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Distance from bank (ft) 0 30 60 80 100 120 140 160

Depth (ft) 0 185 21.5 225 23.0 225 225 220
Velocity (ft/s) 60 055 170 3.00 3.06 291 320 3.36
Distance 180 200 220 240 260 280 300 320 340
Depth 220 230 220 225 230 228 215 19.2 18.0
Velocity 344 270  2.61 2.15 1.94 1.67 1.44 1.54  0.81
Distance 360 380 410 450 470 520 570 615

Depth 14.7 12.0 11.4 9.0 5.0 2.6 1.3 0

Velocity 1.10 1.52 1.2 0.60 040 033 029 0

Plot a graph of velocity vs. distance from the bank for the data given in Prob.
6.3.1. Plot a graph of velocity vs. depth of flow.

The observed gage height during a discharge measurement of the Colorado River
at Austin is 11.25 ft. If the measured discharge was 9730 ft¥s, calculate the
percent difference between the discharge given by the rating curve (Fig. 6.3.8)
and that obtained in this discharge measurement.

The bed slope of the Colorado River at Austin is 0.03 percent. Detenni'ne, for
the data given in Example 6.3.1, what value of Manning’s n would yield the
observed discharge for the data shown.

A discharge measurement on the Colorado River at Austin, Texas, on June 16,
1981, yielded the following results. Calculate the discharge in ft¥s.

Distance from bank (ft) 0 35 55 75 95 115 135 155

Depth (ft) 0 180 19.0 21.0 205 185 182 19.5
Velocity (ft/s) 0 0.60 200 322 3.64 374 442 3.49
Distance 175 195 215 235 255 275 295
Depth 20.0 21.5 21.5 21.5 22.0 21.5 20.5
Velocity 5.02 4.75 4.92 4.44 3.94 2.93 2.80
Distance 325 355 385 425 465 525 575
Depth 17.0 13.5 10.6 9.0 6.1 2.0 0
Velocity 2.80 1.52 1.72 0.95 0.50 0.39 0

If the bed slope is 0.0003, determine the value of Manning’s n that would yield
the same discharge as the value you found in Problem 6.3.5.

The observed gage height for the discharge measurement in Prob. 6.3.5 was 19.70
ft above datum. The rating curve at this site is shown in Fig. 6.3.8. Calculat-e
the percent difference between the discharge found from the rating curve for this
gage height and the value found in Prob. 6.3.5.
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In the previous chapters of this book, the physical laws governing the operation
of hydrologic systems have been described and working equations developed to
determine the flow in atmospheric, subsurface, and surface water systems. The
Reynolds transport theorem applied to a control volume provided the mathematical
means for consistently expressing the various applicable physical laws. It may be
remembered that the control volume principle does not call for a description of
the internal dynamics of flow within the control volume; all that is required is
knowledge of the inputs and outputs to the control volume and the physical laws
regulating their interaction.

In Chap. 1, a tree classification was presented (Fig. 1.4.1), distinguishing
the various types of models of hydrologic systems according to the way each
deals with the randomness and the space and time variability of the hydrologic
processes involved. Up to this point in the book, most of the working equations
developed have been for the simplest type of model shown in this diagram,
namely a deterministic (no randomness) lumped (one point in space) steady-flow
model (flow does not change with time). This chapter takes up the subject of
deterministic lumped unsteady flow models; subsequent chapters (8-12) cover a
range of models in the classification tree from left to right. Where possible, use
is made of knowledge of the governing physical laws of the system. In addition
to this, methods drawn from other fields of study such as linear systems analysis,
optimization, and applied statistics are employed to analyze the input and output’
variables of hydrologic systems.

In the development of these models, the concept of control volume remains
as it was introduced in Chap. 1: “A volume or structure in space, surrounded by
a boundary, which accepts water and other inputs, operates on them internally
and produces them as outputs.” In this chapter, the interaction between rainfall
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and runoff on a watershed is analyzed by viewing the watershed as a lumped
linear system.

7.1 GENERAL HYDROLOGIC SYSTEM MODEL

The amount of water stored in a hydrologic system, S may be related to the rates
of inflow 7 and outflow Q by the integral equation of continuity (2.2.4):

ds

— =1- 7.1.1

=10 (7.1

Imagine that the water is stored in a hydrologic system, such as a reservoir

(Fig. 7.1.1), in which the amount of storage rises and falls with time in response
to I and Q and their rates of change with respect to time: di/dt, d qlds?, . . .,
dQldr,d*Q/di?, . . . . Thus, the amount of storage at any time can be expressed
by a storage function as:
dl &1 dQ d*Q

P T O ey~ O 7.1.2
Tdrde’ T dr” de? ( )

S =fl{
The function f is determined by the nature of the hydrologic system being
examined. For example, the linear reservoir introduced in Chap. 5 as a model for
baseflow in streams relates storage and outflow by S = kQ, where k is a constant.
The continuity equation (7.1.1) and the storage function equation (7.1.2)
must be solved simultaneously so that the output Q can be calculated given the
input 1, where I and Q are both functions of time. This can be done in two ways:
by differentiating the storage function and substituting the result for dS/dr in
(7.1.1), then solving the resulting differential equation in 7 and Q by integration,
or by applying the finite difference method directly to Egs. (7.1.1) and (7.1.2)
to solve them recursively at discrete points in time. In this chapter, the first, or
integral, approach is taken, and in Chap. 8, the second, or differential, approach
is adopted.

Linear System in Continuous Time

For the storage function to describe a linear system, it must be expressed as a
linear equation with constant coefficients. Equation (7.1.2) can be written

N

(1)

N0 4 11y - o)

———\ FIGURE 7.1.1

o) Continuity of water stored in a hydrologic system.
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dQ d2Q dn—IQ
S =a + a,— + az3—— _—
19 aj it as P + ... +a, gy

a 21 1 (7.1.3)
+bd + by— + b3— . _—
W0 Tt * b

in which ay, ag, . . ., a,, by, by, . . ., b,, are constants and derivatives of higher
order than those shown are neglected. The constant coefficients also make the
system time-invariant so that the way the system processes input into output does
not change with time.

Differentiating (7.1.3), substituting the result for dS/dr in (7.1.1), and
rearranging yields

an dn—lQ dZQ dQ
n +ap—1——7 Cee o . =
g T e T Ty a0
7.1.4
b il_b é]— B dm_ll aI ( )
ldl‘ 2df2 m_ldl‘m_l - mﬁ
which may be rewritten in the more compact form
N(D)Q = M(D)I (7.1.5)
where D = d/dt and N(D) and M(D) are the differential operators
4 dn—l d
ND) =a,— + n—1 5,1 . -
( ) a ar a ldt"—l + + aldt.+ 1
and
am dm—l d
MD:—bm—_m——_---_ -
( ) dm b ldtm—l bldt +1
Solving (7.1.5) for Q yields
M(D)
)= "=2]
0 NO) ® (7.1.6)

The function M(D)/N(D) is called the transfer function of the system; it describes
the response of the output to a given input sequence.

