation-elevation relationships; runoff
ratios; changes in lake volume in comparison to inputs; comparison of lake evaporation
calculated from mass-balance analysis and meteorological-based estimates; and dilution,
salt mass-balance and salinity-evaporation relationships through examination of the lake
salinity in relation to its volume.

Project Objectives

In keeping with the web-based platform of HydroViz, there is a need to evaluate whether
the exploration of the topics included in the GSL module can be facilitated through an easily
accessible and free-to-users online application for geographic information systems (GIS).
To achieve this, the necessary infrastructure has been established, including a GIS server
that is accessible through a simple web map interface. The locally hosted GIS server
provides services including maps, datasets, and geoprocessing and analysis tools that were
developed in support of a HydroViz GSL module pilot study. This paper describes the
process of establishing the necessary infrastructure (GIS server and web map interface),
processing various datasets for use as project map layers, and developing the
geoprocessing and analysis tools to be accessed through the online application for GIS in
support of the pilot study. Concluding remarks will include evaluation of the online
application for GIS.

Deliverables

The products resulting from this work are: 1) a functioning GIS server; 2) a web map
interface to access the services available on the GIS server; 3) a project map made available
on the GIS server; and 4) customized geoprocessing and analysis tools made available on
the GIS server.

Page 1 of 25

Term Project - Merck

Methods

Infrastructure: Server & Web Map Interface

Various options for the necessary infrastructure were investigated, including: the use of
maps and applications available through arcgis.com (AGOL) [2], in which case it would not
have been necessary to establish a server or develop a web map interface; QGIS, a free and
open source GIS software [3]; and ArcGIS for Server, which has all the capabilities of ArcGIS
for Desktop and that of a server. Although using AGOL would have been a simple design
approach due to existing web services and mapping applications, unfortunately the
functionality of ESRI’s ‘maps and apps’ is not yet sufficient to support the needs of
HydroViz. And, although QGIS is an attractive option because it is free and easily accessible,
using QGIS would still have required the use of a server and development of a web map
interface to store and access the necessary data and tools. Therefore, ArcGIS for Server was
chosen as an all-in-one software for establishing the server and managing the web map
interface.

The GIS server was established on a virtual machine located at Utah State University. The
virtual machine was first configured with Windows Server 2008 R2 operating system [4].
Then ArcGIS Enterprise for Server and ArcGIS Web Adaptor 10.2.2 were installed and
configured using the methods outlined in ESRI’s ArcGIS resources [5]. The web map
interface was developed using the ArcGIS API for JavaScript available through ArcGIS for
Developers [6]. The format of the web map interface is based on several ESRI templates
(also available through ArcGIS for Developers), which have been modified to fulfill the
basic needs of this pilot project. The JavaScript code for the web map interface was
constructed using the editor available through ESRI’s ArcGIS API for JavaScript Sandbox
(Figure 1). The template-based interface has evolved as needed with the construction of
project map layers and tools, however the goal has remained to keep it simple.

Processing National GIS Datasets

Static project map layers are necessary inputs to the geoprocessing and analysis tools.
These layers were derived from several of the datasets typically accessed through ESRI's
GIS servers, including the National Hydrography Dataset (NHD) [7], the National Elevation
Dataset (NED) [8], and the Watershed Boundary Dataset (WBD) [9]. Due to the
cumbersome size of these datasets, downloading and processing times can be prohibitively
long. Therefore, these datasets were preprocessed: each was downloaded and clipped to
the HydroViz GSL areas of interest, which include the Bear River, Weber River, and Jordan
River watersheds. Once processed, the data were published on the GID server as map
layers.

Developing Tools

Three tools were developed in support of the HydroViz pilot study: getWebData,
getAnnuals, and Delineate. Once the tools were developed in ArcGIS for Desktop, all three
were published to the server (Figure 2). Python code for each of the tools is included in
Appendix B.

Page 2 of 25

Term Project - Merck

getWebData

An often difficult task for both students and researchers alike includes not only acquiring
data from various sources but also assembling the data in a common location for analysis
or processing. Furthermore, time series data typical of hydrologic research can require
frequent updates of large files with thousands of data values. There is also the issue of
storing and organizing these types of large datasets. The getWebData tool serves as an
example of an approach to data acquisition and use through web services. This approach
alleviates the need to manually access various data sources and store the datasets, and can
also makes fast work of updating time series datasets. In addition, because the datasets are
translated into shapefiles within the tool, measurement locations (e.g., gage, station, or grid
point) and spatial patterns in the data can be easily visualized.

The three data types accessed through the getWebData tool are snow water equivalent
(SWE), precipitation, and streamflow. Each is acquired using a different type of web service
and retrieved in a different format type. The SWE are annual peak Snow Telemetry
(SNOTEL) data that are accessed using Simple Object Access Protocol (SOAP) web services
through the Natural Resources Conservation Service’s (NRCS) Air-Water Database (AWDB)
web service [10]. Data and metadata are called using getStations, getStationMetadata, and
getPeakData methods and are returned in XML format. The precipitation data are gridded
(4 km x 4 km) estimates of annual mean that are accessed through the National Weather
Service’s (NWS) Advanced Hydrologic Prediction Service (AHPS) File Transfer Protocol
(FTP) server [11]. These data are returned as gzip compressed tar archives that must be
unzipped and extracted before the shapefiles contained within can be accessed. The
streamflow data are US Geological Survey (USGS) annual mean gage measurements that are
accessed using REpresentation State Transfer (REST) web services through the USGS’s Beta
Statistics web service [12]. These data are returned as tab-delimited text. All three data
types are access and processed within the Python code when the getWebData tool is run.

The getWebData tool was developed in Python using the ArcPy package [13]. As with all the
tools, it is designed to be run in the web map interface but can also be run in ArcGIS for
Desktop. It has four user inputs: Watershed, Data Type, Water Year, and a file name and
path for the output shapefile of the acquired data. To simplify the tool, focus its use, and
help direct the students, some of the user inputs (Watershed, Data Type, and Water Year)
are dropdown menu options in the tool popup window. The Watershed options are: Bear,
Weber, and Jordan River watersheds. The Data Type options are: Snow Water Equivalent,
Precipitation, and Streamflow. And the Water Years span from 2006 to 2014, which were
chosen so that a result for each data type is available for each water year and watershed.
Once the getWebData tool is run, the resulting output shapefile is automatically added to
the map as a data layer and becomes available for use in other tools available on the server.

getAnnuals

The getAnnuals tool is simple tool used to calculate the annual volume of SWE,
precipitation, and streamflow for a given watershed and water year. This tool uses the
output from the getWebData tool as inputs along with a user specified gage (within the
streamflow data) and a DEM of the watershed. The volume of SWE is calculated by first
establishing an elevation-SWE relationship (through linear regression) using all SNOTEL

Page 3 of 25

Term Project - Merck

station data; the relationship is then used to estimate the SWE throughout the watershed
based on the input DEM. The volume of precipitation is calculated using the mean
precipitation of the entire input grid. The volume of streamflow is calculated using the
annual mean value returned by the getWebData tool of the user specified gage. All volumes
are based on the area of the input DEM. The resulting volumes are displayed in a results
popup window.

