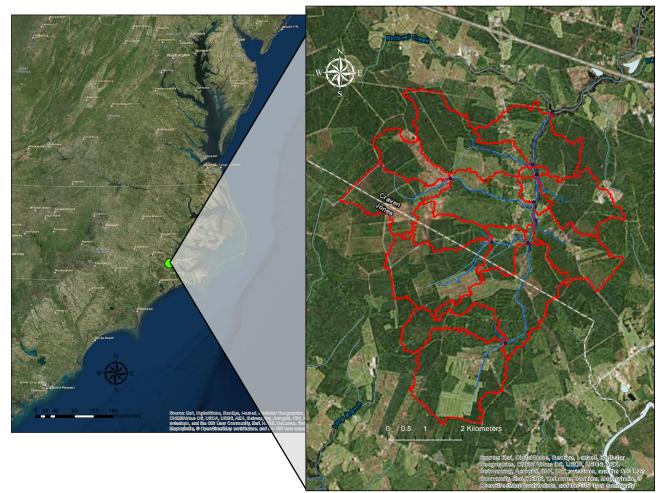

USING ARCSWAT TO EVALUATE EFFECTS OF LAND USE CHANGE ON WATER QUALITY

Adam Gold

Geog 591



Introduction

The Soil and Water Assessment Tool (SWAT) is a hydrologic transport model with an objective to "predict the effect of management decisions on water, sediment, nutrient, and pesticide yields with reasonable accuracy on large, ungauged river basins."

(<u>http://swat.tamu.edu/</u>) The USDA and Texas A&M University jointly developed SWAT, and Texas A&M has developed a graphical and visual interface of SWAT, ArcSWAT, for use with ArcGIS. ArcSWAT significantly improves the ease at which a user can create a SWAT model. ArcSWAT is available for free from <u>http://swat.tamu.edu/software/arcswat/</u>.

My study site was a 36.43 km² catchment located Northwest of Havelock, NC. I chose this area because of the organic rich soils, low slopes, and high incidence of land use change.

Objectives

- To use publicly available data to create an ArcSWAT model
- To use an ArcSWAT model to determine effects of land use change on modeled nutrient

exports

Methods

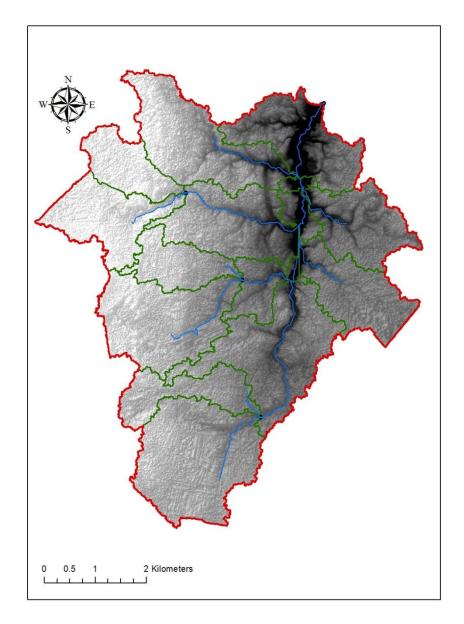
Data Collection

I used publicly available data to create my ArcSWAT model:

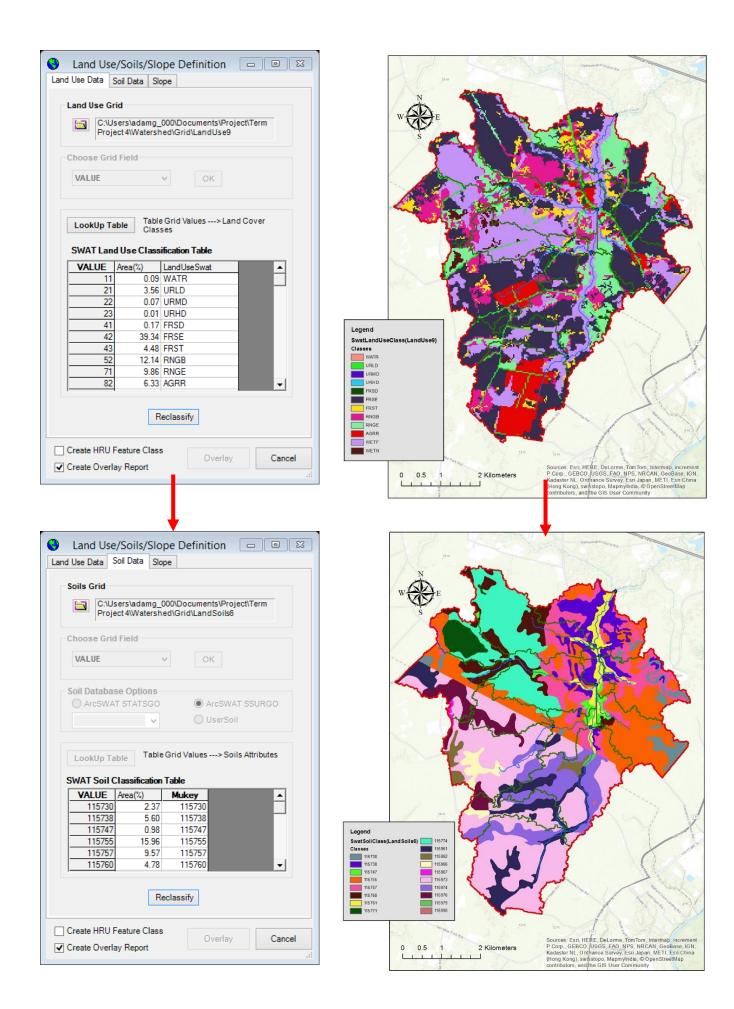
- Land Use Data: 2001, 2006, 2011 NLCD Data <u>http://www.mrlc.gov/</u>
- Elevation Data: 20 ft. lidar elevation Data for NC <u>http://geodata.lib.ncsu.edu/NCElev/</u>
- Soil Data: Soil Map Units Vector Layer ESRI ArcGIS Landscape1 Server, landscape1.arcgis.com_443
- Weather Data: Temperature, Precipitation, Humidity, Solar Radiation, Wind http://globalweather.tamu.edu/

Configuring and Running the Model

1. I imported all of my data into ArcGIS and converted all of the files to the same spatial reference


and projection, NAD 1983 (2011) State Plane North Carolina FIPS 3200 (US Feet)

2. I created a new ArcSWAT project and saved it to my hard drive


Project Directory	
C:\Users\adamg_000\Documents\Project\Term Project Run through	
SWAT Project Geodatabase	
Personal Geodatabase Name(*.mdb)	
Term Project Run through.mdb	
Personal Geodatabase Name(*.mdb) RasterStore.mdb	
SWAT Parameter Geodatabase	
Personal Geodatabase Name(*.mdb)	OK
C:\Users\adamg_000\Documents\Project\Term Project Run 1	Cancel

3. I put my source DEM on the map and used the automatic watershed delineator to delineate the watersheds and perform various functions, such as flow direction, flow accumulation, and stream delineation

)		Waters	hed Delin	eation		
DEM Setu Open DEN C:\Users\a		s\Project\Term Pro	iject 🔄	Outlet and Inlet De Subbasin outle Inlet of drainin Point source in	et g watershed nput	
✔ Mask	DEM projection s C:\Users\adamg_000	·	et\I 🔄	Add point sour to each subbas		
DEM-bas	fined streams and w sed Flow direction and accumulation			Whole watershed outlet(s)	Cancel	Definition
Nur Pre-defin	dataset:	80.425219947 21642		Calculation of Sub Reduced report output Skip stream geometry check Skip longest flov path calculation	Calculate sub parameters Add or dele reservoir	basin
Create s	treams and outlets	-	У	Number of Outlets: 4 Number of Subbasing		Exit Minimiz

4. I added my land use and soils data to the map. I then used ArcSWAT to delineate HRU's based on the major soil and land use type in each sub-watershed. The study catchment lies in two counties, which are different soil survey districts. This is the reason for the straight line (from NW to SE) through the soils map. (The soils separated by the line are the same soil type, but were reported with slightly different keys.)

