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ABSTRACT

Tarboton, D.G., Bras, R.L. and Rodriguez-Iturbe, 1., 1992. A physical basis for drainage density. In: R.S. Snow and L.
Mayer (Editors), Fractals in Geomorphology. Geomorphology, 5: 59-76.

Drainage density, a basic length scale in the landscape, is recognized to be the transition point between scales where
unstable channel-forming processes yield to stable diffusive processes. This notion is examined in terms of equations for
the evolution of landscapes that include the minimum necessary mathematical complexity. The equations, a version of the
equations studied by Smith and Bretherton (1972), consist of conservation of sediment, an assumption that sediment
movement is in the steepest downslope direction, and a constitutive relationship which gives the sediment transport rate
as a function of slope and upslope area. The difference between processes is embedded in the constitutive relation. Insta-
bility to a small perturbation can be determined according to a criteria given by Smith and Bretherton and results when
the sediment transport rate is strongly dependent on upslope area, whereas stability occurs if the main dependence is on
slope. Where multiple processes are present, the transition from stability to instability occurs at a particular scale. Based
on the idea that instability leads to channelization, the transition scale gives the drainage density. This scale can be deter-
mined as a maximum, or turn over point in a slope-area scaling function, and can be used practically to determine drainage
density from digital elevation data. Fundamentally different scaling behavior, an example of which is the slope-area scal-
ing, is to be expected in the stable and unstable regimes below and above the basic scale. This could explain the scale-
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dependent fractal dimension measurements that have been reported by others.

Introduction

In analyzing, characterizing, and trying to
understand landscape form, a problem at the
heart of geomorphology, the notion of drain-
age density, defined by Horton (1932, 1945)
is fundamental. Drainage density is defined as:

Dy=L,/A (1)

where Ly is the total length of streams and A is
contributing area. D4 has inverse length units,
and the inverse of D, gives a length scale asso-
ciated with the landscape in consideration. Re-
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cently, however, there has been considerable
interest in notions of scaling and self similar-
ity, including attempts to characterize land-
scapes and other morphological features by
fractal dimensions. Fractals generally arise due
to alack of fundamental scales, something that
is not the case if we are still to believe D, is an
important parameter.

We present a theory for the explanation of
drainage density in terms of the physical pro-
cesses present in the landscape. The basic
length scale is recognized as a point of transi-
tion between the stable smoothing effects of
diffusive processes at small scale and the un-
stable effects of concentrative processes, such
as overland or open channel flow, at large scale.
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Since different scaling regimes exist below and
above this transition point, the theory offers
insight about this scaling.

Literature review

There has been considerable work done on
quantifying the structure and scale of river net-
works among which are the notions of stream
order (Horton, 1932, 1945; Strahler, 1952,
1957) and magnitude (Shreve, 1966). These
are topological, dimensionless, measures of size
and need to be related to the physical size
(area) of the basin. This relationship is through
the drainage density (eqn. 1) which is a mea-
sure of the degree to which a basin is dissected
by channels. Horton (1945) suggested that the
average length of overland flow or hillslope
length could be approximated by $D,. Horton
also related drainage density to the length of
first-order streams, basin area, and stream
length and bifurcation ratios. Smith (1950)
measured the fundamental scale of topography
in terms of a texture ratio — the number of
contour crenulations divided by contour
length. Smith essentially showed that texture
was correlated with Dy so the notion of a well
or poorly drained basin corresponds to the no-
tion of fine or coarse texture. Melton (1958)
showed that stream frequency (the number of
streams per unit area) was strongly correlated
with drainage density. Others (Shreve, 1967;
Smart, 1978) have related mean link length
and link frequency (the number of links per
unit area) to drainage density. Thus, there are
many roughly equivalent measures of a basic
length scale associated with the dissection of
the landscape by the river network. The deter-
mination of this length scale is generally de-
pendent on the resolution of the map used.
Historically, workers have called for the high-
est resolution maps and/or field work to mea-
sure these quantities.

Mark (1983) discusses the differences be-
tween drainage networks obtained from maps
and field surveys and the merits of various
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procedures such as use of contour crenulations
to “extend” the network. He concludes that
first-order basins defined from contour crenu-
lations on 1:24,000 maps do exist as topo-
graphic features in the field. However, the form
has often been simplified by cartographic gen-
eralization. Most first-order basins defined on
the map contain more than one fluvial channel
in the field. Accordingly, the exterior links
drawn by contour crenulations do not repre-
sent unbranched channels. However, a ques-
tion arises in the context of scaling and fractals
(Mandelbrot, 1983) as to whether this notion
of scale is well founded or whether the river
networks dissect the landscape infinitely, re-
quiring characterization as a scaling phenom-
ena. This idea was recognized early by Davis
(1899, p. 495) who wrote:

“Although the river and hillside waste do not resemble
each other at first sight, they are only the extreme mem-
bers of a continuous series and when this generalization
is appreciated one may fairly extend the ‘river’ all over its
basin and up to its very divide. Ordinarily treated the river
is like the veins of a leaf; broadly viewed it is the entire
leaf™’.

