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ABSTRACT

Tarboton, D.G., Bras, R.L. and Puente, C.E., 1987. Combined hydro]oglc samplmg criteria for
rainfall and streamflow. J. Hydrol., 95: 323-339,

This paper considers the joint sampling of the rainfall and streamflow processes. The sampling
- frequencies in time and space are obtained as a function of basin and rainfall characteristics. The
effectiveness of different sampling strategies is measured by the variance of the error of estimated
or predicted streamflow. This is related to the rainfall and basin rainfall-discharge properties
through parameterizations of these processes. Rainfall is modelled as a stochastic process with

covariance structure separable in time and space. Streamflow is parameterized in terms of the -

fluvial geomorphology of the basin. Linear systems.theory is used to link precipitation to flow and
to compute the variance of basin discharge. The variance of the error in prediction of streamflow
is computed in terms of the following: (1) basin and rainfall model parameters; and (2} measurement

strategy consisting of numbers of rain gages plus rainfall and flow measurement intervals. This
error variance is used to assess the effectiveness of a measurement strategy. The results should be
of use in the formulation of hydrologic sampling strategies.

INTRODUCTION

- The inherent variability of hydrologic processes leads to questions like:"
“How much information is enough?” and “What kind of data are needed?” The’ _

answer to such questions depends on the particular objectives being pursued:
this is why it is so difficult to provide general guidelines for the design of
data-collection programs. This paper describes a study of the sampling of
rainfall and streamflow in an interrelated fashion. Linear systems theory is
used to link precipitation with streamflow. The variance of streamflow predic-
tion error, as obtained from the linear representation, is used to assess the
effectiveness of rainfall and streamflow sampling schemes.

The next section gives parameterizations of the rainfall process and of the
basin response function. A state space formulation, for providing the minimum
variance linear estimate of flow, given rainfall and streamflow measurements,
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is developed next. This state-space formulation is then exploited to solve the
sampling problem under different rainfall and basin characteristics.

PARAMETERIZATION OF HYDROLOGIC PROCESSES
Rainfall

A particular model of rainfall is not assumed. Instead the only assumption
is that the rainfall process has a covariance structure which is separable in -
time and space, with components stationary in time and homogeneous in space.
Such a model has been used by Rodriguez Tturbe and Mejia (1974), Bras and
Rodriguez-Iturbe (1975) and Bras and Colon (1978). This assumption implies
that the results will only be valid for areas small enough for spatial homo-
geneity to hold and at time scales shorter than where seasonality affects the
stationarity, but longer than where non-stationarity within a single storm
plays a role. We feel that this assumption is valid as a first approximation when
designing sampling networks for completely ungaged catchments up to a size
of about 100 x 100km. Mathematically the separable covariance is;

Cov{(ts, 21), Ults, )] = GZCp(lt, — BNC,(l2, — ) )

where { (¢, 2) is the precipitation rate at time ¢ and spatial location 2, with o® the
variance of precipitation at a point, and the functions Cp and C, denoting
respectively the covariance functions in time and space.

In particular, the following forms for such functions are assumed:

Crt) = o' | | . @
and: ' ' . ]

G = e | ®
where p and h are the respectwe covariance parameters, and 7 denotes distance '
in space.

We are primarily 1nterested in the area averaged premp1tat10n as thls is the

- input required for lumped. ramfall«—runoﬁ' process models. This is;

PO = 3 j (@, Ddz o - @
where A is the area of the basin.

Using the covariance structure of the rainfall intensity process, eqn. (1), we
can obtain the covariance of the area averaged rainfall:

Covlp(t) )] = B2Crllts — D) s [ [ Gl — zdzdz, ®
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F1g 1. Area reduction. factor for a rectangular region with exponential correlation.

_ If the spatially averaged covariance is denoted:

\ .
0 = FJJCSU% — z)dz, dzy _ L ©

then the covariance (5) becomes: _
Covip(t), pL)] = CioCi((t, — 2, | o (7)

C, is an area reduction factor since it relates the point variance to the area
averaged autocovariance. Such reduction factor for a rectangular region and
with C,(-) given by eqn. (3), is given in Fig. 1. In this ﬁgure x/y is the aspect
ratio, or length to width ratio of the region.