Delineate

The purpose of the Delineate tool is to delineate a watershed from a user specified point
within the NHD network [2]. This tool makes use of the Point Indexing and Navigation
Delineation services accessible through the Environmental Protection Agency’s (EPA)
Watershed Assessment, Tracking & Environmental Results System (WATERS) Hypertext
Transfer Protocal (HTTP) web service [14]. The input is simply a user specified point and a
file name and path for the output shapefile of the delineated watershed. The output
shapefile is automatically added to the map as a data layer.

Results

Infrastructure: Server & Web Map Interface

The web map interface (Figure 3) is a simple basemap with the following functionality:
zoom, basemap toggle, location search, and a legend with two dynamic panes. The zoom
function is a simple in/out zoom and the basemap toggle function switches between a
topographic basemap and a satellite image. The search function allows students unfamiliar
with the GSL to orient themselves and to search for points of interest within the study area.
The legend has one pane for active layers and another pane for the getWebData,
getAnnuals, and Delineate tools. JavaScript code for the web map interface is included in
Appendix C.

Tools

The getWebData, getAnnuals, and Delineate tools (Figures 4-6, respectively) have all been
published to the toolbox folder on the GIS server and are now available through REST
services. However, the tools are not available on the web map interface at this time as the
JavaScript code necessary to call each tool service has not been successfully completed. If
the web map interface were up and running as planned, then the tool buttons in the legend
pane would be active. When a tool is run through the web map interface, the inputs are
chosen through dropdown menus as they would be if run in ArcGIS for Desktop. These
inputs (or parameters) are then passed from the web map interface (JavaScript code) to the
server where the chosen tool is run (Python code). Upon successful completion of the tool,
the result is passed back to the web map interface (JavaScript code) and, depending on
which tool is run, a layer is added to the web map or a popup window displays the result.
At present, the tools are failing when run through the web map interface, resulting in an
“esriJobFailed” error message. Although the tools cannot be run successfully through the
web map interface at this time, they can be run through ArcGIS for Desktop.

Page 4 of 25

Term Project - Merck

Discussion & Conclusion

The purpose of this project was to evaluate whether the exploration of the topics included
in the GSL module can be facilitated through an easily accessible and free-to-users online
application for GIS. This was achieved by establishing the necessary infrastructure,
including a GIS server that is accessible through a web map interface, and providing the
necessary data and tools, including geoprocessing and analysis tools and map data layers in
support of a HydroViz GSL module pilot study.

The functionality of the combination of ArcGIS for Server, ArcGIS Web Adaptor, and the
web map interface is very well suited to the needs of HydroViz. ArcGIS for Server has all the
capabilities of ArcGIS for Desktop but with the option of tailoring custom tools to the needs
and abilities of the students and to make them available at no cost to the student. In
addition, the web map interface is completely customizable giving the designer infinite
freedom. However, there is an almost prohibitively steep learning curve associated with
the development of this type of an application. That said, the fact that the online application
for GIS developed for this project was done so by someone previously unfamiliar with
ArcGIS, Python, and JavaScript suggests that it is not an impossible task.

Accessing data through web services within the geoprocessing and analysis tools is not
only an effective method for reproducibility but it also puts the onus of storing and
organizing the data on the responsible agency. Also, accessing services such as those used
in the Delineate tool save modeling and processing time. However, there are costs
associated with using these types of services: each one is different and therefore requires
different knowledge and skills. In addition, there is no guarantee the web address for the
service or the necessary retrieval method will remain consistent over time, requiring
upkeep of the various services on the GIS server. Furthermore, there is no way to debug or
fix errors in the web service; for example, possibly like those errors visible in the Delineate
tool (Figure 6).

If the online application for GIS developed for the HydroViz pilot study is further pursued,
there are a few recommendations that should be considered. First, the design of the system
should be performed by someone not only familiar with hydrologic concepts but also at
least a working knowledge of various GIS software. Second, the tools and web map
interface should be developed by a computer software engineer well versed in not only
web design and development but also the various ArcGIS APIs, as there are several. And
finally, careful consideration should be taken when selecting the data used in the various
tools and data layers as none are without flaws.

Page 5 of 25

Term Project - Merck

References

[1] HydroViz. http://www.hydroviz.org accessed 5 December 2014.

[2] ArcGIS Online. http://arcgis.com accessed 5 December 2014.

[3] QGIS. http://qgis.org accessed 5 December 2014.

[4] Microsoft, “Windows Server 2008 R2”. http://www.microsoft.com/en-us/server-
cloud/products/windows-server-2012-r2/ accessed 5 December 2014.

[5] ArcGIS Resources. “ArcGIS for Server (Windows).”
http://resources.arcgis.com/en/help/main/10.2 /index.html#//0154000002np000000
accessed 5 December 2014.

[6] ArcGIS for Developers. “ArcGIS API for JavaScript.”
https://developers.arcgis.com/javascript/ accessed 5 December 2014.

[7] US Geological Survey. “The National Map.” http://nhd.usgs.gov/ accessed 5 December
2014.

[8] US Geological Survey. “National Elevation Dataset.” http://ned.usgs.gov/ 5 December
2014.

[9] Natural Resources Conservation Service. “Snow Telemetry (SNOTEL) and Snow Course
Data and Products.” http://www.wcc.nrcs.usda.gov/snow accessed 5 December 2014.

[10] National Weather Service. “Advanced Hydrologic Prediction Service.”
http://water.weather.gov/ahps accessed 5 December 2014.

[11] US Geological Survey. “REST Web Services.” http://waterservices.usgs.gov/rest
accessed 5 December 2014.

[12] ArcGIS Resources. “ArcPy.”
http://resources.arcgis.com/en/help/main/10.1/index.html#//000v000000v7000000
accessed 5 December 2014.

[13] EPA Water. “EPA WATERS Web Services.”
http://water.epa.gov/scitech/datait/tools /waters/services/index.cfma, accessed 5
December 2014.

