AggieAir - A LOW-COST AUTONOMOUS MULTISPECTRAL REMOTE SENSING PLATFORM

Introduction

Austin M. Jensen

AggieAir Flying Circus (AAFC) Utah Water Research Laboratory (UWRL) Utah State University Austin.Jensen@aggiemail.usu.edu

April 6, 2010

Jensen (AAFC) AggieAir April 6, 2010 1 / 32

Outline

Introduction

- Introduction
- 2 Platform Details
- 3 Products
- 4 Applications
- 5 Future Developments

2 / 32

Jensen (AAFC) AggieAir April 6, 2010

Motivation

Save water by helping farmers irrigate more efficiently

Jensen (AAFC) AggieAir April 6, 2010 3 / 32

Motivation

Save water by helping farmers irrigate more efficiently

A new remote sensing platform is needed!

- Affordable
- Easy to use
- Imagery updated often
- Measure soil moisture

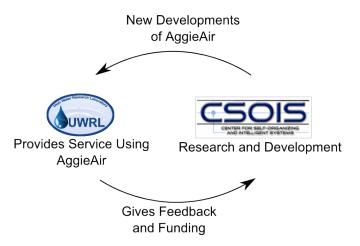
3 / 32

Jensen (AAFC) **AggieAir** April 6, 2010

Motivation

Save water by helping farmers irrigate more efficiently

A new remote sensing platform is needed!


- Affordable
- Easy to use
- Imagery updated often
- Measure soil moisture

Other applications

- Riparian mapping
- Roads and Highways
- Fish Tracking

The Team

Jensen (AAFC) **AggieAir** April 6, 2010 4 / 32

What is AggieAir?

Fixed Wing Remote Sensing Platform

- Low cost
- Small
- Fully autonomous
- Easy to use
- Independent of runway
- Coven capable
- High spatial resolution
- Multispectral
- Fast turnover

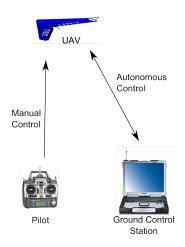
Jensen (AAFC) AggieAir April 6, 2010 5 / 32

Introduction

Introduction

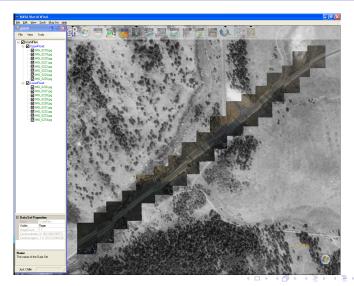
Jensen (AAFC) AggieAir April 6, 2010 6 / 32

Introduction


Skid Landing

7 / 32

Jensen (AAFC) AggieAir April 6, 2010


UAV Operation

Jensen (AAFC) AggieAir 8 / 32 April 6, 2010

Image Processing

Outline

Introduction

- Introduction
- 2 Platform Details
- 3 Products
- 4 Applications
- 5 Future Developments

10 / 32

Jensen (AAFC) AggieAir April 6, 2010

72" Flying Wing

Figure: Aircraft Layout

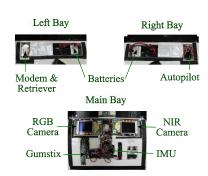


Figure: Bay Layout

72" Flying Wing

Table: AggieAir Aircraft Specifications

Wingspan	1.8 m (72 inch)
Weight	3.62 kg (8 lbs)
Nominal Air Speed	15 m/s (33 miles/hr)
Max flight duration	1-1.3 hours
Battery capacity	16,000 mAh
Payload capacity	1.36 kg (3 lbs)

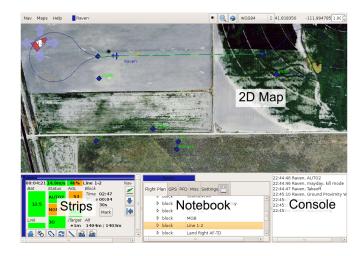
Paparazzi

Description

An open source autopilot originally developed at ENAC university in France

Features

- Low cost
- Open source
- Very Flexible



(a) Logo

(b) TWOG Autopilot

Paparazzi Ground Control Station (GCS)

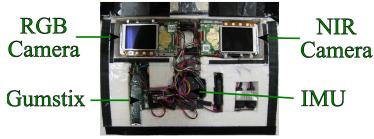
Ghost Foto (GFoto)

Features

- Software interface
- High resolution
- Accurate synchronization
- Uses onboard inertial sensors
- Real-time potential

Ghost Foto

Features


- Software interface
- High resolution
- Accurate synchronization
- Uses onboard inertial sensors
- Real-time potential

Resolution (pixels)	3264×2448
Focal Length (mm)	6
Field of View (deg)	50×39
Ground Resolution (m)	0.05
Swath Width (m)	190
Weight (g)	250
Frequency (FPS)	0.3

Ghost Foto Specifications (200m height)

Ghost Foto (GFoto)