In practice it is not possible to directly measure the area averaged precipita-
tion process (4). Rather, it is approxzmated from point rain gage measurements

as follows
5O = X £t 2) L ®

with the y,’s representing weights corresponding to N gages with location
vectors z;. For simplicity it will be assumed that the gages are randomly-

- located, so that y; = 1/N is used for all the weights. Positioning of the rain

gages and optimization on the weights so that 5(¢) better approximates p(¢) can
be included in the assumed methodology but will not be considered here. The
works of Rodnguez Iturbe and Mejia (1974), Lenton and Rodriguez-Iturbe
(1974) and Bras and Rodriguez-Tturbe (1975) should be used in such cases.
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Using the assumed separable covariance structure of the rainfall intensity
process leads to the autocovariance of mean area p(f) rainfall, as obtained from
rain gages:

N N
Cov[p@), BlE)] = a2Cr(lt, — le) Z ; Gz — 2 ©)
Define:
1 N N
G = g X % Gl= - 2D 10)
then:
Cov{pt,), pt)] = Czagcr(ltl — &) (11)

Notice that C; assumes specific locations for the rain gages, i.e., z. Evalua-
tion of the effect of random placement of gages requires the elimination of such
specific dependence on location. This is accomplished by computing the expec-
ted value of C, using the joint distribution of the location of any pair of rain
gages, i.e, f(z, z;) = 1/A%

The sum C, can be expanded as follows:

N i-1
C, = W {N + 2 z Z C.(lz — zj[)} ' : (12)

=2 j=
and its expected value becomes:

N i-1
EG) = NZ{N+2;212”A20(|Z —z|)dzdz} (13)
whlch using eqgn. (6) results in:
' 1-C |

E(Cz') = ﬁ [V + N(N = _1.)..01} = __Cl + I: 77 _'1] _ (14)

Now we are in a position to compute the covariance of the error in rainfall
due to random discrete sampling in space. Define the error in rainfall as:

ety = p@ — p@ (15)

Using the definitions of the terms involved and the assumed covariance
structure, egns. (8), (4) and (1) respectively, we can obtain:
N N 1

COV{e(tl)s e(tz)_} = JicT(ltl t2|)|:z Z Nzc(iz - .r'_)

i=1j=1
N R
~2) E j Collz; — 2i)dz +.Z§MCS<|21 - zzndzldzz]

(16)
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For randomly positioned gages, taking expected values of the terms inside
square brackets we get:

1-C
Covie(t,), e(t)} = a;Crlt, — &) [ N i] _ Qa7
It is worth emphasizing that if a particular gage configuration is known, the
sums in egns. (12) and (16) can be explicitly evaluated to give results of similar
form to those obtained under the randomly positioned gages assumption, i.e.,
eqns. (14) and (17).

‘Basin response

The basin response is parameterized in terms of its instantanecus unit
hydrograph. This gives runoff via the convolution:

9 = [h@p¢ - Dde ) as)
i

where p(f) is the area averaged rainfall intensity, A(f) the basin’s transfer
function or instantaneous unit hydrograph (IUH), and ¢{(?) the discharge at
time . S ' : : : :
The parameterization of the instantaneous unit hydrograph used here is that
of Rodriguez-Tturbe and Valdes (1979). The IUH is interpreted as the probabil-,
ity density function of the travel time that a unit volume of effective rainfall,
which lands randomly anywhere in the basin, takes to reach the basin outlet.
The TUH was obtained by computing such probability density function,
assuming the basin behaves as a continuous-time discrete-state Markov
process. The states of the Markov chain are defined according to the order of
the channel in which the unit volume is at a particular time in its journey to
the basin outlet. The time which the unit volume spends in a particular channel
was approximated by an exponential probability distribution, with a parameter
inversely proportional to the typical length of streams of a given order. The
IUH peak and time-to-peak given by Rodriguez-Iturbe and Valdes (1979)
{rearranged for length and vélocity expressed in compatible units) are:

AN '
g, = 0.364RY° (;) 19)
6.55 —-0.38 L : )
t, = 1584(Ry/R.)*R; (;) (20)

where Ry, R, , and R; are the Horton numbers: bifurcation ratio, area ratio, and
length ratio, respectively; L is the length of the highest order stream; and v is
the peak velocity on the streams, assumed constant over the basin.

A good approximation of this geomorphologic instantaneous unit hydro-
graph (GIUH) is given by Rosso (1984) in terms of the two parameter gamma
probability density function. This is:
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MO = [ED@m)™" (¢/R)" " exp(—t/k) @1}

where £ is a scale parameter, m is a shape parameter, and I'{ ) is the gamma
function.