Page 6 of 25

http://www.hydroviz.org/
http://arcgis.com/
http://qgis.org/
http://www.microsoft.com/en-us/server-cloud/products/windows-server-2012-r2/
http://www.microsoft.com/en-us/server-cloud/products/windows-server-2012-r2/
http://resources.arcgis.com/en/help/main/10.2/index.html#//0154000002np000000
https://developers.arcgis.com/javascript/
http://nhd.usgs.gov/
http://ned.usgs.gov/
http://www.wcc.nrcs.usda.gov/snow
http://water.weather.gov/ahps
http://water.weather.gov/ahps
http://waterservices.usgs.gov/rest/
http://resources.arcgis.com/en/help/main/10.1/index.html#//000v000000v7000000
http://resources.arcgis.com/en/help/main/10.1/index.html#//000v000000v7000000

Appendix A: Figures

ArcGIS API for JavaScript Sandbox

- DOWNLOAD o RUN

1~ <LDOCTYPE html> -
2~ <html> I
3~ <head>

4 a http-equiv="Content-Type" content="text/html; charset=utf-8">

1 <meta name="viewport" content="initial-scale=1, maximum-scale=1,user-scalable=no"/>
6 “title>ArcGIS API for JavaScript | Simple Geocoding</title:

7 <link rel="stylesheet" href="http arcgis.com/3.11/dijit /themes/claro/claro

8 <link rel="stylesheet" type="text/ href="http://js.arcgis.com/3.11/esrifcss

9

1@~ <styled>

11~ html, body {

12 height: 99%; <l-- 97 -->

13 width: 99%; <!-- 98 --> -
14 margin: 1%; <l-- 1 -->

15 ¥

16

17 ~ #BasemapToggle {

18 position: absolute;

19 top: 20px;

20 right: 2@px;

21 z-index: 5@;

22 ¥

23~ #search {

24 display: block;

25 position: absolute;

26 z-index: 2;

27 top: 20p

28 right: 9@px;

29 ¥

3@

31~ #rightPane {

32 width: 20%;

33 ¥

34

35~ #legendPane {

36 border: solid #97DCF2 1px;

37 ¥

38 <fstyles

39

40

41 <script src="http://js.arcgis.com/3.11/"></script>

42 - <script>

43 var map, geocoder;

44

a5 reauirelr a4
a6 ¢ | »

Documentation

@ Copyright 2013 Environmental S ns Research Institute, Inc. | Privacy | Legal

Layers

Tools

getWebData
getAnnuals

Delineate

: o

= CANADA !
eace ettt Satellite

e s Luake
3 Winnipeg
z)
] »
SN <€
f\w'u [Missours 7» Lake
! : c Superior
< L-ake IMont
z \3 I
i Hurin 4
i L Michigan O TTONO, 8
73 /"‘: thicago 'P ?',r,?n 3
> o : Erie 5§
; ~UNITED STATES »
=& 3 ; < \ 0% .
g Arkansus o\’\ Washi
3 z 3
\\ v ‘
Y &
Llos ! QQP
geles w
el Atlanta
Dallas S
o
2 % Houston
5 s il
e IMiami ;
% Gulf of Mexica P
;) > BAHA
MEXICO. sHavana
CUBA
- México
City.
o b
Belmopan JAMATC

Guatemala
& m

Esri, DeLorme, FAO, USGS, NOAAEPA ‘ 'J‘?_ |

Figure 1: A screenshot of the process of developing the web map interface using the ArcGIS API for JavaScript Sandbox available
through ArcGIS for Developers. The left pane is a JavaScript editor and the right pane is the resulting web page. The right pane in
this figure is also the web map interface developed for this project.

Page 7 of 25

& delin_publish.mxd - ArcMap. MR

File FEdit View Bookmarks Imsert Selection Geoprocessing Customize ‘Windaows Help
DE &Y @R x| 2 |- |[1856 M P =rrl =l] E‘Dﬂz
AANQaill+= W-0O/ K@ 7BENEHS T

L hubbuck = :
5 [Current Session 8SE|E Q- ol a i
B & -E" open EE=] Location: |:," Delineate j
o - E B Bear_USG5_2007 Home - G5L_server|Mans
2l @ El B3 Felder Connections
o opy B £ CiwsersiPublic\DocumentsiGsL_sery
E B Bear_delin?
1 shared | 25 O £ aPLIs
Rename g 5 Arcels datasets
E B Bear_deling = B GIswR
Copy As Python Snippet O o B Took
aals
X Delets = S‘“—da“”s El £ Delneate
[lavers
Re Run E B Bear_delind =1) D:hneate thx
Share Ais v &L Geopracessng Fackags = 5 Delneats
E B Bear_delind 5 aetannuak
Save As... @ Geopracessing Service] getAnnuzs
=) [getwebData
E B Bear_delin =
[} 5 maps
E B Bear_delint 5 mFm
[} 5 temp
E B HUC4_1601_Bear S
=] 51 M\CEEG440 GISWRIGSL_data
B B Basemap & Tookoxes
¥ 4 World_Topo_Map ({3 Database servers
[Database Connections
[615 Servers
[Z3 My Hosted Services
[EJ Ready-To-Use Services
entervill
Salt Lake
west City
lley Cit:
East Millreek
"l |
+ 1l
ale il T 21 |G catelog | ESlsearch
ArcGIS REST Services Directory Login | Get Token
Home > services > GISWR_Tools Help | API Reference
1JSON | SOAP

Folder: GISWR_Tools
Current Version: 10.22
View Footprints In: ArcGIS.com Map

Services:

+ GISWR Tools/Delineate (GPServer)
+ GISWR Tools/getAnnuals (GPServer)
« GISWR Tools/getWebData (GPServer)

Supported Interfaces: REST SOAP Sitemap Geo Sitemap

Figure 2: A screenshot of the process of publishing a tool (top) and the REST web service
page showing the three published tools (bottom).

Page 8 of 25

Layers

Tools

getWebData
getAnnuals

Delineate

f
1
1
|
2od
|
|
:
|
|
|

1

ARSI

0, USGS,
ST

e

Satellite

Figure 3: A screenshot of the web map interface. At left is the legend with two panes, one for active layers (not shown) and one
for available tools. At upper left is the zoom function. At upper right is the search function and basemap toggle function.