Equation (7.1.4) was presented by Chow and Kulandaiswamy (1971) as a
general hydrologic system model. It describes a lumped system because it contains
derivatives with respect to time alone and not spatial dimensions. Chow and
Kulandaiswamy showed that many of the previously proposed models of lumped
hydrologic systems were special cases of this general model. For example, for a
linear reservoir, the storage function (7.1.3) has a, = k and all other coefficients
zero, so (7.1.4) becomes

aQ

kE+Q=I (7.1.7)
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7.2 RESPONSE FUNCTIONS OF LINEAR SYSTEMS

The solution of (7.1.6) for the transfer function of hydrologic systems follows two
basic principles for linear system operations which are derived from methods for
solving linear differential equations with constant coefficients (Kreyszig, 1968):

1. If a solution f(Q) is multiplied by a constant ¢, the resulting function ¢f(Q) is
also a solution (principle of proportionality).

2. If two solutions f1(Q) and f,(Q) of the equation are added, the resulting
function f1(Q) + f2(Q) is also a solution of the equation (principle of additivity
or Superposition).

The particular solution adopted depends on the input function N(D)I, and on the
specified initial conditions or values of the output variables at r = 0.

Impulse Response Function

The response of a linear system is uniquely characterized by its impulse response
function. If a system receives an input of unit amount applied instantaneously (a
unit impulse) at time 7, the response of the system at a later time ¢ is described by
the unit impulse response function u(t — 7); t — 7 is the time lag since the impulse
was applied [Fig. 7.2.1(a)]. The response of a guitar string when it is plucked
is one example of a response to an impulse; another is the response of the shock
absorber in a car after the wheel passes over a pothole. If the storage reservoir
in Fig. 7.1.1 is initially empty, and then the reservoir is instantaneously filled
with a unit amount of water, the resulting outflow function Q(r) is the impulse
response function.

Following the two principles of linear system operation cited above, if two
impulses are applied, one of 3 units at time 7; and the other of 2 units at time
7, the response of the system will be 3u(r — 71) + 2u(t — 7,), as shown in Fig.
7.2.1(b). Analogously, continuous input can be treated as a sum of infinitesimal
impulses. The amount of input entering the system between times 7 and 7 + dt

is I(7) dt. For example, if I(7) is the precipitation intensity in inches per hour and -

dr is an infinitesimal time interval measured in hours, then /(7) d is the depth in
inches of precipitation input to the system during this interval. The direct runoff
t— 7 time units later resulting from this input is /(7)u(t — T)dr. The response to the
complete input time function /(1) can then be found by integrating the response
to its constituent impulses:

4
o) = LI(T)LL(T —7dTr (7.2.1)
This expression, called the convolution integral, is the fundamental equation for
solution of a linear system on a continuous time scale. Figure 7.2.2 illustrates
the response summation process for the convolution integral.

For most hydrologic applications, solutions are needed at discrete intervals
of time, because the input is specified as a discrete time function, such as an
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I(n), Q)

Unit impulse u(t-1)

1 Impulse response function

Time ¢
(a)

(1), Q(1)

FIGURE 7.2.1

Responses of a linear system to impulse inputs. («) Unit impulse response function. (b) The response
to two impulses is found by summing the individual response functions.

excess rainfall hyetograph. To handle such input, two further functions are need-
ed, the unit step response function and the unit pulse response function, as shown
in Fig. 7.2.3.

Step Response Function

A unit step input is an input that goes from a rate of 0 to I at time 0 and continues

indefinitely at that rate thereafter [Fig. 7.2.3(b)]. The output of the system, its

unit step response function g(f) is found from (7.2.1) with I(7) = 1 for 7= 0, as
t

Q@) = g(n) = [ u(t — 7y dr (7.2.2)

0

If the substitution ! = ¢ — 7 is made in (7.2.2) then dr = —dI, the limit 7 = ¢
becomes [ = t — ¢t = 0, and the limit 7 = 0 becomes [ = ¢ — 0 = ¢. Hence,

0
g = —J u(l) dl

or

o0 = | wya (7.2.3)

0
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mAr
P P, = J[(T)(/T
I(t)drt o Gn— 1)Ar
At
_I
17— f—d1 T —— mAt —| At|+—

:

o) = jl(r)u(f—r)dr
0

. 4“ !!!.s

[e——nAt —|

|
[ t 1 t

(a) Continuous time functions (b) Discrete time functions

FIGURE 7.2.2
The relationship between continuous and discrete convolution.

In words, the value of the unit step response function g(f) at time ¢ equals the
integral of the impulse response function up to that time, as shown in Fig. 7.2.3(a)
and (b).

Pulse Response Function

A unit pulse input is an input of unit amount occurring in duration Az. The rate
is I(7) = 1/At, 0 = 7= A¢, and zero elsewhere. The unit pulse response function
produced by this input can be found by the two linear system principles cited
earlier. First, by the principle of proportionality, the response to a unit step input
of rate 1/Af beginning at time 0 is (1/A7)g(#). If a similar unit step input began
at time At instead of at 0, its response function would be lagged by time interval
At, and would have a value at time ¢ equal to (1/Af)g(t — Af). Then, using the
principle of superposition, the response to a unit pulse input duration At is found
by subtracting the response to a step input of rate 1/As beginning at time At from

T
Time index

-,

: [
| |
| |
| |
| 1
] 1
|
: u(r-1) u(t~1) | Un~m +1
i I
| I
1 |
I ' .
| ! N
| T f—1 : |‘-—YI Time index 1 —m + |
1 1
I I :
II II ) (n—m+1)At
i 1 L
1 i L
| 1 ! n=M
I
: 0 & e Qn —mz:“ leUn— m+ |
n

Time index n

U, = h(n A)
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lim (1) = u(r)
At—+0

(d) Discrete pulse
response, U,

(a) Impulse response, u(r)

Unit Input

/Output u(t)

Time

\Input —
\\ . Output U,

Time
index 0 -
i

—iAne— -
E I ]
Lo ~
L =
[ =
Il T
0o I
o =
Lo z
Lo g
Lo
ol
I

g() | Input \‘: |/ Output g(1)

8(N—gt—An

Time

(c) Pulse response
h(t)

(b) Step response
8(1r)

h) = 3; L8()= gt~ AD)

FIGURE 7.2.3
Response functions of a linear system. The response functions in (a), (b), and (c) are on a continuous
time domain and that in (d) on a discrete time domain.

the response to a step input of the same rate beginning at time 0, so that the unit
pulse response function h(t) is

1
h(t)= 1800 = 8t = An] (7.2.4)
1 t— At
=% J;u(l) dl — L u(l)dl
1 T
—A—Jt_m u(l) dl (7.2.5)

0
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As shown in Fig. 7.2.3, g(#) — g(t — Af) represents the area under the impulse
response function between t — Ar and ¢, and h(r) represents the slope of the unit
step response function g(f) between these two time points.