Such gamma model was introduced into hydrology by Nash (1957) as the
result of a cascade of linear reservoirs, with m representing the number of
" reservoirs in cascade and k the discharge constant of each reservoir, ie.,
storage equal % times discharge. Rosso (1984) gives the parameters of. the '
_gamma model in terms of geomorphologic parameters as:

m = 3.29(Rgz/R, )\ RYY (22)

E = 0.70[R[(RyR. )™ (-’3) 23)

This representation is used here as a convenient, mathematically tractable
form of the GIUH.

The precipitation term appearing in the convolution given by eqn. 18 should
really be the runoff produced after infiltration and other reductions to the
gross rainfall. There are many and varied runoff production mechanisms that
can operate individually or simultaneously in a basin. In essence the runoff
production represents another, probably nonlinear, transfer function altering
the properties of the rainfall input. We have yet to find an acceptable way to.
parameterize what amounts to a spatially varying, random, transfer function.
To the extent that this function alters the covariance structure of the rainfall
our results will be affected. Although we acknowledge this serious limitation,
and continue working on its resolution, we feel that ignoring those effects at
this time still provides useful results. If ‘the goal of the network is to gain
knowledge on discharge the added uncertainty in the runoff producing mech-
anisms will favor increased flow sampling. The opposite would be true if
interest is on increased knowledge of the rainfall process. Qur results, we feel,
‘still provide reasonable guidelines for sampling which are most’ probably
underestunatmg some of the streamﬂow samphng needs

STATE-SPACE FORMULATION

The covariance function of area averaged precipitation when the time com-
ponent is assumed exponential, eqns. {7) and (2}, is:

Covip(t), p)] = Calp ™™ = Cg2d™a4 (24)

This is the covariance function of a Markov process (Gelb, 1984) and can be
represented by the stochastic differential equation:

%p(t) = mpp@®+w | @)

where w is zero-mean white noise with spectral density 2C,o%1ln (1/p). Similarly
the rainfall error process due to discrete rain gages, (eqn. 15), can be represen-
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ted as:
d .
I e{t) = lnpe(®) + w (26)

where w’ is zero-mean white noise with spectral density 2[(1 — C,}/N feZin(1/p).
Rainfall observations are generally cumulative over the observation inter-

val. This is represented mathematically as an integral of the observed process,
over the interval At: '

[ s0a = [ o0 + enas | 21
Define:
10 = [p@ + e@na @)

Then rainfall observations can be represented as:

) — It — AY _ (29)

The differential equivalent of (28) is:
d
T i@ = e@® + p@) (30)

The Nash model parameterization of the basin is convenient in that it allows

descriptions of the basin response through a finite number of differential
equations:

dg, 1 1
F S A
da, :

1
ar th - qu

dq,,; 1 1

where g; is flow from the ith Nash reservoir, and q, are the inflows (effective
rainfall) to the basin model.

- The state-space model of combined rainfall and runoff is formed by combin-
ing egns. (25), {26), {30), and (31) into a single vector stochastic differential
equation in which the inflow to the basin component is taken as the true area
averaged precipitation p(¢): o -

d

e = SRR 32
dtx Fx+a_w (32)

-




330

where x 1s the state vector:

x = [e@UpBq ). . .q,1)] (33
[lnp 0 O ... ... e 00
1 0 1 0
0 0 Imp O
B S
F = ' (34)
1 1 .
0 0 0 5 70 0
1 1
_o O | PR

w is a white noise vector with constant in time spectral density matrix, @, as
follows:

S i
N 0 . 0
10 0 | ‘
Q = 24 In . c : a (35)
B 1 .
0
Lo "0l

ThlS completes the development of the continuous time state-space formula-
tion. To practically implement such formulation for discrete measurements,
the equivalent discrete form is used:

x(t) = ¢, t)xlty) + wit, &) (36)

where ¢(t, t,) is the transition matrix, from time #, to time #, which satisfies the
differential equation:

St = Fon) | . @7

with initial conditions ¢(t, t,) = L w(t, t,) is zero-mean white noise with
covariance related to the continuous spectral density by:

Q1) = jcﬁ(t, QB )Tde | @8)
N

Equations (37) and (38) are solved numerically.
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“The discrete formulation is completed by giving the discrete measurements.
Rainfall measurements, at intervals Af, are modelled as:

z() = Hyx(t) + Jx(t — AD) + v,(Af) (39)

where H, = [010...0},J = [0 —10...0], and v,(Af) is a zero-mean meas-
urement error with variance K, (Af). R, depends on At is because with greater
accumulation of rainfall a greater error is expected.