Page 9 of 25

Term Project - Merck

Untitled - ArcMap

File Edit ‘iew Bookmarks Insert Selection Geoprocessing Customize Windows Help

DBE& +AB X0 |b-[Fw M EEE80xg

5 & TFHEEIE SR NI YR Acl=

Focatelio
08| H o, a@-2 3|
E = Layers o OC% Location: I,_"E,' getiwebData j
] o0
= Bear_SHTL_2007 aotd % @ Harne - DocurmentsiArcGIS
. [+] Og%% e = 3 Folder Connections
0008 [axe R o o a0 B £ CiUsersiPubliciDocumentst G5l _sery
5l B Bear_USG5_z007 o 00% 000000030 =L 3 AP 35
o o0 ool oot © =
' {}%O 0000%%032000028 %%0000330 [5 arcGls datasets
ooe cod LR @ ococe o = B GISWR
= M Bear_precip_z007 YY) OO%%%% oow%@gcooaogggg 5 B3 Teoks
oo oo L oot
@ OQQOCO 0900000000009009900900 & ® E5 getannuals
7 o3} © G © ool ool
E ¢ Basemap 00{)0000‘0090000000000%00000900 o E F getwebDats
o0 oo oo [eReRe]
‘Warld_Street_Map %%000gggggc000%%%‘3)30003%8%&0009 # [scripts
& getwebData M= B3 oo%%%{)acooggggaooc %22000090&23 = @ getwebData.thx
A = Seco0adflll he00008 3 s000t Bt i ce 3 getwebData
© Wakershed getWebData OccoggggiooggaoOooc%%%‘éooa_oog N £ TraceDelineake
- ool patdog Goood cooet?
o0 oo oo o (S
)) oeoad ooow owos 00Ce
© Data Type This tool retrieves data Ooacﬂﬂggooacoﬂﬂo3090000233000000O £ Maps
4| using web senices based cﬂggggcgcﬂg E)Q Ogoggooooﬂggggo = 3 MM
@ Water Year on user inputs for G%OOGG%%%% cao > 0033233000003 £ temp
watershed (HUC), data 000%%%0090 g.gg cgcocggooocoa%gggo & £ Todls
Output Table Location type, and water year. The ?} oo oodo %O e ool Ogg{(})g oo MY
output is a shapefile of oood cootl Goaotl a .
IC:'I,Users'l,madeI\ne'l,Documents'l,ArcGIS'l,getWebDataZ.shp station loctions with data ooed FReRslel Qe cued o coood @ B £ MHACEER440 GISWRIGSL_data
ool ool ool EOOOGO # & Tooboxes
available through the ool ool eleitoonn® ooad
attribute table gued ?, o 00020000000‘3%0 oo ey T Database Servers
= : =l {)chg% ooﬂ‘égggog %ggggcg Cg 3l Database Connections
eoo poods &o coS RS G5 S
oK | Cancel Environments. ., << Hide Help | Tool Help apoe® [+] i s a‘) Gooed % Y] i oo] ervers
o @ Ooﬂgooccoco & (& My Hosted Services
oooo 0%0 gg &5 Ready-To-Use Services
oooed oo
od en Fyeke)
HLUCTEEE - "3EE0TEL,
22 3
2 ggooeed
gooed 330
@
FID Shape * sitelD i Lat_DD Lon_DD Elev_feet AnMean_cfs | =~ o ?)?} oo
3 0 Poirt 10011500 |BEAR RIVER MEAR UTAH-AWYOMNMNG STATE LINE 40965225 | 110853508 T9ES 144 8 PeYeReas] ({)}0
1 |Pairt 10016900 [BEAR RIVER AT BV AMNSTON, WY 41 2695861 | -110.963694 6730 1595 & gg oo
2 |Poirt 10020100 |BEAR RIVER ABCWE RESERWOIR, NEAR WOODRUF 41.43439 | -111.017656 6435|1301 ooo oG
3 |Paint 10020300 |BEAR RIVER BELCW RESERVOIR, NEAR WOODRUF 41508501 | -111.014632 B400 1E2 6 ‘ cod oo
4 |Prirt 1NNZ3000_| A CREFK WEAR RANDINT PH 1T 41 RNA947 | 411 7540G8 RN 717 =llke C ity & e
o— | = | (0ot of 16 Selected) Gooea
EBear_LISi55_2007 <] | 2|
ER T I

=
LI m Catalog % Search

-12349160.646 4961950,813 Meters

Figure 4: A screenshot of the getWebData tool. The getWebData popup window includes the following user inputs: Watershed,
Data Type, Water Year, and Output location. The attribute table below shows the attributes of the acquired streamflow data
shapefile. The map is populated with SWE, precipitation, and streamflow for the Bear River watershed for the 2007 water year.

Page 10 of 25

9, Untitled - ArcMap

File Edit Wiew Bookmarks Insert Selection

Geoprocessing

Customize

Windows Help

Term Project - Merck

OREdE LEBE x| 2 | & il 2 EGEE O e

PEELE.]
AR Ku

®HANO

@« |[FH-0 k@ 7B 2851

= Bear_SNTL_z007

= Bear_LISGS_2007

= Bear_precip_2007

[+
= Basemap
World_Street_Map

tannuals

DEM

e]

I i\ UsersiPubliciDocumentsi3SL_server|ArcGIS datasetsiEsL.gd

Sniows \Water Equivalent Data

I Ci\Users\PublichDocumentsySSL_serveriMPMiresulks\Bear_SNTL

Frecipitation Data

IC:'l,Users'l,PubIic'l,DUcuments\,GSL_server\MFM'I,resuIts\,BaarJJrecip

Streamnflow Data

| C:iUsersiPubliciDocumentsi@sL_server|MPMiresultsiBear_IUSGS
Gage Poink

I getAnnuals: :Gage_Poink

=l

I

]

Cancel | Environments. .. |

I

<< Hide Help |

[COI]
[getannuae =

getAnnuals

Calculates annual
estimates of mean snow
water equnalent,
precipitation, and
streamflow based on user
input.

Taol Help |

= |=]]

Laocation: rﬁ getannuals, thx

[5] Hame - Documentsiarcals
= (3 Folder Connections
B £ Cr\Users|PubliciDocumentsyEsL_sery
Se %%%0 B B aP_is
0%0 000{)0 3 AreGIS datasets
@ oo
0%%0 e Bl £ GIswR
300 OQOQOOGOGQ = B Tools
o0 [exsoR%] o o]
Ooﬂggo{) Ooggocﬂﬂo <] Eﬁgatnnnuals.
e oo MOYE 000D FoeXe] [[my_point
%%%{}Ocﬂggggoo 000%{) 00%& E £ scripts
00%%%%%0003333000 O%OG% = B getAnnuals thix
go 000%%%0900 Ogcccﬂoggoc 57 getdnnuals
feXel Fexel s3]
ooed oGRee o coo ® [getwebpata
oo &
cooe ic 2] o)
000{)003?}0000(}0 Epeyetelsl goc oo J B 5 TraceDelineats
OQOG%%OOCQ & oGedl e n & EJH
Ogggooﬂﬂogoco | A & 0w’ = £ maps
%Oooog%%‘éog 0‘3 & B Mrm
0%%%%0000% # & £ temp
] A e O T i e = T
<
og%% getAnnuals [
oo
sose
aoog
feXeis) "
0000(<= Details

[T Close this dialog when completed successfully

dtart Time: Fri Dec 05 11:59:13 2014
Funning script getinnuals...