Example 7.2.1. Determine the impulse, step and pulse response functions of a
linear reservoir with storage constant k(S = kQ).

Solution. The continuity equation (7.1.1) is

8 1) — @)

dr
and differentiating the storage function S = kQ yields dS/dt = kdQ/dt, so
aQ
k— = I(t) — QU
o n—-00
or
aQ

1 1
i + zQ(f) = %I(T)

This is a first-order linear differential equation, and can be solved by multiplying
both sides of the equation by the integrating factor e

dag
k “x
¢ dr

so that the two terms on the left-hand side of the equation can be combined as

1 ik _ l ik
+ ke o = ke 1(1)

ﬂ ik _ 1 tk
dt(Qe ) € 10

Integrating from the initial conditions Q = Q, at ¢ =0

Q(n),t t 1
J d(Qe™) = J zeﬂk[(’r) dr

Q5.0 0

where 7 is a dummy variable of time in the integration. Solving,
T

0Me™ — Q, = j ieT/kI(T) dr

0

and rearranging,
t

o) = Qe ™ + J %e_(r_T)/kI(T) dr

0

Comparing this equation with the convolution integral (7.2.1), it can be seen that
the two equations are the same provided Q, = 0 and

u(t— 1) = le_(’_T)”‘

k

So if [ is defined as the lag time ¢ — 7, the impulse response function of a linear
reservoir is

u(l) = %e"”‘
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The requirement that Q, = 0 implies that the system starts from rest when the
convolution integral is applied.

The unit step response is given by (7.2.3):

&= j u(l)dl

o

1
1
= [ Ee‘”"dl

—Ilk]r

:[—g o

=1 _eﬁr/k

The unit pulse response is given by (7.2.4):
1
) = — —g(t—
0] At[g(l‘) gt — An]
1. For0=t=Ar, gt — AH =0, so
1 1
W) = — — (1 _ -tk
® 50 At(l e ™)
2. For > At,
1
W) = — R S — ,—(—Anlk
® A r[l e (I~e )]

e ™ s
“a @D

The impulse and step response functions of a linear reservoir with k = 3 h are
plotted in Fig. 7.2.4, along with the pulse response function for Ar = 2 h.

1.0
0.8
2 0.6 “————Step response function
g g(t) = l—e_[/k
&
8 04+ Pulse response function i(r) for At = 24
02 Impulse response function
2+ _ 1 ~uk
u(t) = P e
T T T T
0 2 4 6 8 10
Time (h)
FIGURE 7.2.4

Response function of a linear reservoir with k = 3 h. Pulse response function is for a pulse input of
two hours duration. (from Example 7.2.1.)



210  APPLIED HYDROLOGY

Linear System in Discrete Time

The impulse, step, and pulse response functions have all been defined on a
continuous time domain. Now let the time domain be broken into discrete intervals
of duration A¢. As shown in Sec. 2.3, there are two ways to represent a continuous
time function on a discrete time domain, as a pulse data system or as a sample
data system. The pulse data system is used for precipitation and the value of its
discrete input function for the mth time interval is

nAt
P, = J: I(n)dt

m—1) At

m=1,2,3,... (7.2.6)
P,, is the depth of precipitation falling during the time interval (in inches or
centimeters). The sample data system is used for streamflow and direct runoff,
so that the value of the system output in the nth time interval (f = n Ar) is

O, = Q(nAn n=1,2,3,... (7.2.7)

O, is the instantaneous value of the flow rate at the end of the nth time inter-
val (in cfs or m%/s). Thus the input and output variables to a watershed system
are recorded with different dimensions and using different discrete data
representations. The effect of an input pulse of duration Az beginning at time
(m — 1)Ar on the output at time ¢ = nAt is measured by the value of the unit pulse
response function Al[t — (m — 1)At] = h[nAr — (m — 1)Af] = h[(n — m + 1)A1],
given, following Eq. (7.2.5), as

(n—m+ 1)Ar
hl(n —m + DAf] = —J Ddl
[(n = m )AL At Jn—m)ae ul)

On a discrete time domain, the input function is a series of M pulses of

constant rate: for pulse m, I(1) = P,/At for (n — 1) At = 7= m At. I(1) = 0 for

T > MAr. Consider the case where the output is being calculated after all the input

has ceased, that is, at t = nAt > M At [see Fig. 7.2.2(b)]. The contribution to the

output of each of the M input pulses can be found by breaking the convolution
integral (7.2.1) at ¢t = nAt into M parts:

(7.2.8)

nit
N =L I(Du(nAt — odt

P At P At
:Klt , Unde =D dr + ft JZ: u(pAt — dr + . . . (7.2.9)
At MAt
Pm PM
+— At—7dr+ ...+ — At— 1) d
At Jon—1)Ar u(n ndr At J—1Ar uln ndr
where the terms P, /At, m = 1,2, ..., M, can be brought outside the integrals

because they are constants.
In each of these integrals, the substitution [ = nAt — 7is made, so d7= —dI,
the limit 7 = (m — 1) At becomes [ = nAt — (m — 1) At = (n — m + 1)At, and
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the limit 7= mAt becomes ! = (n—m)At. The mth integral in (7.2.9) is now written
P nAt (n—m)At
n

u(nAt — ydr=-2
At (n—m+ DAt

P J‘(n—m + 1)Ar
m
= — D) dl
At (n—m)At lt( )

= Pyhl(n — m + 1Af]

by substitution from (7.2.7). After making these substitutions for each term in
(7.2.9),

E (m—1)Ar a u(Z) d

(7.2.10)

Qn = PiA[(nAD] + Poh[(n — DA + . ..
+Puh[(n—m + DAl + . ..
+Pyh[(n — M + 1A1]

which is a convolution equation with input P,, in pulses and output Q,, as a sample
data function of time.