Flow measurements are modelied as:

Z(t) = Hyx() + v, : - (40)

where H, = [0 0. .. 1], and v, is the zéro-mean flow measurement error with
variance R,.

Linear filtering techniques can be applied to find each states minimum
variance estimate and the corresponding error covariance matrix. Such error
covariance matrix can be computed without knowledge of the actual observa-
tions. The variance of the error on runoff (the last diagonal element of the error
covariance matrix) will be used to measure the effectiveness of a sampling
strategy. The procedure employed for the propagation and updating of state
and error covariance estimates is described next. It is based on the Kalman
filter solution of a system with integrated measurements as given hy Brown
(1983). The solution presented here generalizes that of Brown (1983), in that an
instantaneous runoff measurement can occur anywhere independently on rain-
fall sampling. Details of the derivation can be obtained in Tarboton (1987).

Suppose that at time £, we have an estimate of the state £(4;) which has
estimation error covariance L(f,). Then using the discrete model described
above we get an estimate of state at time ¢

(1) = @@, f)x() : (41)
which has error covariar_me: _
L) = ¢ L)EUISE, 1) + QU ty) N O+

" . Equation (42) is used to propagate the covariance of estimation error at times
between rainfall or runoff measurements.

The estimate may be updated, due to a flow measurement, eqn. (40), as
follows: '

EE+) = R(t-) + Klz(t) — Hh®(¢t—)]. (43)
where { — and { + indicate respectively the state estimates just before and after

the update for the measurement at time ¢. K is the Kalman gain matrix which
provides the minimum variance linear estimate of the states, it is:

K = B¢ - HJ[HLE@¢ —)Hf + Ry]™ @
‘The covariance of estimation error after the updating of runoff becomes:

Lt +) = (I — KH)X({¢ —) (45)
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In the problem at hand, rainfall measurements are cumulative values, not
instantaneous measurements. Several streamflow measurements may also exist
during the time rainfall is being accumulated. The traditional Kalman filter
cannot handle this situation in the updating step when a rainfall total becomes
available. Tarboton (1987) derives modified filter expressions to permit the
handling of cumulative rainfall measurements. The state update is:

£(t+) = £ ) + Mizn@) — HEE —) — J&,( — AD) (46)

where x,(t — Atf) is the smoothed estimate of the state at time ¢ — A¢ due to all

measurements up to, but not including, those at ¢. The gain matrix M is given
by: '

E@ -)HT + ¢'(t, t — ADE(E — ADJT)L™? . 4"
where: | |
L = HX(@t -)H] + B, + JL(t — ApJ7 + HI¢'(t, t — ADE(t — At)JT
+ JE( — AD@'(t, ¢t — A?:)TH’r {48)

with Z,(t — Ap) denotmg the error covariance matrix of the smoothed state
estimate at time ¢ — Af; and ¢'(¢,t — Af) representing the effective generalized
transition matrix of the system when flow updates (at times ¢,, ..., {,_;) are
made during the interval of accumulation of rainfali:

Bt — A = @, b )T — Ky Hy) by, ta )T ~ K, LHy) ...

(I — KH)¢, t — AD) . (49)
The error covariance update after rainfall measurement is:
L F) = E(t —) — MLMT ' (50)

Now the theoretical development is complete. State predlctlons are glven by
- eqn. (41) and the prediction error covariance by eqn. (42). Updates of these
estimates due to rainfall or runoff measurements are achieved using eqns.
(43)-(50). Before giving results it is instructive to see how the basin parameters
affect the streamflow variance. With the rainfall covariance, eqn. (7}, and basin
transfer function, eqn. (21), taking the variance of eqn. (18) gives the stream-
flow variance. This is most effectively achieved in the frequency domain (Bras
and Rodriguez-Iturbe, 1985). Here we numerically integrated the flow spectral
density to obtain the results presented in Fig. 2.

As a bound on how good we can possibly expect our predictions to be, we can
assume our initial error variance matrix L(0) = 0. This implies we know all
states perfectly at time ¢ = 0. Equation (42) is used to propagate the error
variance from this starting condition. Figure 8 shows how the flow [state q,, ()]
error variance propagates with time for different basin parameters k& and m.
The flow error variance has been normalized by the flow process variance
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which is known (Fig. 2). Time has been normalized by the factor In (I/p). Notice
that the flow error variance quickly reaches an asymptotic steady state, which

is the flow process variance.