—	*
● Land Use/Soils/Slope Definition □ □ ☑	Consistence Oversities
Land Use Data Soil Data Slope	
Slope Discretization	WARE Contractions
Single Slope Watershed Min: 0.00 Mean: 1.46 Slope Stats:	
Multiple Slope Max: 23.3 St Dev: 1.30	A Charles and a set
Slope Classes	
Number of Slope Classes	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
✓	
Current Slope Class Class Upper Limit (%)	my Shan My D
Add	the second when
SWAT Slope Classification Table	a man h
	and for your
	man h
	1 - Com 2 Mar 1
	Legend
	Slope(%)
	0-9999
Reclassify	
Create HRU Feature Class	De la
✓ Create Overlay Report Cancel	0 0.5 1 2 Kilometers Sources: Esri, HERE, DeLorme, Tom Tom, Intermap, increment P Corp., GEBCO (USGS, FAO, NPS, NICAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METT, Esri Chima
, it.	Kadaster RL, Ordnance Survey, Csri Japan, MC11, Esh China (Hong Kong), swisstopo, MapmyIndia, © OpenStreetMap pertitivitar, and the O.K. Unce Community

5. I then used ArcSWAT to define the catchment's Hydrologic Response Units (HRU's)

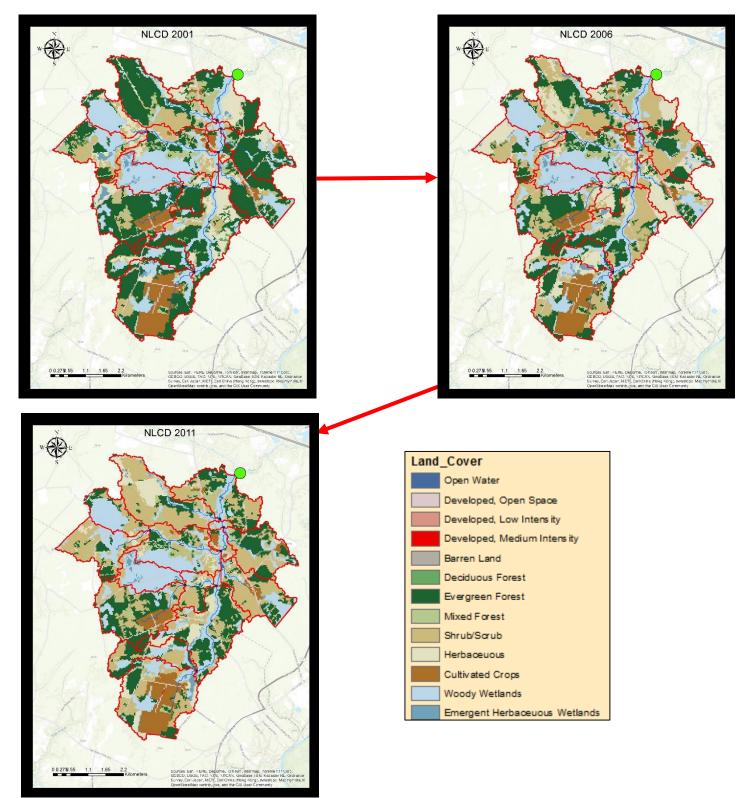
based on the land use, soils, and slopes