The scaling in channel networks has tradi-
tionally been described in terms of Horton’s
ratios (Horton, 1932, 1945; Strahler, 1952,
1957). The ratio of number of streams, length
of streams, are of streams and slope of streams
between successive orders is approximately
constant. A semi-log plot of the number, length,
area and slope of streams against order is
roughly a straight line. The ratio or “Horton
number” is obtained from the slope of the
straight line fit to such plots, the procedure
being called a “Horton analysis.” Mathemati-
cally the ratios are:

Rb=Nw—l/Nw’ R|=LW/LW—1’ (2)
Ra =AW/AW—1’ Rs=Sw—l/Sw

where N,, is the number of streams of order w,
L, is the mean length of streams of order w, 4,,
is the mean area contributing to streams of or-



A PHYSICAL BASIS FOR DRAINAGE DENSITY

der w, and S§,, is the mean slope of streams of
order w. Ry, R,, R,, and R, are bifurcation,
length, area and slope ratios, respectively. Since
the ratios are approximately constant within a
drainage network, the above geometric de-
scriptors are called “Horton’s laws.” The area
law above was not explicitly stated by Horton,
and is due to Schumm (1956). Leopold and
Miller (1956) extended and explained Hor-
ton’s ideas by showing that the log of many hy-
draulic variables are approximate linear func-
tions of basin order. This behavior is due to
the fact that most quantities depend strongly
on the size of the drainage basin, measured in
terms of basin area. The relationship is often
obtained from a straight line fit on a log-log
plot, i.e., a power law. The fact that the area
law relates order to the log of the size measure,
area, leads to Horton’s laws. It has been shown
previously (La Barbera and Rosso, 1989; Tar-
boton et al., 1988, 1990; Tarboton, 1989) how
the planform scaling described by the bifurca-
tion and length ratios can be used to determine
the fractal dimension of channel networks..

It is widely recognized that elevation, re-
lated to potential energy, is an important part
of the network and there is a need to under-
stand the structure and scaling of river net-
works with the third dimension elevation in-
cluded. Qualitatively, streams are steep near
their sources and flatter downstream, Horton’s
slope law quantifies this:

S,=(R,S))R, =R.S exp(—win R,) (3)

This is an exponential decrease of slope with
order. Flint (1974), building on the power law
relationships of Wolman (1955), Leopold and
Maddock (1953), Leopold and Miller (1956),
and Leopold et al. (1964), finds slope, S, em-
pirically related to the contributing area, 4, by:

S=C4-° (4)

where C'is a constant and the exponent 6 ranges
from 0.37 to 0.83 with a mean of 0.6. Substi-
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tuting in Horton’s area and slope laws, Flint
(1974) obtains:

6=In R,/In R, (5)

This again shows the connection between
power law scaling with area and exponential
scaling with order (Horton’s slope law).

This sort of power law scaling is the focus of
considerable recent research in the context of
self similarity, fractals, multifractals and self-
organized critically (Bak et al., 1987; Gupta
and Waymire, 1989; Tarboton et al., 1989;
Rodriguez-Iturbe et al., 1992a, b).

Mandelbrot (1977) found that many natu-
ral lines, such as coastlines, contours, political
boundaries (sometimes consisting of rivers or
coastlines), etc., sesemed to have fractal di-
mensions near 1.2-1.3. He also noted that
simulations of fractional brownian surfaces
with D~2.3 looked remarkably like the real
landscape. He took this as evidence that land-
scapes were fractal characterized by D~2.3.
Following Mandelbrot the fractal dimension of
topography has been investigated by many
(Mark and Aronson, 1984; Ahnert, 1984;
Culling, 1986; Culling and Datko, 1987; Mat-
shushita and Ouchi, 1989; Goodchild and
Mark, 1987; Gilbert, 1989; Huang and Tur-
cotte, 1989, 1990; Goff, 1990), using diverse
techniques (variograms, Richardsons method,
Fourier transforms, etc.). In many cases there
is nonlinearity which has led to the suggestion
that fractal models are questionable (Gilbert,
1989) or limited to a range of scales (Good-
child and Mark, 1987). There are sometimes
distinct domains with different fractal dimen-
sions (Mark and Aronson, 1984; Culling and
Datko, 1987, fig. 6; Matshushita and Ouchi,
1989) which suggests a possible interpretation
in terms of different processes operating or
dominating at different scales. However, the
link between fractal dimensions and processes
is not straightforward. Newman and Turcotte
(1990) suggest a model for the scaling of land-
scapes based on a cascade in the fourier wave-
length space, somewhat analogous to historical
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models of turbulence. The physical basis for
such a model is not yet clear.