(7.2.11)

Discrete Pulse Response Function

As shown in Fig. 7.2.3(d), the continuous pulse response function A(f) may be
represented on a discrete time domain as a sample data function U where

Up—m+1 = hl(n —m + 1)A7] (7.2.12)

It follows that U, = h[nAf], U,—1 = hAl(n — DAf,..., and U,—py4q =
h[(n — M + 1)Af]. Substituting into (7.2.11), the discrete-time version of the
convolution integral is

Qn:P1Un + PUp— + ... + PulUp—m+1 + ...

M
= Z PunUp—m+1

m=1

+ PMUn—M+1

(7.2.13)

Equation (7.2.13) is valid provided n = M; if n < M, then, in (7.2.9), one would
only need to account for the first # pulses of input, since these are the only pulses
that can influence the output up to time 7 Az. In this case, (7.2.13) is rewritten

h
0n = > PulUp—ms1 (7.2.14)
m=1

Combining (7.2.:13) and (7.2.14) gives the final result

N G
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Unit pulse response applied to P,
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FIGURE 7.2.5

Application of the discrete convolution equation to the output from a linear system.
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n=Mm

Oy = Z PuUp—m+1

m=1

(7.2.15)

which is the discrete convolution equation for a linear system. The notation
n = M as the upper limit of the summation shows that the terms are summed
form = 1,2,...,n for n = M, but for n > M, the summation is limited to
m=1,2,...,M.

As an example, suppose there are M = 3 pulses of input: P, P,, and Ps.
For the first time interval (n = 1), there is only one term in the convolution, that
form = 1;

O1 =P U141 = PU,
For n = 2, there are two terms, corresponding to m = 1, 2:
Oy = PyUs—141 + PaUp—3 11 = PiU, + PyU,
For n = 3, there are three terms:
Q3 = P1Us~14+1 + PoUs—211 + P3Us—341 = PiUs + PyUp + P3U,
And for n = 4,5, . . . there continue to be just three terms:
Oy =P U, + PhU,—1 + P3U,—,

The results of the calculation are shown diagramatically in Fig. 7.2.5. The
sum of the subscripts in each term on the right-hand side of the summation is
always one greater than the subscript of Q.

In the example shown in the diagram, there are 3 input pulses and 6 non-
zero terms in the pulse response function U, so there are 3 + 6 — 1 = 8 non-
zero terms in the output function Q. The values of the output for the final three
periods are:

Qs=P1Us + P,Us + P3Uy
Q7=PyUs + P3Us
Qg =P3Us

0O, and P, are expressed in different dimensions, and U has dimensions
that are the ratio of the dimensions of Q, and P,, to make (7.2.15) dimensionally
consistent. For example, if P, is measured in inches and Q, in cfs, then the
dimensions of U are cfs/in, which may be interpreted as cfs of output per inch of
input.

7.3 THE UNIT HYDROGRAPH

The unit hydrograph is the unit pulse response function of a linear hydrologic
system. First proposed by Sherman (1932), the unit hydrograph (originally named
unit-graph) of a watershed is defined as a direct runoff hydrograph (DRH) result-
ing from 1 in (usually taken as 1 cm in SI units) of excess rainfall generated
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uniformly over the drainage area at a constant rate for an effective duration. TABLE 7.3.1
Sherman originally used the word “unit” to denote a unit of time, but since that Comparison of linear system and unit hydrograph concepts

time it has often been interpreted as a unit depth of excess rainfall. Sherman

classified runoff into surface runoff and groundwater runoff and defined the Linear system Jnit hydrograph
unit hydrograph for use only with surface runoff. Methods of calculating excess | |.  Excess rainfall P, |
rainfall and direct runoff from observed rainfall and streamflow data are presented ‘ Input System | Output | P e |
in Chap 5. P Q. |\\§____,f: ‘
The unit hydrograph is a simple linear model that can be used to derive e : Waw“hed: |
the hydrograph resulting from any amount of excess rainfall. The following basic 0,= 3 PyUy_msi & _ |
assumptions are inherent in this model: m=l PO 3 Direct runoff 0, |
_____ i‘
1. The excess rainfall has a constant intensity within the effective duration. 2 2. |

2. The excess rainfall is uniformly distributed throughout the whole drainage

area E/ Unit pulse input E/ 1 in or cm excess rainfall

reflects the unchanging characteristics of the watershed.

3. The base time of the DRH (the duration of direct runoff) resulting from an Un // e Discrete pulse response Un /’ . \,/Unit hydrograph of
excess rainfall of given duration is constant. / N function / \, duration Af

4. The ordinates of all DRH’s of a common base time are directly proportional ’ T\\ s SN / T\\*‘ﬂ
to the total amount of direct runoff represented by each hydrograph. Ak " R "

5. For a given watershed, the hydrograph resulting from a given excess rainfall 3. 3.

() ( Unit step input

g(n) (l in/h or cm/h excess
Under natural conditions, the above assumptions cannot be perfectly L R Lt

rainfall

satisfied. However, when the hydrologic data to be used are carefully selected so < Unit ?tepctr%sponse *~ S-hydrograph

that they come close to meeting the above assumptions, the results obtained by the 0 unenon 0

unit hydrograph model are generally acceptable for practical purposes (Heerde- t ! |
gen, 1974). Although the model was originally devised for large watersheds, it 4. 4. _ )
has been found applicable to small watersheds from less than 0.5 hectares to 25 wh 4" Unit impulse u) {7 Hn Z;Eg;ﬁ;ﬁ?:ﬁmus .‘

km? (about 1 acre to 10 mi2). Some cases do not support the use of the model |
because one or more of the assumptions are not well satisfied. For such reasons,

ality are assumed so that the ordinates Q,, of the DRH may be computed by Eq.

Impulse response /Instamaneous unit \;

the model is considered inapplicable to runoff originating from snow or ice. function hydrograph |

Concerning assumption (1), the storms selected for analysis should be of 0 0 . |
short duration, since these will most likely produce an intense and nearly constant ! ! |
excess rainfall rate, yielding a well-defined single-peaked hydrograph of short |
time base. A . . . . 5. System starts from rest. 5. Direct runoff hydrograph starts from zero. All previous

Concerning assumption (2), the unit hydrograph may become inapplicable rainfall is absorbed by watershed (initial abstraction or
when the drainage area is too large to be covered by a nearly uniform distribution loss).
of rainfall. In such cases, the area has to be divided and each subarea analyzed : . ) L
f : 6. System is linear. 6. Direct runoff hydrograph is calculated using principles
or storms covering the whole subarea. ‘ . of proportionality and superposition,

Concerning assumption (3), the base time of the direct runoff hydrograph
(DRH) is generally uncertain but depends on the method of baseflow separation 7. Transfer function has constant coefficients. 7. Watershed response is time invariant, not changing from
(see Sec. 5.2). The base time is usually short if the direct runoff is considered one storm to another.
to include the surface runoff only; it is long if the direct runoff also includes 8. System obeys continuity. 8. Total depths of excess rainfall and direct runoff are equal.
subsurface runoff. dS 3 0,=3 P,

Concerning assumption (4), the principles of superposition and proportion- o S 0-em oo




216  APPLIED HYDROLOGY

(7.2.15). Actual hydrologic data are not truly linear; when applying (7.2.15) to
them, the resulting hydrograph is only an approximation, which is satisfactory in
many practical cases.