HRU Definition	
HRU Thresholds Land Use Refinement (Option	al)
HRU Definition	Threshold
 Dominant Land Use, Soils, Slope Dominant HRU Multiple HRUs 	 Percentage Area
Land use percentage (%) over subbasin area	2
0	77
Soil class percentage (%) over land use area	
0	100
Slope class percentage (%) over soil area	
0	100
✓ Write HRU Report	RUs Cancel

6. Next, I input the weather data (Temperature, Precipitation, Wind, Solar Radiation, and

Relative Humidity) I had gathered

S Weathe	er Data Definit	ion 🔄	
Relative Humidity Data Weather Generator Data	Solar Radiation Data Rainfall Data Te	a Wind Speed Data emperature Data]
 Simulation Raingages 	Precip Timestep Timestep	Daily minute	✓
Locations Table: C:\U	lsers\adamg_000\D)ocuments\Project\Te	em Pr 🔁
		Cancel	ОК
Ready			.::


7. Finally, I wrote the input tables, set up SWAT, and ran the simulation

In a second set			
Incomplete	Soil Data (.Sol)	Setup and Run SWAT Model Simulation	
Incomplete	✓ Weather Generator Data (.Wgn)	Period of Simulation	
Incomplete	✓ Subbasin/Snow Data (.Sub/.Sno)	Starting Date : 5/31/1994 Ending Date : 5/31/2014	
Incomplete	HRU/Drainage Data (.Hru/.Sdr)		
Incomplete	Main Channel Data (.Rte)	Rainfall Sub-Daily Timestep Printout Settings Timestep Visuate O Daily O Yearly ♥ Print Log Flow	Print Pesticide Ou
Incomplete	Groundwater Data (.Gw)	Timestep: Vinites Minutes Minutes Minutes Minutes	
Incomplete	✔ Water Use Data (.Wus)	Rainfall Distribution Print Soil Nutrient Route Headwaters	
Incomplete	Management Data (.Mgt)	Skewed normal Print Water Quality Output Print Snow Output	Print Vel./Depth O
Incomplete	Soil Chemical Data (.Chm)	O Mixed exponential 1.3	Print Calendar Da
Incomplete	Pond Data (.Pnd)	SWAT.exe Version	 Limit HRU Output
Incomplete	Stream Water Quality Data (.Swg)	32-bit, debug 32-bit, release 64-bit, debug 64-bit, release	
1.1		CPU ID: 1	
Incomplete	Septic Data (.Sep)		
Incomplete	✓ Operations Data (.Ops)	Setup SWAT Run	Run SWAT Can
Incomplete	✓ Watershed Data (.Bsn/.Wwq)		
Incomplete	Master Watershed File (.Cio)		

	+			
C:\W	indows\system32	\cmd.exe		
SWAT2012 Rev. 627 Soil & Water Assessme PC Version Program reading from file. Executing year 1 Executing year 2 Executing year 3 Executing year 4 Executing year 4 Executing year 5 Executing year 6 Executing year 6 Executing year 7 Executing year 7 Executing year 10 Executing year 10 Executing year 11 Executing year 11 Executing year 13 Executing year 14 Executing year 15 Executing year 16		uting		
				×
Read SWAT Output Import Files to Database Open SWATOuput.mdb Open output.std Open input.std	WAT Output Check Output Fi output.rch output.sub output.sub output.hru output.dep output.snw	iles to Import output.sed output.rsv output.rsv output.yst output.wtr output.swr	 output.snu output.pot output.vel output.wql output.mgt 	3
Review SWAT Ouput Save SWAT Simulation Save current simulation	n as: (e.g., Sim1)		Run SwatCheck	
			Save Simulation	

My Model

I configured three different versions of my model. Each model was identical except for the Land Use Data. The first model used NLCD 2001 Data, the second model used NLCD 2006 Data, and the third model used NLCD 2011 Data. Each model predicted monthly values of various parameters for 21 years.

After running the models, I analyzed the output files for average annual Nitrate (NO₃) and Phosphorus (P) leached as well as average annual sediment transport downstream, surface runoff, and evapotranspiration.