When considering channel network and
landscape geometry, it is important to have an
appreciation of the processes that have and are
continuing to sculpt the landscape. Ultimately,
the objective is to understand the relationship
between geomorphological form and processes
and to make quantitative statements about the
processes from detailed analysis of the form.
Hydrologists are particularly interested in run-
off processes and movement of water; their in-
terest in geomorphology is based upon a need
to address the problem of prediction from un-
gauged basins. By embracing geomorphology,
hydrologists are attempting to deduce pro-
cesses from land form and channel network
morphology.

It has been suggested that the evolution of
channel networks and hillslopes may be
thought of as an “open dissipative system”
(Leopold and Langbein, 1962; Scheidegger,
1970; Thornes, 1983; Hugget, 1988). Carson
and Kirkby (1972) provide a good review of
the early work on evolution of hillslopes, relat-
ing form to processes. Kirkby (1971) and
Smith and Bretherton (1972) write equations
for the evolution of landscapes based on con-
servation of mass with the assumption that
sediment is transported in a downslope direc-
tion and surface runoff is generated uniformly.
Based on these, Smith and Bretherton (1972)
use a linear stability analysis to show that land-
scape evolution is unstable in the sense that
small perturbations grow when:

F—qdF/dg<0 (6)

where Fis the sediment flux and g surface flow.
Smith and Bretherton (1972) also show that a
one-dimensional equilibrium or constant form
solution is concave when eq. (6) is satisfied
and convex when it is not. Therefore, there is
an equivalence between concavity of a one-di-
mensional profile and instability in the two-di-
mensional landscape. Instability, as character-
ized above, would lead to rilling and channel
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growth, otherwise, smooth hillslopes would
prevail. Loewenherz (1991) re-evaluates the
Smith and Bretherton stability criterion, dem-
onstrating its rigor and validity. She also sug-
gests a short wavelength cutoff to represent the
lower scale limit of validity of the continuum
equations for surface deformation. This re-
sults in a slight shift in the stability threshold.

The Smith and Bretherton (1972) formula-
tion which assumes the constitutive function
F (S, q), parameterizes the sediment transport
in terms of slope and flow which is related to
upslope area. This is most appropriate in a
transport limited situation where the sediment
load is in equilibrium with slope and flow. Fis
actually the sediment transport capacity of the
surface flow. Where the removal of sediment
is limited by weathering and hillslope devel-
opment depends on variations in weathering
rate another approach is needed. Carson and
Kirkby (1972) discuss many of the factors
which affect weathering rate. Luke (1972,
1974) generalizes the Smith and Bretherton
formulation by instead treating sediment flux,
or load, as a variable and including an addi-
tional equation to represent the erosion or de-
positon of sediment. Luke (1974) shows how
under conditions of instability, troughs de-
velop into shock discontinuities, interpreted as
channels. However, no general condition for
instability of his set of equations, analogous to
eq. (6) above is known.

The stability behavior of the conservation
equations given by Smith and Bretherton
(1972) is clearly dependent on the form of the
sediment transport flux function F(S, ¢). If
flux F is proportional to S we get the widely
studied linear diffusion equation which Cull-
ing (1960, 1963, 1965) analyzed in the con-
text of slope development. If F is dependent on
S nonlinearly, there is nonlinear diffusion. In
fact, if the main contribution to variation of F
is S, then the process will be predominantly
diffusive; whereas if the main contribution to
variation of F is g, the flow volume related to
the carrying capacity of the concentrated flow,
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the process is advective. In diffusive processes
F is predominantly dependent on slope .S and
the term 0F/dq in eq. (6) is small, which leads
to eq. (6) being positive and, consequently
stability of the landscape evolution under this
process. However, if the process has an advec-
tive component, there is always some flow large
enough to make the term ¢g(9F/dq) dominate
eq. (6) and result in instability. The effects of
convergence and concentration of flow even-
tually dominate. Kirkby (1987) explains this
instability:

“Where flows of water and sediment converge, the com-
bined water flow drives a sediment transport greater than
the sum of the sediment inflows, so that there is an excess
transporting capacity which is able to enlarge the hollow.”

Thus advective processes result in channel ini-
tiation and development.