Concerning assumption (5), the unit hydrograph is considered unique for
a given watershed and invariable with respect to time. This is the principle
of time invariance, which, together with the principles of superposition and
proportionality, is fundamental to the unit hydrograph model. Unit hydrographs
are applicable only when channel conditions remain unchanged and watersheds
do not have appreciable storage. This condition is violated when the drainage
area contains many reservoirs, or when the flood overflows into the flood plain,
thereby producing considerable storage.

The principles of linear system analysis form the basis of the unit hydrograph
method. Table 7.3.1 shows a comparison of linear system concepts with the
corresponding unit hydrograph concepts. In hydrology, the step response function
is commonly called the S-hydrograph, and the impulse response function is called
the instantaneous unit hydrograph which is the hypothetical response to a unit
depth of excess rainfall deposited instantaneously on the watershed surface.

7.4 UNIT HYDROGRAPH DERIVATION

The discrete convolution equation (7.2.15) allows the computation of direct runoff
Q, given excess rainfall P,, and the unit hydrograph U,—,+1

n=m

On = Z PuUn—m+1 (7.4.1)

m=1

The reverse process, called deconvolution, is needed to derive a unit hydrograph
given data on P,, and Q,. Suppose that there are M pulses of excess rainfall and
N pulses of direct runoff in the storm considered; then N equations can be written
for Q,,n = 1,2,...,N, in terms of N — M + 1 unknown values of the unit
hydrograph, as shown in Table 7.4.1.

If Q,, and Py, are given and U, —,,+ is required, the set of equations in Table
7.4.1 is overdetermined, because there are more equations (N) than unknowns
(N—M+ 1).

Example 7.4.1. Find the half-hour unit hydrograph using the excess rainfall hyeto-
graph and direct runoff hydrograph given in Table 7.4.2. (these were derived in
Example 5.3.1.)

Solution. The ERH and DRH in Table 7.4.2 have M = 3 and N = 11 pulses
respectively. Hence, the number of pulses in the unit hydrograph is N—M + 1 =
11 =3 + 1 = 9. Substituting the ordinates of the ERH and DRH into the equations
in Table 7.4.1 yields a set of 11 simultaneous equations. These equations may be
solved by Gauss elimination to give the unit hydrograph ordinates. Gauss elimination
involves isolating the unknown variables one by one and successively solving for
them. In this case, the equations can be solved from top to bottom, working with
just the equations involving the first pulse P, starting with

e ol
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TABLE 7.4,1
n=Mm

The set of equations for discrete time convolution 0, = Z PoUnoms1;
m=1

n=12,...,N "

0 =hPU

Q, =PRU +P U,

03 =PU +PU, +PUs

QM =PylU +Py—1Us + +P Uy
Ous1= 0 +PylU, + ... +PUy +P Uy
Ovel = 0 + 0 4 ...+ 0+ 0  +...+PyUy-s +PrsUn ss1
QN = 0 + 0 + ... + 0 + 0 +...+ 0 +PMUN—M+1
(o 428 .
I T
U, P, 106 cfs/in
0, — PU, 1923 — 1.93 X 404 .
= - = 1079 cf
U, P, 106 79 cfs/in
— - P 297 — 1.81 X 404 — 1.93 X 10
=2 P3gl i _ 2297 o6 BB _ 9343 ctoin
| .

and similarly for the remaining ordinates

U _ 9131 — 1.81 X 1079 — 1.93 X 2343

= 2506 cfs/in

4 1.06
—1.81 % —1.93 X
y, = 10625 — 1.81 X 2343 = 1.93 X 2506 _ 0 foin
1.06
_ - X
1834~ 181 X 21582 LO3X 1460 _ o o

TABLE 7.4.2
Excess rainfall hyetograph and direct

runoff hydrograph for Example 7.4.1

Time Excess rainfall Direct runoff
Gn (in) (cfs)

1.06 428
1.93 1923
1.81 5297
9131

10625

7834

3921

1846

1402

830

313

— OO0~ R LW~

[E—

|
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TABLE 7.4.3
Unit hydrograph derived in Example 7.4.1

n 1 2 3 4 5 6 7 8 9
Uy (cfsfin) 404 1079 2343 2506 1460 453 381 274 173

Ur= 3921 — 1.81 X 1460 — 1.93 X 453

7 106 = 381 cfs/in
1846 — 1.81 X 453 — 1.93 x 381 .
8= 1.06 = 274 cfs/in
1402 — 1.81 X 381 — 1.93 X 274
Uy= 106 o = 173 cfs/in

The derived unit hydrograph is given in Table 7.4.3. Solutions may be similarly
obtained by focusing on other rainfall pulses. The depth of direct runoff in the
unit hydrograph can be checked and found to equal 1.00 inch as required. In cases
where the derived unit hydrograph does not meet this requirement, the ordinates are
adjusted by proportion so that the depth of direct runoff is 1 inch (or 1 cm).

In general the unit hydrographs obtained by solutions of the set of equations
in Table 7.4.1 for different rainfall pulses are not identical. To obtain a unique
solution a method of successive approximation (Collins, 1939) can be used, which
involves four steps: (1) assume a unit hydrograph, and apply it to all excess-
rainfall blocks of the hyetograph except the largest; (2) subtract the resulting
hydrograph from the actual DRH, and reduce the residual to unit hydrograph
terms; (3) compute a weighted average of the assumed unit hydrograph and the
residual unit hydrograph, and use it as the revised approximation for the next
trial; (4) repeat the previous three steps until the residual unit hydrograph does
not differ by more than a permissible amount from the assumed hydrograph.

The resulting unit hydrograph may show erratic variations and even have
negative values. If this occurs, a smooth curve may be fitted to the ordinates to
produce an approximation of the unit hydrograph. Erratic variation in the unit
hydrograph may be due to nonlinearity in the effective rainfall-direct runoff
relationship in the watershed, and even if this relationship is truly linear, the
observed data may not adequately reflect this. Also, actual storms are not always
uniform in time and space, as required by theory, even when the excess rainfall
hyetograph is broken into pulses of short duration.