Jze|=un4]
Mumber of Features selected: 1

Completed script getlinnuals...
Succeeded at Fri Dec 05 11:59:158 2014

Executing: getinnuals "C:hUsers)Public) Documentsh GEL_server' LroGIS -
datasets) GSL.gdb\ NED30_Bear"™ C:'Users)Publich Docuwents') GSL_server' HFHN
hresultshBear SNTL 2007.shp C:\Users'PublichDocuments) GSL_server'\ MFIN
YresultsiBear precip 2007.shp C:hUsershPublic’ Documwents) GSL_server' MFM
“resultsh Bear U3G3_2007.shp "Feature 3etc”

The annual estimated Snow Water Egquiwvalent is 2258763842.07 cubic feet
The annual estimated Precipitation is 55584535099.4 cubic feet
The annual estimated Streawmflow iz 28360515120.0 cubic feet

[Elapsed Time:

5.28 seconds)

Ll

Figure 5: A screenshot of the getAnnuals tool. The getAnnuals popup window at left includes the following user inputs: DEM,
Snow Water Equivalent Data, Precipitation Data, Streamflow Data, and Gage Point. The getAnnuals window at right is the
superimposed results popup window showing the resulting annual volumes.

Page 11 of 25

Term Project - Merck

9. Untitled - ArcMap ==
File Edit “ew Bookmarks Insert Selection Geoprocessing Customize Windows — Help
DR2ES 4+ BB x| 2o & [fwms = EREe0

RANQ@rcl e - k@ 7FILNADS TR

hubbuck) catalog !
Bridger-T e -9 4l a] | ®
Location: I_‘j' Delineate j

[Home - DocumentsiArcGlS
El (3 Folder Connections
Bl £ CriUsers\PubliciDocumentsiGSL_sery

=] Bear_U5G3_2007 vin £9 apt 1=
. g B3 Areals datasets

=] Bear_delin? B EIGEIS\'::DIS
] i Bl £ Delinsate

= Bear_deling 5 oyers
O = @ Delineate. thx

=) =
El ¥ Bear_delins 5’ Delineate

O £ getannuals
=] Bear_deling £ getwebData
| B+
= EBear_deling J T Maps
] 3 mFm
,a' Delineate H=] E3 Bear_USGS_2007: Point 5 temp
T belncated 2 o £
Start Pait Delineated Lwgan £ M\CEE6440 GISWRIGSL_data
Watershed ') & Toolbaxes
|De|ineate::Start_P0int 4| ﬂ =] |-l.n g 3 Dakabase Servers
The watershed which is it 3l Datahase Connections

@ start_Point
@ G5 SEFVErS

[F5 My Hosted Services
[Ready-To-Use Services

delineated from the user

Delineated Watershed
Iers'l,Puinc'l,Documents'l,GSL_server'l,MFM'\results'l,Bear_deIinS.shd E-

Salt Lake
= = west City
Valley City

OK I Cancel | Ervironments. .. | << Hide Help | Tool Help | ; ' East Millcre e ' -
|=] | |

et 1 I ﬂ
i B &4l T] | [;]Catalug %Search

-12444423.308 5122070.99 Meters

Figure 6: A screenshot of the Delineate tool. The Delineate popup window at left includes the following user inputs: Start Point
and Delineated Watershed output location. The map is populated with USGS streamflow gage data from which various
subwatersheds were attempted to be delineated. It is obvious that this tool is not always accurate. However, it has not yet been
established whether this is a limitation of the web service (due to large delineated areas) or of the python code within the tool.

Page 12 of 25

Appendix B: Python Code for Tools

getWebData

HEHEHEHHEHHHEHEHE A
H

#This script uses web services to access data and metadata and then

#creates shapefiles of the measurement stations with annual data.

#Precipitation uses NWS to access RFC estimates (data = annual mean rainfall).
#Snow Water Equivalent uses NRCS to access SNOTEL (data = annual peak SWE).

#Streamflow uses USGS to access statistics of gage measurements (data = annual mean flow).

#

#Help with the various NWS call options (ftp hosted service):
#http://water.weather.gov/precip/download.php

#

#Help with the various NRCS call options and WSDL (SOAP web services):
#http://www.wcc.nrcs.usda.gov/web_service/AWDB_Web_Service_Reference.htm
#http://www.wcc.nrcs.usda.gov/awdbWebService/services?WSDL

#

#Help with the various USGS call options (REST web services:
#http://waterservices.usgs.gov/rest/

#

HUHHHHHH

H####H# Import necessary modules...

for use outside of ArcGIS and when debugging...

#import sys

#sys.path.append('C:\\Program Files\\ArcGIS\\Desktop10.2\\arcpy')
#sys.path.append('C:\\Program Files\\ArcGIS\\Desktop10.2\\bin')
#sys.path.append('C:\\Program Files\\ArcGIS\\Desktop10.2\\ArcToolbox\\Scripts')

import arcpy

from arcpy import env

from arcpy.sa import *

from suds.client import Client
import numpy

import json

import os

import urllib

import urllib2

import tarfile

HiHHHH TR R R

allow overwriting of output files (shapefiles in particular)
arcpy.env.overwriteOutput = True

hardcoding for use outside of ArcGIS and when debugging...
#huc = 1601 #1601=Bear, 160201=Weber, 160202=Jordan
#ws = 'Bear’

#waterYear = 2006

#elementCd ='WTEQ' #

Page 13 of 25

Term Project - Merck

#networkCd = 'USGS' # NWS, SNTL, USGS
#outPath = r'C:\Users\...\dataShapeTEST.shp' # change path as necessary

Get script inputs...
These are the user inputs that will be seen in the ArcGIS tool
popup window when the tool is opened.

get HUC (0): string

ws = arcpy.GetParameterAsText(0) # Bear, Weber, Jordan --> 1601, 160201, 160202
arcpy.AddMessage(ws)

wss = {"Bear":1601,"Weber":160201,"Jordan":160202}

huc = wss[ws]

get data type (1): string

dType = arcpy.GetParameterAsText(1)

arcpy.AddMessage(dType)

networks = {"Snow Water Equivalent":"SNTL","Precipitation":"NWS","Streamflow":"USGS"}
networkCd = networks[dType]

get water year (2): string
waterYear = int(arcpy.GetParameterAsText(2))
arcpy.AddMessage(waterYear)

get output path for table of long, lat, name (3): shapefile
outPath = arcpy.GetParameterAsText(3)
arcpy.AddMessage(outPath)

HHHHHHHHHHH AR R R R R

t#t# PRECIPITATION ##tHi#
if networkCd == 'NWS'":

download and unzip precipitation shapefile (tar.gz) from
http://water.weather.gov/precip/about.php

os.chdir(str(r"C:\Users\Public\Documents\GSL_server\MFM\results\junk"))

urllib.urlretrieve("http://water.weather.gov/precip/p_download_new/"+ \

str(waterYear) +"/10/01/nws_precip_wateryear2date_observed_shape_"+\

str(waterYear) +"1001.tar.gz", "nws_precip_wateryear2date_observed_shape_"+\

str(waterYear) +"1001.tar.gz")

tar = tarfile.open("nws_precip_wateryear2date_observed_shape_"+ str(waterYear) +"1001.tar.gz")
tar.extractall()

tar.close()

precip_all = str("nws_precip_wateryear2date_observed_" + str(waterYear) + "1001.shp")

clip precipitation shapefile for each huc

hucRef = {"Bear":"HUC4_1601_Bear","Weber":"HUC6_160201_Weber","Jordan":"HUC6_160202_Jordan"}
hucShapeName = hucRef[ws]

hucShape = str(r"C:\Users\Public\Documents\GSL_server\ArcGIS datasets\GSL.gdb/" \