A common form of F used to parameterize
many processes is (Kirkby, 1971; Table 1):

F=pfa™S" (7)

where B, m and n are coefficients and “a” is
upslope area, i.e., the area drained per unit
contour width. Kirkby (1971) takes discharge
q as proportional to “a” with an exponent of
0.75 to 1. Table 1, excerpted from Kirkby
(1971), gives typical m and » for various pro-
cesses. Mathier et al. (1989) and Julien and
Simons (1985) also discuss overland flow sed-
iment transport parameterizations of this form.
Kirkby (1971 ) studied the solution to the con-
tinuity equations in one dimension and iden-
tified characteristics profiles under different

TABLE 1

Typical values of exponents m and # in the empirical rela-
tionship F= fa™S"

Process m n

Soil creep 0 1.0
Rain splash 0 1-2
Soil wash 1.3-1.7 1.3-2
Rivers 2-3 3

From Kirkby (1971).
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parameter values. These show convex profiles
for soil creep progressing to concave profiles
for rivers.

Kirkby (1980) focuses on the instability cri-
terion of Smith and Bretherton (1972) and
notions of dominant domains and transition
thresholds. He suggests that when the land-
scape is unstable, small hollows will grow into
valley heads. He shows that where a combina-
tion of creep and wash sediment transport pro-
cesses are present, there is a critical area a.
where instability [according to eq. (6)] oc-
curs. He suggests that for a landscape with fully
developed drainage, the area drained per unit
length of channel bank must be less than a,
which results in a lower bound on drainage
density:

Dy>1/2a, (8)

Kirkby suggests that for efficient networks,
this approaches equality and provides a way to
estimate drainage density. The notion of a crit-
ical area or critical hillslope length is also rec-
ognized by Dunne (1980) who points out that
sheet flow can still occur in the stable domain
and rilling and channelization occur some way
beyond the point (down a hillslope) where
sheet flow occurs. Dunne suggests that this may
be because of the diffusive, leveling influence
of rainsplash. The instability occurs where the
unstable sheet flow dominates transport.
Thornes (1983) also emphasizes the impor-
tance of defining domains where different pro-
cesses dominate and what the transitions be-
tween domains are. An additive form to the
sediment transport function can be used to
represent the sum of different processes. Smith
and Bretherton (1972) and Band (1985) used
the form:

F=KS+ag™S" (9)

where K and « are constants. This is a sum of
creep and wash processes. Band (1985) notes
that the relative magnitude of diffusive and
surface wash rates are crucial to the resulting
slope shapes. Kirkby (1987) uses this equa-
tion with runoff generated according to the
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topographic model of Beven and Kirkby
(1979).

Kirkby (1987) also gives a formulation for
a combination of landslide and creep or splash
sediment removal, resulting in concave and,
presumably, unstable profiles beyond a critical
distance downslope. Landsliding is formulated
as an erosion limited process. This raises a
question on the validity of the interpretation
of concavity as implying instability because the
sediment flux is not in the form F(S, q) re-
quired to apply the Smith and Bretherton
(1972) result. Sediment flux could be written
in Luke’s (1972, 1974) more general formu-
lation but to our knowledge stability of the re-
sulting more general system has not been in-
vestigated. Kirkby (1987) also mentions a
difficulty with this formulation is that it does
not require hollows to be occupied by streams,
something that is usually the case in field
observations.

Andrews and Bucknam (1987), in the con-
text of scarp degradation, have suggested:

_ 5
1—(8/f)?

where f1s a friction or sliding slope and K|, is a
constant. This form is derived from consider-
ation of the distance a particle travels before
sliding to a stop after it has been given an ini-
tial velocity (perhaps from a raindrop or ani-
mal hoof ). This is a nonlinear diffusion term
that could be used instead of KS in equation
9).

Ahnert (1987) describes a slope denudation
model developed over the past three decades.
This is based on the continuity equation with
the added feature that sediment removal is a
function of regolith (i.e., soil cover) thickness.
This allows the modeling of weathering-lim-
ited and transport-limited situations. The ef-
fect of weathering-limited denudation is only
explored in a limited way. Ahnert (1987) also
notes that the surface wash form of sediment
transport results in concave slope profiles and
diffusive sediment transport results in convex

F=K, (10)
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profiles. He suggests that the concave (wash
dominated) part of a profile represents the
longitudinal profile of streams and the convex
part (shaped by diffusive mass movements)
represents the valley side slopes.