7.5 UNIT HYDROGRAPH APPLICATION

Once the unit hydrograph has been determined, it may be applied to find the
direct runoff and streamflow hydrographs. A rainfall hyetograph is selected, the
abstractions are estimated, and the excess rainfall hyetograph is calculated as
described in Sec. 5.4. The time interval used in defining the excess rainfall
hyetograph ordinates must be the same as that for which the unit hydrograph was
specified. The discrete convolution equation
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n=Mm

On = Z PuUp—m+1 (7.5.1)

m=1

may then be used to yield the direct runoff hydrograph. By adding an estimated
baseflow to the direct runoff hydrograph, the streamflow hydrograph is obtained.

Example 7.5.1. Calculate the streamflow hydrograph for a storm of 6 in excess
rainfall, with 2 in in the first half-hour, 3 in in the second half-hour and 1 in in
the third half-hour. Use the half-hour unit hydrograph computed in Example 7.4.1
and assume the baseflow is constant at 500 cfs throughout the flood. Check that the
total depth of direct runoff is equal to the total excess precipitation (watershed area
= 7.03 mi?).

Solution. The calculation of the direct runoff hydrograph by convolution is shown
in Table 7.5.1. The unit hydrograph ordinates from Table 7.4.3 are laid out along
the top of the table and the excess precipitation depths down the left side. The time
interval is in A = 0.5 h intervals. For the first time interval, n = 1 in Eq. (7.5.1),
and

Q,=P\U,
=2.00 X 404
=808 cfs
For the second time interval,
0,=P U, + PiU;
=3.00 X 404 + 2.00 X 1079

=1212 + 2158
TABLE 7.5.1
Calculation of the direct runoff hydrograph and streamflow hydrograph for Example
7.5.1
Unit hydrograph ordinates (cfs/in)
Excess Direct Streamflow*
Time  Precipitation 1 2 3 4 5 6 7 8 9  runoff (cfs)
G-h  Gn) 404 1079 2343 2506 1460 453 381 274 173 (cfs)
n=1 2.00 808 808 1308
2 3.00 1212 2158 3370 3870
3 1.00 404 3237 4686 8327 8827
4 1079 7029 5012 13,120 13,620
5 2343 7518 2920 12,781 13,281
6 2506 4380 906 7792 8292
7 1460 1359 762 3581 4081
8 453 1143 548 2144 2644
9 381 822 346 1549 2049
10 274 519 793 1293
11 173 173 673

Total 54,438

*Baseflow =500 cfs.

R S
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=3370 cfs

as shown in the table. For the third time interval,
Q3=P3U, + P,U, + P,Us;
=1.00 X 404 + 3.00 X 1079 + 2.00 X 2343
=404 + 3237 + 4686
=8327 cfs

The calculations for n = 4,5, .. ., follow in the same manner as shown in Table
7.5.1 and graphically in Fig. 7.5.1. The total direct runoff volume is

N
Vi= > Q.M

n=1
=54,438 X 0.5 cfs-h

f2-h 3600 s
X

S ih

=54,438 X 0.5

=9.80 x 107 f*

and the corresponding depth of direct runoff is found by dividing by the watershed
area A = 7.03 mi? = 7.03 X 52802 ft? = 1.96 X 108 ft%

_VYa
A

9.80 x 107 ,
" 1.96 x 108

=0.500 ft
=6.00 in

Fd

Total streamflow

Direct runoff from:
1 in rainfall excess

3 in rainfall excess

2 in rainfall excess

Flow rate (cfs, thousands)

Time (h)

FIGURE 7.5.1
Streamflow hydrograph from a storm with excess rainfall pulses of duration 0.5 h and amount 2 in,
3 in, and 1 in, respectively. Total streamflow = baseflow + direct runoff (Example 7.5.1).

e
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which is equal to the total depth of excess precipitation as required.

The streamflow hydrograph is found by adding the 500 cfs baseflow to the
direct runoff hydrograph, as shown on the right-hand side of Table 7.5.1 and
graphically in Fig. 7.5.1.

7.6 UNIT HYDROGRAPH BY MATRIX CALCULATION

Deconvolution may be used to derive the unit hydrograph from a complex mul-
tipeaked hydrograph, but the possibility of errors or nonlinearity in the data is
greater than for a single-peaked hydrograph. Least-squares fitting or an opti-
mization method can be used to minimize the error in the fitted direct runoff
hydrograph. The application of these techniques is facilitated by expressing Eq.
(7.4.1) in matrix form:

(P,O0 0 .00 0 0 0,
P, P, O .,00 ...0 0 o
P3 P2 Pl O 0 0 0 Q3
U,

. . . U2 .
PMPM_IPM_Z...PIO ...0 0 ¢ _US = QM (761)
0 PM PM—I...P2P1...0 0 X QM+1
: ' : Un-m+1 :
0 0 0 .0 0 ...PyPy— On—1
00 o0 .00 ... 0 Py | | Ow
or

[PIIU] = [Q] (7.6.2)

Given [P] and [Q], there is usually no solution for [U] that will satisfy all
N equations (7.6.1). Suppose that a solution [U] is given that yields an estimate
[Q] of the DRH as

[PI[U] = [Q] (7.6.30)

or

~

Qn = P,IUI + Pn—lUg + ...+ Pn—M+1UM n = 1,. . ,N (763b)

with all equations now satisfied. A solution is sought which minimizes the error
[Q] — [Q] between the observed and estimated DRH’s.

Solution by Linear Regression

The solution by linear regression produces the least-squares error between [Q]
and [Q] (Snyder, 1955). To solve Eq. (7.6.2) for [U], the rectangular matrix [P]

A
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is reduced to a square matrix [Z] by multiplying both sides by the transpose of
[P], denoted by [P]7, which is formed by interchanging the rows and columns of
[P]. Then both sides are multiplied by the inverse [Z] ™! of matrix [Z], to yield

(U1 = [1Z17'[P1'1Q] (7.6.4)

where [Z] = [P]7[P]. However, the solution is not easy to determine by this
method, because the many repeated and blank entries in [P] create difficulties in
the inversion of [Z] (Bree, 1978). Newton and Vinyard (1967) and Singh (1976)
give alternative methods of obtaining the least-squares solution, but these methods
do not ensure that all the unit hydrograph ordinates will be nonnegative.

Solution by Linear Programming

Linear programming is an alternative method of solving for [U] in Eq. (7.6.2)
that minimizes the absolute value of the error between [Q] and [Q] and also
ensures that all entries of [U] are nonnegative (Eagleson, Mejia, and March,
1966; Deininger, 1969; Singh, 1976; Mays and Coles, 1980).