+ str(hucShapeName))

arcpy.Clip_analysis(precip_all, hucShape, outPath)
arcpy.MakeFeaturelayer_management(outPath,outPath)

Page 14 of 25

Term Project - Merck

HitHHt SNOTEL HitHiH
else:
if networkCd == 'SNTL":

set data constraints

stationld =]
duration = 'DAILY' # getPeakData only supports daily duration at this point.
ordinal =1 # default

heightDepth = None # default
getFlags = True # data flags
logicalAnd = True
alwaysReturnDailyFeb29 = False

define wsdl URL (used for both SNOTEL and USGS) *** SOAP web services ***
NRCS = Client('http://www.wcc.nrcs.usda.gov/awdbWebService/services?WSDL')

-> getStations: *** SOAP web services ***
returns: a list of strings that are the stationTriplets for
the stations meeting the criteria for SNOTEL or USGS sites.
stations = NRCS.service.getStations(
stationlds = stationld,
hucs = huc,
networkCds = networkCd,
logicalAnd = logicalAnd
)

numberofstations = len(stations)

-> getStationMetadataMultiple *** SOAP web services ***

returns: station name, lat, long, elevation and other information

stationsMetadata = NRCS.service.getStationMetadataMultiple(
stationTriplets = stations

)

-> getPeakData *** SOAP web services ***
returns: peak SWE data values for each water year
elementCd = 'WTEQ'
data = NRCS.service.getPeakData(

stationTriplets = stations,

elementCd = elementCd,

ordinal = ordinal,

heightDepth = heightDepth,

duration = duration,

getFlags = getFlags,

beginYear = waterYear,

endYear = waterYear,

)
initialize lists for data acquisition
stationData =[]
index=0

create array of information needed to create shapefile with attribute table

Page 15 of 25

Term Project - Merck

for dataset in data:

if 'values' in dataset:
a = stations[index] # site number
b = stationsMetadata[index]['longitude'] # longitude
¢ = stationsMetadata[index]['latitude'] # latitude
d = stationsMetadata[index]['name'] # station name
e = stationsMetadata[index]['elevation'] # elevation
f = dataset['values'][0] # data value (peak annual SWE, inches)
stationData.append((a, (b,c), d,c,b,e,f))

index +=1

define headers and data format
dtype=[('sitelD', (str, 40)), ('lonlat’, '<f8', 2), ('siteName', (str, 40)),\
('Lat_DD', '<f8'),('Lon_DD','<f8'),('Elev_meter','<f8'),('AnPeak_in', (str, 40))]

HiHHE USGS HittH#
elif networkCd == 'USGS":

initialize lists for data acquisition

huc8s ={"1601":"16010101,16010102,16010201,16010202,16010203,16010204","160201":"16020101,\
16020102","160202":"160201,160202,160203,160204"}

huc8 = huc8s[str(huc)]

stationData =]

index=0

get stations in HUC

stationURL = "http://waterservices.usgs.gov/nwis/site/?format=rdb&huc=" + huc8 + \
"&siteStatus=active&hasDataTypeCd=ad"

stationPage = urllib2.urlopen(stationURL).read()

stationsplit = stationPage.split('\n') #splits page by lines

get
for line in range(0,len(stationsplit)):
tab1l = stationsplit[line].split("\t') #splits the last line by tabs
if tab1[0] == "USGS":
#station = tab1[1]
usgsURL = "http://waterservices.usgs.gov/nwis/stat/?format=rdb&sites="\
+ str(tab1[1]) + "&startDT=" + str(waterYear-1) + "&endDT=" + str(waterYear) + \
"¶meterCd=00060&statReportType="\
+"annual&statTypeCd=mean&statYearType=water&missingData=off"
usgsPage = urllib2.urlopen(usgsURL).read()
tab2 = usgsPage.split("\n')[-2].split("\t') #splits the last line by tabs
if tab2[0] == 'USGS":
a=tabl1[1] # site number
b =tabl[5] # longitude
c=tabl[4] # latitude
d=tab1[2] # station Names
e =tabl[8] # elevation
f=tab2[-1] # data value (mean annual flow)
stationData.append((a, (b,c), d,c,b,e,f))
index +=1

define headers and data format

Page 16 of 25

Term Project - Merck

dtype=[('sitelD', (str, 40)), ('lonlat’, '<f8', 2), ('siteName', (str, 40)),\
('Lat_DD', '<f8'),('Lon_DD','«f8'),('Elev_feet','<f8'),('AnMean_cfs', (str, 40))]

#i###H SNOTEL or USGS ####

create numpy array of data and metadat for shapefile and attribute table
in_array = numpy.array(stationData, dtype=dtype)

SR = arcpy.SpatialReference("NAD 1983")

create shapefile and add to the map
arcpy.da.NumPyArrayToFeatureClass(in_array, outPath, ['lonlat'], SR)

getAnnuals

HUB T SRR
#

This script calculates annual average volumes for snow water equivalent,

precipitation, and streamflow based on user inputs. A SWE-elevation relationship

is calculated using linear regression based on input SWE data and input DEM.

The relationship is used to estimate volume for the watershed based on the area

of the DEM. Average annual precipitation depth is calculated for the input data

and yearly volume for the watershed is based on the area of the DEM. Annual

streamflow is # based on annual mean as imported from the getWebData tool.

#

HHHHEH

HiHH#H# Import necessary modules...

for use outside of ArcGIS and when debugging...

#import sys

#sys.path.append('C:\\Program Files\\ArcGIS\\Desktop10.2\\arcpy')
#sys.path.append('C:\\Program Files\\ArcGIS\\Desktop10.2\\bin')
#sys.path.append('C:\\Program Files\\ArcGIS\\Desktop10.2\\ArcToolbox\\Scripts')#

import arcpy

from arcpy import env

from arcpy.sa import *

from suds.client import Client
import json

import numpy as np

HHHHH Get script arguments...
These are the user inputs that will be seen in the tool
dialog window when the tool is run... just brainstorming...

Allow files to be overwritten
env.overwriteOutput = True

dem = arcpy.GetParameterAsText(0)
fileSWE = arcpy.GetParameterAsText(1)
filePrecip = arcpy.GetParameterAsText(2)
fileUSGS = arcpy.GetParameterAsText(3)
pointUSGS = arcpy.GetParameter(4)

#if pointUSGS =="#' or not pointUSGS:

Page 17 of 25

Term Project - Merck

pointUSGS = "in_memory/{87AF799A-1608-483B-9022-3AA58EFEF329}"

For testing...