Recently Willgoose (1989 and Willgoose et
al., 1991a, b) developed a catchment and
channel network evolution model. The model
is based on sediment transport continuity but
postulates an explicit difference between sedi-
ment transport on a hillslope and in a channel.
This is implemented numerically by using a
sediment transport function F, dependent on
an index of channelization Y. Y is an indicator
variable taking the value 1 in channels and 0
on hillslopes. Willgoose uses the following par-
ameterization of transport:

BO.q"S" Y=0
F(S,q,Y)= (11)
Bg"S"  Y=1

where again 8, m and n are coefficients. The
factor O, gives the relative differences between
sediment transport on hillslopes and in chan-
nels. Willgoose suggests that channelization
occurs (the switch from Y=0to Y=1) whena
channel initiation function exceeds a certain
threshold. He uses sediment transport argu-
ments to suggest an initiation function of the
form:

CI(S, q)=B'q™S™ (12)

where ', m’ and n’ are coefficients, in general
different from those in eq. (11). Willgoose
(1989 and Willgoose et al., 1991a,b) show that
simulations based on this model result in real-
istic looking channel networks. He compared
Horton (1945) and Tokunaga (1978) scaling
ratios as well as hypsometric properties to
demonstrate how well the model reproduces
properties of natural channel networks. Will-
goose et al. (1990) also showed that the model
reproduced the slope-area scaling at channel
heads observed by Montgomery and Dietrich
(1988). The notion of sediment transport rate
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being different on hillslopes and channels is in-
tuitively appealing, although it has not been
observed in the field or experimentally justi-
fied. The date of Priest et al. (1975) used by
Willgoose (1989) suggest O,=0.4 which may
not be significantly different from O,=1. The
Willgoose model is distinct in that channels are
imposed when the channel initiation criterion
is met. This needs not in general coincide with
the development of shock discontinuities de-
scribed by Luke (1974) or the instability
threshold of Smith and Bretherton (1972), eq.
(6).

A theoretical model for landscape evolution

Here we suggest that a reformulation of the
continuity equations suggested by Smith and
Bretherton (1972) and Kirkby (1971) with
sediment flux F, a function of slope S and up-
slope area “a”, rather than flow g, provide
minimum necessary complexity sufficient for
instability, the formation of discontinuities and
channel networks. An assumption of dynamic
equilibrium leads to a relationship between
slope and upslope area. This is a scaling func-
tion which characterizes the landscape and has
a form dictated by the landform evolution pro-
cesses. We show how different sediment trans-
port processes manifest themselves in terms of
this scaling. Where multiple processes are
present, changes in upslope area can result in a
switch in the dominating process and a corre-
sponding switch in the stability criterion
(Smith and Bretherton, 1972) indicating a
threshold upslope area for the formation of
channels. An advantage of the formulation in
terms of a slope-area scaling function is that it
can be measured using topographic or digital
elevation model (DEM) data. The slope-area
scaling function dictates a support area with
which channel networks should be extracted
from DEM’s and hence gives a drainage
density.

The basic equations which we regard as suf-

[

ficient to model the essence of landscape evo-
lution are:

0z/0t=—V-nF(|Vz|,a) (13)
and:
Vena=1 (14)
with:

Vz
£=—|Vz| (15)

where z, elevation, and a, upslope area, are the
dependent variables that vary over space
(x, y) and time ¢ and # is a unit vector in the
downslope direction. The equations are con-
servation of sediment mass (eq. 13) and cal-
culation of upslope area (eq. 14). The defini-
tions of downslope directions (eq. 15), and the
sediment transport function, F(|Vz|, a)
=F(S, a), are constitutive relationships. Fig-
ure 1 illustrates the definition of area per unit
contour width or upslope area “a”. The only
difference between these equations and those
of Smith and Bretherton (1972) is that the in-
dependent variable g in F(S, ¢) has been re-
placed by “a”. This can be done by simple sub-
stitution if one assumes there exists a function
q(a):

F(S,q(a))=F(S,a) (16)

Kirkby (1971) used a power function for g(a):

Fig. 1. Sketch defining partial catchment area per unit

contour with “a”.



66

however different, perhaps more complicated
functions may be required to model the partial
response of hillslopes with variable contribut-
ing areas. The F(S, a) construct also allows
more generality since surface flow could be
functionally dependent on slope, i.e. (S, a),
to perhaps model slope dependent runoff gen-
eration mechanisms. All parameterizations of
different sediment transport processes are in-
corporated in the function F(S, a) which dic-
tates the landforms and drainage density that
results. In general, we would expect the sedi-
ment flux to also be a function of many other
variables perhaps including vegetation, ero-
sion resistance and whether or not the flow is
channelized. Then one could write F(S, a, R,
V, Y, ..). However, here we assume that these
effects are subservient to the effects of slope
and upslope area which are the focus of our
analysis. The other variables may be responsi-
ble for some of the apparently random scatter
in the results.