If sampling of rainfall and discharge in time is done periodically (i.e., at
regular intervals), a similar asymptotic state will be reached but not monoton-
ically gs in Fig. 8. The observed cyclic behavior, due to periodic sampling is
illustrated in Fig. 4. The peaks in Fig. 4 give the maximum uncertainty in our
estimate with sampling and occur just prior to a flow measurement. The
predicted flow variance in our estimate of flow for a given lead time is obtained

] - -

1] . K!n(1/p)==x 05

Kln_(‘! Se)=1.

_ iii
v S
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Fig. 3 Stationary rainfall model. Normalized error variance based on perfect knowledge.
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by propagating that obtained from updates prior to the time from which fore-
casts are made, as shown on the right of F}g 4. The maximum predicted error
variance V,, compared to the process variance V, is used as a measure of the
effectiveness of the sampling strategy. In Fig. 4 and in the remainder of this
paper, the measurement noise variances [R, and R,, eqns. (39) and {(40)] were
taken as zero. This was done for simplicity and so as not to confound effects of
error due to insufficient measurements and errors in the measurements.

SAMPLING DESIGN STRATEGY

Thus far many different parameters and variables have been introduced. All
have an effect on the error variance of our estimate of discharge. Here we
simplify the complex interrelations between such variables by normalizing
them with respect to rainfall parameters. In this way, quasi-general results will
be presented which show the trade-offs between rainfall and discharge sam-
pling to obtain a desired degree of accuracy. The results are quasi-general in
that through normalization the number of parameters has been reduced from
five to two, and full results are g1ven only for typical sets of the two remaining
normalized parameters.

The five parameters which descnbe basin response and chmate (rainfall)
defined previously are k, m, p, AR?, 6%. First, time is normalized by measuring
it in terms of the rainfall correlation tune In1/p. Then discharge error variance .
is normalized by the known process variance. This has already been done in
Fig. 3 and is the ratio V,/Vy in Fig. 4. The choice of a sampling strategy involves
defining the rainfall and runoff sampling intervals A¢, and A¢, and the number
of gages N. Note that the number of gages only aﬁ'ects the normahzed error
variance of estimation by the relative magnitude of terms in the noise spectral
density matrix eqn. (35). Define this effect through the ratio:.
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Since the effect of the exponential correlation structure in time, AhR?, is also
included in this ratio, we have reduced the sampling selection to three dimen-
sionless design variables At, In1/p, At,Ini/p, and 6, which will be obtained
based on the two dimensionless parameters kIn1/p and m. _

A possible design criterion using this procedure may be the specification of
acceptable normalized error variance at a specific forecast lead time. Figure 3
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TABLE 1

Example of selection of sampling strategy for a 1.2h forecast

"Point 8 Rainfall " Discharge Rainfall Discharge Number of
: sampling sampling sampling sampling rain
frequency frequency interval interval gages
1 1 &) @) N
At, At,

In% At, In-j; At,
A 0.1 0.97 0 0.86 oo, none 12.2 ~ 12
B - [ 1.2 o0, none Q.70 -
C 0.5 1.45 0.65 - 057 1.3 24 =~ 2
D - 05 1 0.92 0.83 0.90 24 ~2
E 2 1.45 0.97 0.57 0.86 06 ~1

which gives the variance of predictions based on pérfect knowledge should be
considered when doing this 50 as not to form an unduly stringent criterion.
Here criteria of 0.01 and 0.25 are used for normalized discharge error variance.

‘These correspond to discharge estimates having standard deviations that are

10  and 50% of the proceé_s standard deviation. Figures 5-8 give results for
typical values of the dimensionless parameters &£ln 1/p and m. These show the
sampling strategy required to meet the given design criterion at the specxﬁed

forecast lead times.

Notice that with low @ ratio increasing rainfall sampling freque_ncy marked-
ly reduces the required flow sampling that is necessary to achieve the same’
accuracy. A tradeoff between rainfall and streamflow sampling is clearly
present. For a high 0 ratio (68 > 2), which occurs with low spatial density of
rain gages, the rainfall sampling has little effect as evidenced by the almost
vertical line mdmatmg that the same streamflow sampling is required to
achieve the given accuracy no matter how rainfall is sampled in time. Observe
also that there is a rainfall sampling frequency below which all the lines join

. into one vertical line. This means sampling rainfall below such merging point

is ineffective and does not provide any information additional to that provided
by the streamflow sampling. .