#dem = r'C:\Users\Public\Documents\GSL_server\ArcGIS datasets\GSL.gdb\NED30_Bear'
#fileSWE = r'C:\Users\Public\Documents\GSL_server\MFM\results\Bear_SNTL_2010.shp'
#filePrecip = r'C:\Users\Public\Documents\GSL_server\ArcGIS
datasets\NWS_precip\huc_precip\precip_Bear_2010.shp'

#fileUSGS = r'C:\Users\Public\Documents\GSL_server\MFM\results\Bear_USGS_2010.shp'
#outpath = r'C:\Users\Public\Documents\GSL_server\MFM\results\results.csv'

H##H## SWE HH###HH

convert rasters to arrays and get raster metadata

dem_Raster = arcpy.Raster(dem)

dem_array = arcpy.RasterToNumPyArray(dem, nodata_to_value=0)
lowerLeft = dem_Raster.extent.lowerlLeft

x_cell_size = dem_Raster.meanCellWidth

y_cell_size = dem_Raster.meanCellHeight

Create the search cursor
rows = arcpy.SearchCursor(fileSWE)

Call SearchCursor.next() to read the first row
row = rows.next()

elevation =]

dataSWE =[]

Start a loop that will exit when there are no more rows available
while row:

build the data arrays
elevation.append(row.Elev_meter)

dataSWE.append(float(row.AnPeak_in))

Call SearchCursor.next() to move on to the next row
row = rows.next()

Translate to np.array (DEM is in meters, need data in feet)

peakSWE = np.array(dataSWE) #inches
elevation = np.array(elevation) # feet
x_grid = x_cell_size / 0.3048 # feet

y_grid =y _cell_size / 0.3048 # feet

Run the regression to get the slope and intercept...
regression = np.polyfit(elevation, peakSWE, 1)

Calculate the annual SWE volume in cubic feet

SWE_array = regression[0]*dem_array + regression[1]
clipSWE = SWE_array.clip(0)

meanSWE = np.mean(clipSWE[np.nonzero(clipSWE)])
countSWE = np.count_nonzero(clipSWE)

rasterArea = countSWE * x_grid * y_grid # square feet
annualSWE = rasterArea * meanSWE / 12 # cubic feet

Page 18 of 25

Term Project - Merck

arcpy.AddMessage('The annual estimated Snow Water Equivalent is ' + str(annualSWE) + ' cubic feet')
HitHHH Precip ####H#

Create the search cursor
rows = arcpy.SearchCursor(filePrecip)

Call SearchCursor.next() to read the first row
row = rows.next()
dataPrecip =[]

Start a loop that will exit when there are no more rows available
while row:

build the data arrays
dataPrecip.append(float(row.Globvalue))

Call SearchCursor.next() to move on to the next row
row = rows.next()

meanPrecip = np.mean(dataPrecip) # inches
annualPrecip = rasterArea * meanPrecip / 12 # cubic feet
arcpy.AddMessage('The annual estimated Precipitation is ' + str(annualPrecip) + ' cubic feet')

Ha#H# USGS Hit##

snap inputPoint to user input fileUSGS point shapefile
arcpy.Snap_edit(pointUSGS, [[fileUSGS,"VERTEX",50]])

create feature set
f = arcpy.FeatureSet(pointUSGS)

parse out the geometry
geom = json.loads(f.JSON)['features'][0]['geometry']
cursor = arcpy.UpdateCursor(f, "","NAD 1983")
dsc_f=arcpy.Describe(f)
for row in cursor:
shape=row.getValue(dsc_f.shapeFieldName)
geom = shape.getPart(0)
lon = geom.X
lat = geom.Y

Create the search cursor
rows = arcpy.SearchCursor(fileUSGS)

Call SearchCursor.next() to read the first row
row = rows.next()

Start a loop that will exit when there are no more rows available
while row:

build the data arrays
if abs(lat - row.Lat_DD) < 0.000001:

Page 19 of 25

Term Project - Merck

if abs(lon - row.Lon_DD) < 0.000001:
meanUSGS = float(row.AnMean_cfs)

Call SearchCursor.next() to move on to the next row
row = rows.next()

annualUSGS = meanUSGS * (365.25 * 24 * 60 * 60) # cfs to cu. ft. per year
arcpy.AddMessage('The annual estimated Streamflow is ' + str(annualUSGS) + ' cubic feet')

Delineate

HEHEHEHHEHEHEHEHEHH A
H

This script delineates a watershed in the NHD network. It uses the

EPA WATERS Web Services, in particular the Point Indexing service

and the Navigation Delineation service.

These services are described here:

http://water.epa.gov/scitech/datait/tools/waters/services/index.cfm

#

HEHEHEHHHEHEHEHEHE A

#itH##H Import necessary modules...

for use outside of ArcGIS and when debugging...

#import sys

#sys.path.append('C:\\Program Files\\ArcGIS\\Desktop10.2\\arcpy')
#sys.path.append('C:\\Program Files\\ArcGIS\\Desktop10.2\\bin')
#sys.path.append('C:\\Program Files\\ArcGIS\\Desktop10.2\\ArcToolbox\\Scripts')#

import arcpy
import json
import urllib2

HEHHHHH R
H#H### Get script inputs..
arcpy.env.overwriteOutput = True

fs = arcpy.GetParameter(0)
#if fs == "#' or not fs:
fs = "in_memory/{87AF799A-1608-483B-9022-3AA58EFEF329}"

create feature set
f = arcpy.FeatureSet(fs)

parse out the geometry

geom = json.loads(f.JSON)['features'][0]['geometry']

cursor = arcpy.UpdateCursor(f, "","NAD 1983")

dsc_f=arcpy.Describe(f)

for row in cursor:
shape=row.getValue(dsc_f.shapeFieldName)
geom = shape.getPart(0)

Page 20 of 25

Term Project - Merck

lon = geom.X
lat = geom.Y
arcpy.AddMessage('Selected Point = (%5.3f,%5.3f)'% (lon, lat))

get output path for table of long, lat, name:
output_path = arcpy.GetParameterAsText(1)
arcpy.AddMessage(output_path)

For testing...

#lat = 41.836576 #40.995250

#lon =-112.047938 #-110.869464
#output_path = 'C:\\Users\\ ... \\output.shp'

#

b

POINT LOCATION: authored by Jon Goodall (goodall@virignia.edu)

def pointindexing(lon, lat):
Uses the EPA WATERS Web Services to identify the comid and measure
along an NHD feature for a given lat/lon

Parameters:
lat: the latitude in decimal degrees of the point
lon: the longitude in decimal degrees of the point

Returns:
comID, measure where measure is the fmeasure attribute
returned by the PointIndexing service.