An assumption of dynamic equilibrium, or
constant average degradation rate, seems rea-
sonable for a sufficiently localized region and
has been widely used (Davis, 1899; Hirano,
1975). Within the present framework this is
equivalent to assuming that the sediment
transport past every point is proportional to
upslope area (Willgoose et al., 1991¢):

F(S,a)=Ua (17)

For U given and the functional form F(-)
known, this is an implicit relationship between
slope S and area a. In this expression, U does
not have to be restricted to uplift but can be
thought of as average degradation rate. With
F(-) given by fa™S", as in eq. (7), this rela-
tionship can be explicitly solved:

1/n
U

S=(—) g=(m=1)/m (18)
B

This is a power law scaling of slope with area

and has been used by Willgoose et al. (1991c¢)

to explain the empirical observations de-

scribed by eq. (4). For a more general F(+),
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recognizing that eq. (17) defines a function
S(a) implicitly, we can write:
F(S(a),a)=Ua (19)

which upon differentiation and multiplication
by “a” gives:

JoF dS oF
aﬁ,aha%:Ua:F (20)
This can be rewritten:

JIF dS IF
aﬁ_ E&= F— aa (2 1 )

Here the right-hand side is equivalent to the
stability criterion of Smith and Bretherton
(1972). For F—a(0F/da) <0, small pertur-
bations grow into rills and ultimately chan-
nels. For F—-a(0F/da)>0, small perturba-
tions do not grow so the landform remains
smooth, i.e., hillslopes. Now, on the left-hand
side of eq. (21), “a” is always positive and 0F/
9.5 we expect to be positive so stability depends
on the sign of the gradient dS/da. dS/da<0
results when there is instability and channeli-
zation, otherwise dS/da> 0. This suggests that
a break or change in gradient of the S(a) func-
tion is a dividing scale, separating the dis-
tinctly different regimes of channels and hill-
slopes. (Note: The term gradient is used for the
slope of a graph or function and the term slope
for the slope of the ground.) Equation (18)
considered only one sediment transport func-
tion under dynamic equilibrium. In principle,
many sediment transport processes may oper-
ate at the same scale (Tarboton, 1989; Will-
goose, 1989; Willgoose et al.,, 1991c). Con-
sider the presence of two mechanisms and
assume that the total sediment flux is the sum
of contributions from each mechanism:

F(S,a)=F\(S, a)+F,(S, a) (22)

Equating the above to Ua as in eq. (19) and
solving for S(a), the slope-area profile under
dynamic equilibrium for combined sediment
transport is obtained. This is given in Fig. 2 for
three different plausible mass wasting type
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Fig. 2. Equilibrium slope profiles for combinations of transport functions. The following four sediment transport func-

tions in dimensionless units are assumed:

A: F=a**$*for rivers (Leopold and Maddock, 1953; Kirkby, 1971); B: F=S for soil creep (Kirkby, 1971); C: F=5-0.3
for landsliding (Kirkby, 1971); D: F=S/[1—(5/0.7)?] for sliding (Andrews and Bucknam, 1987).

Each figure shows the solutions to: F(S,a)=a for each of the two mechanisms selected, and the solution to:
F,(S,a) + F,(S,a) =a. These represent the slope-area scaling under dynamic equilibrium for each single mechanism, and
the resultant slope area scaling if the two mechanisms exist together.

sediment transport functions combined with a
wash sediment transport function. This figure
shows that in all three cases a slope-area pro-
file that changes from a positive, or near zero
gradient, to a negative gradient is obtained.
This change over is accompanied by a switch
in the process that dominates the sediment
transport. At small contributing areas, or small
scale, the sediment transport is dominated by
the mass wasting process; whereas, for large
contributing areas or scale, wash erosion dom-
inates and due to the instability the landscape
will become channelized.

Thus, the break in slope-area scaling repre-
sents the transition point between hillslope and
channelized regimes. This analysis points out
the importance of slope-area plots in the anal-
ysis of landforms. These plots are the signature
of processes on the landscape, provide infor-
mation about the fundamental scales, and sug-
gest how the scaling in between these scales can
be interpreted in terms of sediment transport
processes.