The general linear programming model is stated in the form of a linear
objective function to be optimized (maximized or minimized) subject to linear
constraint equations. Linear programming provides a method of comparing all
possible solutions that satisfy the constraints and obtaining the one that optimizes
the objective function (Hillier and Lieberman, 1974; Bradley, Hax, and Magnanti,
1977).

Example 7.6.1. Develop a linear program to solve Eq. (7.6.2) for the unit hydro-
graph given the ERH P,,,m = 1,2,...,M, and the DRH Q,,n = 1,2,...,N.

Solution. The objective is to minimize 3 2’=1 le,] where €, = Q, — Q,. Linear
programming requires that all the variables be nonnegative; to accomplish this task,
€, is split into two components, a positive deviation 6, and a negative deviation B,,.
In the case where €, > 0, that is, when the observed direct runoff Q, is greater

than the calculated value Q,,, 0, = €, and B, = 0; where €, <0, B, = —¢, and
6, = 0 (see Fig. 7.6.1). If ¢, = O then 8, = B, = 0 also. Hence, the solution must
obey

Qn=én_;8n+ O - n=12,...,N (7.6.5)

and the objective is

N
minimize Z(@n + B

(7.6.6)
n=1
The constraints (7.6.5) can be written
[Q] + 16, = [B] = [Q)] (7.6.7)
or, expanding as in Eq. (7.6.3b);
PU+P,_Upy+. . .+ Py pyyriUy+6,— B, =0, n=1,...,N (7.6.8)

To ensure that the unit hydrograph represents one unit of direct runoff an additional
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Observed DRH
Q, \ Estimated DRH

Direct runoff

FIGURE 7.6.1

Deviation €, between observed and
estimated direct runoff hydrographs
is the sum of a positive deviation 8,
and a negative deviation S, for
Time solution by linear programming.

constraint equation is added:

(7.6.9)

M
> U.=k
m=1

where K is a constant which converts the units of the ERH into the units of the DRH.
Equations (7.6.6) to (7.6.9) constitute a linear program with decision variables (or
unknowns) Uy, 6, and 3, which may be solved using standard linear programming
computer programs to produce the unit hydrograph. Linear programming requires
all the decision variables to be non-negative, thereby ensuring the unit hydrograph
ordinates will be non-negative.

The linear programming method developed in Example 7.6.1 is not lim-
ited in application to a single storm. Several ERHs and their resulting DRHs
can be linked together as if they comprised one event and used to find a com-
posite unit hydrograph best representing the response of the watershed to this set
of storms. Multistorm analysis may also be carried out using the least-squares
method (Diskin and Boneh, 1975; Mawdsley and Tagg, 1981).

In determination of the unit hydrograph from complex hydrographs, the
abstractions are a significant source of error—although often assumed constant,
the loss rate is actually a time-varying function whose value is affected by the
moisture content of the watershed prior to the storm and by the storm pattern
itself. Different unit hydrographs result from different assumptions about the
pattern of losses. Newton and Vinyard (1967) account for errors in the loss
rate by iteratively adjusting the ordinates of the ERH as well as those of the unit
hydrograph so as to minimize the error in the DRH. Mays and Taur (1982) used
nonlinear programming to simultaneously determine the loss rate for each storm
period and the composite unit hydrograph ordinates for a multistorm event. Unver
and Mays (1984) extended this nonlinear programming method to determine the
optimal parameters for the loss-rate functions, and the composite unit hydrograph.

7.7 SYNTHETIC UNIT HYDROGRAPH

The unit hydrograph developed from rainfall and streamflow data on a watershed
applies only for that watershed and for the point on the stream where the
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streamflow data were measured. Synthetic unit hydrograph procedures are used to
develop unit hydrographs for other locations on the stream in the same watershed
or for nearby watersheds of a similar character. There are three types of synthetic
unit hydrographs: (1) those relating hydrograph characteristics (peak flow rate,
base time, etc.) to watershed characteristics (Snyder, 1938; Gray, 1961), (2) those
based on a dimensionless unit hydrograph (Soil Conservation Service, 1972), and
(3) those based on models of watershed storage (Clark, 1943). Types (1) and (2)
are described here and type (3) in Chap. 8.

Snyder’s Synthetic Unit Hydrograph

In a study of watersheds located mainly in the Appalachian highlands of the United
States, and varying in size from about 10 to 10,000 mi2 (30 to 30,000 km?),
Snyder (1938) found synthetic relations for some characteristics of a standard
unit hydrograph [Fig. 7.7.1a]. Additional such relations were found later (U.S.
Army Corps of Engineers, 1959). These relations, in modified form are given
below. From the relations, five characteristics of a required unit hydrograph [Fig.
7.7.1b] for a given excess rainfall duration may be calculated: the peak discharge
per unit of watershed area, gpr, the basin lag f,z (time difference between the
centroid of the excess rainfall hyetograph and the unit hydrograph peak), the
base time 7, and the widths W (in time units) of the unit hydrograph at 50 and
75 percent of the peak discharge. Using these characteristics the required unit
hydrograph may be drawn. The variables are illustrated in Fig. 7.7.1.

Snyder defined a standard unit hydrograph as one whose rainfall duration ¢,

is related to the basin lag ¢, by
t, = 5.5¢ (7.7.1)

For a standard unit hydrograph he found that:

— | [ —» |e— Ip
< +
o 3
S 5
= .é.
= =] '
5 +— [p —»] = pR —»
153
3 a5 2 9pr—
&n o
5 &
= = <—W7- —\
] = 5
A A — Wop—»
| t e
Time Time

(a) (h)

FIGURE 7.7.1
Snyder’s synthetic unit hydrograph. (a) Standard unit hydrograph (r, = 5.5¢,). (b) Required unit
hydrograph (7, # 5.5tg).

.
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1. The basin lag is

t, = C1C(LL,)*? (7.7.2)

where £, is in hours, L is the length of the main stream in kilometers (or miles)
from the outlet to the upstream divide, L. is the distance in kilometers (miles)
from the outlet to a point on the stream nearest the centroid of the watershed
area, C; = 0.75 (1.0 for the English system), and C, is a coefficient derived
from gaged watersheds in the same region.

2. The peak discharge per unit drainage area in m>/s-km? (cfs/mi?) of the standard

unit hydrograph is
C,C
= =22 (1.7.3)

dp
Ip

where C = 2.75 (640 for the English system) and C,, is a coefficient derived
from gaged watersheds in the same region.