#build the point indexing URL
PtServiceUrl = "http://ofmpub.epa.gov/waters10/Pointindexing.Service?" \
+ "pGeometry=POINT(%s+%s)"%(lon, lat) \
+"&pGeometryMod=WKT%2CSRID%3D8265" \
+ "&pResolution=3"\
+ "&pPointIndexingMethod=DISTANCE" \
+ "&pPointIndexingMaxDist=25" \
+ "&pOutputPathFlag=FALSE" \
+ "&pReturnFlowlineGeomFlag=FALSE" \
+ "&optNHDPlusDataset=2.1" \
+ "&optCache=1415731048364" \
+ "&optJSONPCallback="

#load response into JSON object
response = json.loads(urllib2.urlopen(PtServiceUrl).read())

#check the status message from the response to see if it worked
status_message = response['status']['status_message'l
if status_message == "No Results Returned.":
raise Exception('Point service did not find an NHD feature for ' + \
'lat=%s, lon=%s. Please double check your coordinates.'%(lat, lon))

#extract comids and measures

Page 21 of 25

Term Project - Merck
comid = response['output']['ary_flowlines'][0]['comid']
measure = response['output']['ary_flowlines'][0]['fmeasure']

return comid, measure

H -

WATERSHED DELINEATION

enable overwriting of output shapefile
arcpy.env.overwriteOutput = True

get the comid and measure for the two points
comid, measure = pointindexing(lon, lat)

build the navigation delineation service URL
ServiceUrl = "http://ofmpub.epa.gov/waters10/NavigationDelineation.Service?" \
+ "pNavigationType=UT" \
+ "&pStartComid=%s"%(comid) \
+ "&pStartMeasure=%s"%(measure) \
+ "&optJSONPCallback="

load response into JSON object
response = json.loads(urllib2.urlopen(ServiceUrl).read())

select appropriate list of points
if response['output']['shape']['type'] == 'MultiPolygon":
parse out list of delineated coordinates
lengths = [len(p[0]) for p in response['output']['shape']['coordinates']]
idx = lengths.index(max(lengths))
polygon = response['output']['shape']['coordinates'][idx][0]
else: polygon = response['output']['shape']['coordinates'][0]

create polygon and feature layer

poly_shape = arcpy.Polygon(arcpy.Array([arcpy.Point(*coords) for coords in polygon]))
SR1 = arcpy.SpatialReference("NAD 1983")

SR2 = arcpy.SpatialReference("WGS 1984 Web Mercator (auxiliary sphere)")

tempfile = 'in_memory\\temp9'

arcpy.CopyFeatures_management(poly_shape,tempfile)
arcpy.DefineProjection_management(tempfile, SR1)

arcpy.Project_management(tempfile, output_path, SR2)

arcpy.Delete_management('in_memory')

Page 22 of 25

Appendix C: JavaScript code for web map interface

<IDOCTYPE html>

<ht

ml>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

<meta name="viewport" content="initial-scale=1, maximum-scale=1,user-scalable=no"/>
<title>ArcGIS API for JavaScript | Simple Geocoding</title>

<link rel="stylesheet" href="http://js.arcgis.com/3.11/dijit/themes/claro/claro.css">
<link rel="stylesheet" type="text/css" href="http://js.arcgis.com/3.11/esri/css/esri.css">

<style>
html, body {

}

height: 99%; <!-- 97 -->
width: 99%; <!-- 98 -->

margin: 1%; <!--1 -->

#BasemapToggle {

}

position: absolute;
top: 20px;

right: 20px;
z-index: 50;

#search {

}

display: block;
position: absolute;
z-index: 2;

top: 20px;

right: 90px;

#rightPane {

}

width: 20%;

#legendPane {

}

border: solid #97DCF2 1px;

</style>

<script src="http://js.arcgis.com/3.11/"></script>

<script>
var map, geocoder;

require([

"esri/map",

"esri/dijit/BasemapToggle",
"esri/dijit/Geocoder",
"esri/layers/FeatureLayer",

"esri/dijit/Legend",
"dojo/_base/array",

Page 23 of 25

Term Project - Merck

"dojo/parser",
"dijit/layout/BorderContainer",
"dijit/layout/ContentPane",
"dijit/layout/AccordionContainer",
"dojo/domReady!"
], function(Map, BasemapToggle, Geocoder, FeaturelLayer, Legend,
arrayUtils, parser) {

parser.parse();

map = new Map("map",{
basemap: "topo",
center: [-98, 40], // lon, lat (-112.509788, 41.380117)
zoom: 4

N;

var toggle = new BasemapToggle({
map: map,
basemap: "satellite"
}, "BasemapToggle");
toggle.startup();

geocoder = new Geocoder({
map: map

}, "search");

geocoder.startup();

var hucl = new
FeatureLayer("http://madeline.uwrl.usu.edu/hydroviz/rest/services/GSL_basemap_1_0_test/MapServer/6", {
mode: FeatureLayer. MODE_ONDEMAND,
outFields:["*"]
N
var huc2 = new
FeatureLayer("http://madeline.uwrl.usu.edu/hydroviz/rest/services/GSL_basemap_1_0_test/MapServer/7", {
mode: FeatureLayer. MODE_ONDEMAND,
outFields:["*"]
N
var huc3 = new
FeatureLayer("http://madeline.uwrl.usu.edu/hydroviz/rest/services/GSL_basemap_1_0_test/MapServer/8", {
mode: FeatureLayer.MODE_ONDEMAND,
outFields:["*"]

N;

//add the legend
map.on("layers-add-result", function (evt) {
var layerinfo = arrayUtils.map(evt.layers, function (layer, index) {
return {layer:layer.layer, title:layer.layer.name};
N
if (layerInfo.length > 0) {
var legendDijit = new Legend({
map: map,
layerinfos: layerinfo

Page 24 of 25

Term Project - Merck

}, "legendDiv");
legendDijit.startup();
}
1

map.addLayers([hucl, huc2, huc3]);
N

</script>

</head>

<body class="claro">
<style>
html, body {
margin: 0;
}
</style>
<div id="content"
data-dojo-type="dijit/layout/BorderContainer"
data-dojo-props="design:'headline’, gutters:true"
style="width: 100%; height: 100%; margin: 0;">

<div id="rightPane"
data-dojo-type="dijit/layout/ContentPane"
data-dojo-props="region:'left'">

<div data-dojo-type="dijit/layout/AccordionContainer">
<div data-dojo-type="dijit/layout/ContentPane" id="legendPane'
data-dojo-props="title:'Layers', selected:true">
<div id="legendDiv"></div>
</div>
<div data-dojo-type="dijit/layout/ContentPane"
data-dojo-props="title:'Tools""'>
<p>getWebData</p><p></p>
<p>getAnnuals</p><p></p>
<p>Delineate</p>
</div>
</div>
</div>
<div id="map"
data-dojo-type="dijit/layout/ContentPane"
data-dojo-props="region:'center"
style="overflow:hidden;">
</div>
<div id="BasemapToggle"></div>
<div id="search"></div>
</div>
</body>

</html>

Page 25 of 25