Examples using digital elevation data

An advantage of this perspective on land-

scapes is that slope and upslope area can be
measured using digital elevation model
(DEM) data. Tarboton (1989) and Tarboton
et al. (1991) describe techniques to detect the
break in slope-area scaling and estimate the
corresponding drainage density for 21 U.S.
Geological Survey grid based DEM datasets
comprised of several adjacent DEM quadran-
gles in most cases. These were selected to rep-
resent a broad range of landscape types, but
were constrained by the availability and cost
of DEM data for complete river basins. To un-
derstand the analysis and processing of DEM’s
it is necessary to define the procedures and ter-
minology used, which follows the work of
O’Callaghan and Mark (1984), Mark (1988)
and Jenson and Domingue (1988).
Elevations are stored in an elevation matrix
arranged in a grid with each entry giving the
elevation of a point. The location within the
matrix implies the spatial location of the point,
so only elevation values need to be stored (as
opposed to the alternative DEM data storage
structures, triangular irregular networks that
have to store x and y location and elevation
data for each point and contour-based struc-
tures that store strings of x and y locations
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ber of points used in the moving average indi-
cated in parentheses in the legend. Some
problems occur with this procedure. First, the
break in gradient is often not distinct; in some
cases (e.g. Fig. 6) it appears to be dependent
on support area threshald and, hence, slope
averaging length. Also, the break in gradient of
the overall regression is often not to a positive
gradient at small upslope area, although if a
single averaging length were used it would be.
These problems may be due to errors in the
DEM data, so to understand the effect of er-
rors in our procedures, we constructed a data
set with predetermined slope-area functions
and applied random additions of noise. A one-
dimensional hillslope profile was specified as:

z=250—x?/9000 (23)

where z is elevation and x distance from the
divide. For a one-dimensional profile x=a, and
the slope scaling is:

dz

S=dx

=a/4500 (24)

Equation (23) was used to compute eleva-
tions on a 51X 102 grid with spacing of 30 m
schematically shown in Fig. 7. A random mea-
surement error simulated from a zero mean
Gaussian distribution with variance up to four
was added to each elevation and then rounded
to the nearest meter for storage as an integer
value as with real DEM data. Slope-area pro-
files were then computed using the same pro-
cedures as for digital elevation models. As il-
lustrated in Fig. 8, the results show, even for
the relatively small errors simulated, a large ef-
fect on the slope-area relationship. The theo-
retical line is obtained from eq. (24) using a
pixel size of 30 m. Area per unit contour width
“a” is calculated as contributing area 4 di-
vided by 30 m. Thus the theoretical line in Fig.
8 is given by:

§=A4/30/4500=4/135,000 (25)

The good data is with no added measurement
noise and has scatter due to the rounding of
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elevations to the nearest meter. In the noisy
data, the errors introduce a negative correla-
tion between slope and area which tends to re-
duce the positive slope of the slope-area
curves. This may cause the negative slopes in
the slope-area data (Figs. 4 to 6), to the left of

the break in scaling, at scales or areas we inter-
pret as hillslopes.

To understand this effect, consider an error
in the elevation of a single pixel. If the error
reduces the apparent elevation of a pixel, the
apparent slope is reduced. This is because the

]
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Fig. 7. Schematic diagram of simulated slope profile.
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slope of a pixel is measured as the difference in
elevation between the pixel in consideration
and its downslope neighbor, divided by the
distance between pixels. Also, adjacent pixels
are more likely to drain towards the pixel in
consideration due to its reduced elevation, thus
increasing the apparent area that it drains.
Similarly, an error that increases the apparent
elevation, increases slope, and reduces area, so
the net effect is that errors result in a negative
correlation between slope and area or negative
gradient in slope-area plots.

In some of the results, Fig. 6 in particular,
there is a strong dependence of the break in
scaling on support area or averaging length. We
have not yet fully resolved the causes for this
but think that the explanation lies in issues of
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resolution and bias introduced by the sam-
pling procedures. In comparing, for example,
the asterisks and circles on Fig. 6 we are com-
paring slopes calculated from links with sup-
port areas of ten and twenty pixels. When a
support area of twenty pixels is used the links
that have support area just larger than twenty
will be first order and may be very short, lead-
ing to uncertainty in the estimated slope. When
the support area is reduced, to say ten pixels,
these short links are extended upwards to in-
clude more pixels that have smaller area and
hence steeper slopes. This would have the ef-
fect of eliminating the “hook effect” near the
threshold of twenty. However it would still be
a problem near the new support area threshold
of ten. It is worth noting that this problem is
most severe for the East Delaware river basin
which is from a low-resolution 3 arc second
(60%90 m) DEM dataset and is not as notice-
able in the higher-resolution datasets. Further
work with high-resolution data is probably
warranted to fully resolve these issues.

The break in slope-area scaling gives a pro-
cedure for obtaining channel support area and,
hence, drainage density that is physically jus-
tifiable in terms of the hillslope transport pro-
cesses. Tarboton (1989) and Tarboton et al.
(1991) showed that, despite the errors, drain-
age density obtained in this manner compares
fairly well to drainage density obtained using
other techniques.