Main Bay

Main Bay Layout

Jensen (AAFC) AggieAir April 6, 2010 14 / 32

Outline

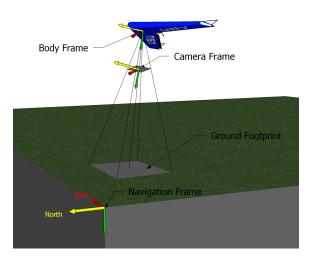
Introduction

- 1 Introduction
- 2 Platform Details
- 3 Products
- 4 Applications
- 5 Future Developments

Jensen (AAFC) AggieAir April 6, 2010 15 / 32

Raw Images

Introduction


Manually Georeferencing

Jensen (AAFC) AggieAir April 6, 2010 17 / 32

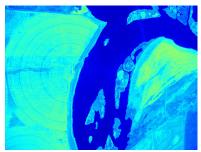
Direct Georeference

Jensen (AAFC) AggieAir April 6, 2010 18 / 32

Direct Georeference

Direct Georeference

Jensen (AAFC) AggieAir April 6, 2010 18 / 32



Jensen (AAFC) AggieAir April 6, 2010 19 / 32

RGB vs. NIR

An RGB and NIR image of the same area

Jensen (AAFC) AggieAir April 6, 2010 20 / 32

Outline

Introduction

- 1 Introduction
- 2 Platform Details
- 3 Products
- 4 Applications
- 5 Future Developments

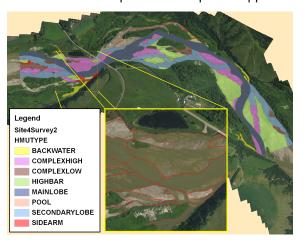
Jensen (AAFC) AggieAir April 6, 2010 21 / 32

Agricultural Applications

RGB and NIR Mosaics of Agricultural Area

Soil moisture coming soon...

Jensen (AAFC) AggieAir April 6, 2010 22 / 32


Riparian Applications

Up-To-Date imagery is important for riparian applications...

Mosaics of a River During High, Medium and Low Flows

A fast turnaround time is important for riparian applications...

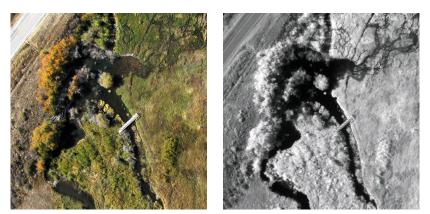
Annotated Mosaic 72hours After Flight

Jensen (AAFC) AggieAir April 6, 2010 23 / 32

Riparian Applications

RGB and NIR imagery is important for riparian applications...

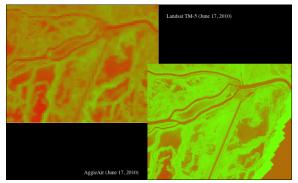
RGB and NIR Mosaics of Riparian Area


Jensen (AAFC) AggieAir April 6, 2010 23 / 32

Riparian Applications

Introduction

Applications


High resolution imagery is important for riparian applications...

RGB and NIR Mosaics of Riparian Area

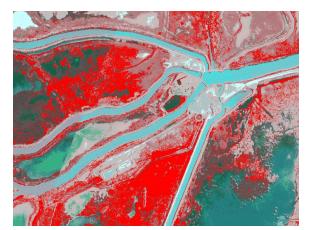
High resolution imagery for image classification...

Comparison Between Landsat Imagery and AggieAir

Jensen (AAFC) AggieAir April 6, 2010 24 / 32

Applications

Wetlands



RGB and NIR Mosaics of Wetland Area

Jensen (AAFC) AggieAir April 6, 2010 24 / 32

Wetlands

Mosaic of Non-Native Phragmites

Jensen (AAFC) AggieAir April 6, 2010 24 / 32

General Surveying

Mosaics of a Highway Bridge During Construction

Biofuels

26 / 32

Jensen (AAFC) AggieAir April 6, 2010

Products 00000 Applications

00000●

Introduction 000000 Applications

Others?....

27 / 32

Jensen (AAFC) AggieAir April 6, 2010

Outline

Introduction

- Introduction
- 2 Platform Details
- 3 Products
- 4 Applications
- 5 Future Developments

Jensen (AAFC) AggieAir April 6, 2010 28 / 32

Fish Tracking

Jensen (AAFC) AggieAir April 6, 2010 29 / 32

Thermal Camera

Low cost thermal imagery

- Thermal camera adds information
- Low cost solution needs to be calibrated

FLIR Thermal Camera

Introduction

VTOL UAV

Jensen (AAFC) AggieAir April 6, 2010 31 / 32

VTOL UAV

Introduction

Thank you!

http://aggieair.usu.edu

Jensen (AAFC)

http://www.engr.usu.edu/wiki/index.php/OSAM

http://paparazzi.enac.fr/wiki/Main_Page

100p.//papara221.011d0.11/win1/lidin_rago (3) (3) (3) (3) (3)

April 6, 2010

32 / 32

AggieAir