Results

Year	N03	Р	Sediment	Shrub/Scrub (% of	Surface Runoff Q	ET
	(kg/ha)	(kg/ha)	(T/ha)	Catchment)	(mm)	(mm)
2001	3.246	0.165	1.624	12.08	278.9	799.7
2006	4.103	0.15	3.816	24.81	354.57	761.4
2011	4.164	0.154	3.653	33.7	341.68	765
* • 11 • • • •						

Table 1. Predicted Parameters from ArcSWAT

*All values are average annual values

Table 2. Land Use Change from 2001 to 2011 in the study catchment

Change, 2001-2011	Change, % of area
Open Water	-0.01
Developed, Open Space	0.01
Developed, Low Intensity	0.02
Developed, Medium Intensity	0.01
Barren Land	0.06
Deciduous Forest	-0.04
Evergreen Forest	-17.05
Mixed Forest	-1.24
Shrub/Scrub	21.63
Herbaceous	-3.16
Cultivated Crops	-0.05
Woody Wetlands	-0.14
Emergent Herbaceous Wetlands	-0.03

Figure 1. Predicted parameters from three ArcSWAT simulations of differing land use cover

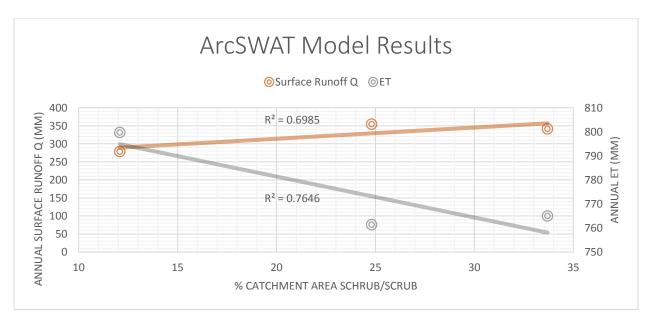


Figure 2. Predicted parameters from three ArcSWAT simulations of differing land use cover

Discussion

Three ArcSWAT models were setup and run to predict monthly parameters for 21 years

to increase the amount of iterations and decrease variability in predictions. 252 sets of

predictions went in to calculating each parameters average annual value, which makes the trends in Figure 1 and Figure 2 more meaningful.

Of the studied parameters, amount of Nitrate leached was found to be the most correlated to the percent of catchment area Shrub/Scrub (R²=.875). Average annual Nitrate leached, Phosphorus leached, sediment loading, and surface runoff all increased with increasing percentage of catchment area Shrub/Scrub. Amount of Phosphate leached did not change significantly as the percentage of catchment area Shrub/Scrub increased, and Evapotranspiration decreased as Shrub/Scrub became more prevalent.

Conclusion

ArcSWAT is a powerful tool that makes SWAT much easier to setup and run correctly. A calibrated ArcSWAT model can be extremely useful for predicting water quality and hydrologic dynamics in gauged and ungauged catchments.

Changing the land use of a catchment greatly impacts many of the biotic and abiotic processes affecting water quality and hydrologic dynamics, and my investigation demonstrates this fact. Future work on this project that I hope to complete is to calibrate this model or a similar model with data (stream discharge, nitrate levels, turbidity) that I collect from the site.

It is important to note that my model was not calibrated, so the results from this investigation should not be used to actively predict parameters for this catchment. Actively using this model would require careful calibration and measurements directly from my study catchment. Rather, this investigation should be used to illustrate the viability of ArcSWAT and other models to be used experimentally.

Works Cited

SWAT Information: http://swat.tamu.edu/

ArcSWAT Software: http://swat.tamu.edu/software/arcswat/

Land Use Data: http://www.mrlc.gov/

Soils Data: ESRI Landscape1 Server, landscape1.arcgis.com_443

Elevation Data: <u>http://geodata.lib.ncsu.edu/NCElev/</u>

Weather Data: http://globalweather.tamu.edu/