Exathle

" Consider designing a sampling network for a river basin with Horton
numbers Rz = 3.5, R, = 4 and K, = 2.5, length of highest order stream
L = Tkm and stream peak flow velocity estimated to be v = 4kmh™'. The
basin can be approximated by a rectangle 15 x 10km. Using egns. (22) and (23)
we compute m = 3.16 and £ = 0.84h. Assume rainfall parameters ¢ = 0.3 (at
a1h lag) and & = 0.1km . Based on AR* = 1.5, Fig. 1 gives C, = 0.45. The
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normalized basin parameter is kEInlfp = 1.01, so Figs. 5 and 7 apply for stra-
tegy selection. We wish to use the Inl/p = 1.2h forecast lead criterion so
points A to E are obtained from Fig. 7(b). The strategies for these are listed in
Table 1. These strategies all provide information with the same error variance,
namely that the variance of a 1.2h forecast is 0.25 that of process variance,
Tradeoffs between the number of gages and frequencies of measurement are
evident. The cheapest or most convenient strategy from a comparison like this
should be implemented.

CONCLUSIONS

Parameterizations of the rainfall and of the basin response which are simple
and allow the use of linear systems theory for analyzing the problem of com-
bined rainfall and streamflow measurement have been given. To provide a
minimum variance linear estimate of discharge from rainfall and streamflow
measurements combined, a state space approach was developed. This approach
has the advantages that it can be applied when rainfall is modelled by non-
stationary process and can represent rainfall measurements realistically as
integrals over t{ime.

The results presented here were obtained using the rainfall-discharge state—
space formulation relating the variance of estimation error of flow to the
measurement of discharge (in time) and of rainfall (in time and space). The
findings are parameterized in terms of the rainfall and basin characteristics.
These results could be useful in the design of hydrologic measurement net-
works.

This work has limitations in that it assumes linearity in the basin response
and, it is therefore dependent on the accuracy of the model and parameters.
While the basin response parameters may be obtained from the basin geomor-
phology, the choice of climate (rainfall) parameters values is not easy. Another -
deficiency is that the effect of uncertainty in .the infiltration has not been
accounted for, We are Investigating ways of doing this through ineorporation
of the contrlbutmg area concept into the state-space formulation..

ACKNOWLEDGEMENTS

This work is part of a continuing effort sponsored by the U.S. Geological
Survey (Grant No. 14-08-0001-G1143) as authorized by Public Law 98-242. The
authors want to acknowledge the help of Mrs. Elaine Healy and Ms. Carcle
Solomon in preparing the final document.

REFERENCES

Bras, R.L. and Colon, R.V. 1978. Time averaged areal mean of precipitation: estimation and
network design. Water Resour. Res., 14(5):878-888.
Bras, R.L. and Rodr_iguez-lt_urbe, 1., 1975. Rainfall runoff as spatlal stochastic processes: data




339

collection and synthesis. Dep. Civ. Eng., MIT, Cambridge, Mass., Ralph M. Parsons Lab. Tech.
Rep. No. 196, 382pp.

Bras, R.L. and Rodriguez-iturbe, 1., 1985. Random Funciions and Hydrology. Addison Wesley,
Reading, Mass., 559 pp.

Brown, R.G., 1983. Introduction to Random Signal Analysis and Kalman Filtering. Wiley, New
York, N.Y., 347 pp.

Gelb, A., 1984, Applied Optimal Estimatior, MIT Press, Cambridge, Mass., 374 pp.

Lenton, R.L. and Rodriguez-Iturbe, I., 1974, On the collection, the analysis, and the synthesis of
spatial rainfall data. Dep. Civ. Eng., MIT, Cambridge, Mass., Ralph M., Parsons Lab. Tech. Rep.
No. 194, 218 pp.

Nash, J.E., 1957. The form of the instantaneous unit hydrograph. JAHS AISH Publ, 42: 114-118.

Rodriguez-Iturbe, I. and Mejia, .M., 1974. The design of rainfall networks in time and space. Water
Resour. Res., 10{4):713-728. N

Rodriguez-Iturbe, I. and Valdes, 4.B., 1979. The geomorphologic structure of hydrologic response.
Water Resour. Res., 15(5):1409-1420.

Rosso, R., 1984. Nash model relation to Horton order ratios. Water Resour. Res., 20(7):914-920.

Tarboton, D.G., 1987. Hydrologic sampling: a Characterization in terms of rainfall and basin
properties. M.S. Thesis Massachusetts Institute of Technology, Cambridge, Mass.