Conclusions

The fact that there are fundamental or basic
scales where the slope-area scaling breaks sug-
gests different processes above and below the
break. The difference between stable diffusive
processes and unstable channel-forming pro-
cesses, under the Smith and Bretherton (1972)
stability criterion has been shown to be equiv-
alent to a change in the sign of the slope-area
scaling function gradient. Thus, the break can
be interpreted as the scale at which stability
changes and as such can be used to determine
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drainage density. Where there are multiple
sediment transport processes present, the break
point is the point where domination by stable
diffusive processes yields to domination by
unstable channel-forming processes.

Much of fluvial geomorphology has focused
on the slope-area scaling relation S~A~°
which may be explained in terms of dynamic
equilibrium and wash processes (eq. 18). This
cannot hold down to the limit of zero area as it
implies infinite slope. Diffusive slope-depen-
dent transport mechanisms will always domi-
nate as area gets small and slope gets large, re-
sulting in a limit to this scaling. This transition
may, however, be at a scale too small to re-
solve, given the data resolution. Thus, it is only
useful to characterize the landscape as scaling
above or below this limit or basic scale.

On either side of the basic scale the differ-
ential equations governing landform evolution
are in different stability regimes. Below the ba-
sic scale they are stable, while above it they are
unstable. Therefore, we should expect funda-
mentally different scaling behavior in the two
scaling regimes. Perhaps this explains the
change of fractal dimension with scale that has
been reported by others (Mark and Aronson,
1984; Culling and Datko, 1987).

Here we have shown that considerable un-
derstanding of landscape structure can be
gleaned from the parameterization of sedi-
ment transport in terms of the topographic
variables, slope, and upslope area. Analysis in
terms of the slope-area scaling function can be
done theoretically for specified processes and
practically in terms of measured slope and area.
A break in this scaling function indicates dif-
ferent regimes of stability and instability and
can be used to determine drainage density. The
connection between drainage density and the
land-forming processes is one more step to-
wards understanding the link between pro-
cesses and morphology.

This work has taken the perspective that the
stability threshold defines drainage density and
the location of channel heads within a first-or-
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der basin. The modeling of Willgoose et al.
(1991a—-c), however, takes an alternative per-
spective. Channel heads and consequently
drainage density are controlled by an activator
function not related to the stability threshold.
Slope-area scaling with a negative exponent
can (and in their simulations does) still exist
on hillslopes above the channel head in their
perspective. Future work with perhaps higher-
resolution data and field measurements of
transport processes may be required to resolve
this point.

This work has provided a physical basis for
distinct scaling regimes in the landscape and
the land-forming processes under the trans-
port-limited formulation presented. Future
work should extend the stability analysis to a
more general formulation that includes ero-
sion-limited processes. Future work should also
investigate the relationship between landscape
fractal dimension and area-slope scaling within
the stable and unstable scaling regimes. The
multiscaling of slopes with area (Tarboton et
al., 1989) still lacks a physical explanation. The
notion of self-organized criticality (Bak et al.,
1987, 1988; Hwa and Kardar, 1989) has been
used to describe the physics of fractals in other
contexts. The idea is that power law scaling and
fractal properties arise as the minimally stable
states of dynamical systems with extended
spatial degrees of freedom. These minimally
stable states are called critical states by the
analogy with thermodynamics and the scaling
behavior of substances near the thermody-
namic critical point. There are indications that
the landscape at scales larger than the drainage
density scale may be in such a critical state, The
governing eqs. (13 and 14) are unstable, but
perturbations cannot grow without bound, due
to the presence of diffusive mechanisms. Self-
organized criticality is also characterized by
power law distributions of energy dissipation
and this has been used to characterize the three-
dimensional scaling and structure of river bas-
ins (Rodriguez-Iturbe et al., 1992a, b). We feel
that there are deep physical principles involv-
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ing self-organization and minimum energy that
are at work governing the structure of river
basins and will be the key to the physical un-
derstanding of landscape fractal dimensions
and scaling properties in the future.

Work in this area is somewhat limited by
DEM data resolution and it is important to test
the procedures for identifying basic scales on
more and higher resolution datasets. Higher
resolution data would be useful to test how res-
olution dependent the results are and to re-
solve whether the negative gradient in slope-
area plots at small area is due to data errors, as
suggested here, or is really present in the land-
scape, in which case other explanations need
to be sought. High resolution data together with
accurate measurements of transport processes
is required to truly test the theoretical models
of river basin evolution discussed here.
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