To compute C; and C, for a gaged watershed, the values of L and
L. are measured from the basin map. From a derived unit hydrograph of
the watershed are obtained values of its effective duration 7z in hours, its
basin lag g in hours, and its peak discharge per unit drainage area, gpg, in
m?/s-km?-cm (cfs/mi?in for the English system). If #,z = 5.5¢g, then 1z =
trator = tp, and gpr = g, and C, and C, are computed by Eqs. (7.7.2) and
(7.7.3). If 1,5 is quite different from 5.5¢, the standard basin lag is

fh — 1

t, =t + ‘L‘4—R

and Egs. (7.7.1) and (7.7.4) are solved simultaneously for ¢, and tp. The

values of C; and C), are then computed from (7.7.2) and (7.7.3) with g,z = g,
and Ir = Ip.

When an ungaged watershed appears to be similar to a gaged watershed,
the coefficients C, and C, for the gaged watershed can be used in the above
equations to derive the required synthetic unit hydrograph for the ungaged
watershed.

(7.7.4)

3. The relationship between g, and the peak discharge per unit drainage area gz

of the required unit hydrograph is

1,
apr = 2 (1.7.5)
IR

4. The base time #, in hours of the unit hydrograph can be determined using the

fact that the area under the unit hydrograph is equivalent to a direct runoff of
1 cm (1 inch in the English system). Assuming a triangular shape for the unit
hydrograph, the base time may be estimated by

e
9dpR
where C3 = 5.56 (1290 for the English system).

(7.7.6)
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5. The width in hours of a unit hydrograph at a discharge equal to a certain
percent of the peak discharge gpr is given by

W= Cugpr ™ (7.7.7)

where C,, = 1.22 (440 for English system) for the 75-percent width and 2.14
(770, English system) for the 50-percent width. Usually one-third of this width
is distributed before the unit hydrograph peak time and two-thirds after the
peak.

Example 7.7.1. From the basin map of a given watershed, the following quantities
are measured: L = 150 km, L, = 75 km, and drainage area = 3500 km?. From the
unit hydrograph derived for the watershed, the following are determined: 7z = 12
h, f,g = 34 h, and peak discharge = 157.5 m?>/s-cm. Determine the coefficients C,
and C,, for the synthetic unit hydrograph of the watershed.

Solution. From the given data, 5.5z = 66 h, which is quite different from 7,z (34

h). Equation (7.7.4) yields
fy — Ig

4
t, — 12
4

Tp:pr +

=34 + (7.7.8)

Solving (7.7.1) and (7.7.8) simultaneously gives ¢, = 5.9 h and 1, = 32.5 h.
To calculate C,, use (7.7.2):

t,=C C(LL)"?
32.5=0.75C,(150 x 75)*3
C,=2.65

The peak discharge per unit area is g,z = 157.5/3500 = 0.045 m?/s’km?-cm. The
coefficient C,, is calculated by Eq. (7.7.3) with g, = gpr, and #, = L

c,C
4pR = ; £
PR
_2.75C,
0.045= 340
C,=0.56

Example 7.7.2. Compute the six-hour synthetic unit hydrograph of a watershed
having a drainage area of 2500 km? with L = 100 km and L. = 50 km. This
watershed is a sub—drainage area of the watershed in Example 7.7.1.

Solution. The values C, = 2.64 and C, = 0.56 determined in Example 7.7.1
can also be used for this watershed. Thus, Eq. (7.7.2) gives t, = 0.75 X 2.64 X
(100 X 50)°3 = 25.5 h, and (7.7.1) gives t, = 25.5/5.5 = 4.64 h. For a six-hour
unit hydrograph, tzr = 6 h, and Eq. (7.7.4) gives t,g = t, — (t, — tp)l4 = 25.5 —
(4.64—6)/4 = 25.8 h. Equation (7.7.3) gives g, = 2.75 X 0.56/25.5 = 0.0604
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m?/s-km?*cm and (7.7.5) gives g,z =0.0604 X 25.5/25.8 =0.0597 m¥s-km? cm; the
peak discharge is 0.0597 X 2500 = 149.2 m¥s-cm. The widths of the unit hydrograph
are given by Eq. (7.7.7). At 75 percent of peak discharge, W= 1.22¢ %= 1.22 x
0.0597-'% = 25.6 h. A similar computation gives a W = 44.9 h at 50 percent of
peak. The base time, given by Eq. (7.7.6), is ¢, = 5.56/¢,z = 5.56/0.0597 = 93h.
The hydrograph is drawn, as in Fig. 7.7.2, and checked to ensure that it represents
a depth of direct runoff of 1 cm.

A further innovation in the use of Snyder’s method has been the regionaliza-
tion of unit hydrograph parameters. Espey, Altman and Graves (1977) developed
a set of generalized equations for the construction of 10-minute unit hydrographs
using a study of 41 watersheds ranging in size from 0.014 to 15 mi?, and in
impervious percentage from 2 to 100 percent. Of the 41 watersheds, 16 are located
in Texas, 9 in North Carolina, 6 in Kentucky, 4 in Indiana, 2 each in Colorado
and Mississippi, and 1 each in Tennessee and Pennsylvania. The equations are:

Tp =3.1L0'238_0'251—0'18q>1'57 (779)
Qp=31.62 X 10°A%%T 107 (7.7.10)
T =125.89 X 10°AQ, *% (7.7.11)
Wso=16.22 x 10°A%9 0 7092 (7.7.12)
F | t*tpr=258 hn
& U7 Time ()

=+l 1 I+ 6h

140 +
120 ~
¥

100 +

3

Flow rate (m /s+cm)

80

60 —

40

20
t,=93h »
0 T T T N 1
0 40 60 80 100
Time (h)
FIGURE 7.7.2

Synthetic unit hydrograph calculated by Snyder’s method in Example 7.7.2
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FIGURE 7.7.3

Watershed conveyance factor ®
as a function of channel
roughness and watershed
imperviousness. (Adapted with
permission from Espey,
Altman, and Graves, 1977.)
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S

Wos = 3.24 x 10340790078 (7.7.13)
P
where

L = the total distance (in feet) along the main channel from the point being
considered to the upstream watershed boundary

§ = the main channel slope (in feet per foot), defined by H/0.8L, where H is
the difference in elevation between A and B. A is the point on the channel
bottom at a distance of 0.2L downstream from the upstream watershed
boundary; B is a point on the channel bottom at the downstream point
being considered

I = the impervious area within the watershed (in percent), assumed equal to
5 percent for an undeveloped watershed

® = the dimensionless watershed conveyance factor, which is a function of
percent impervious and roughness (Fig. 7.7.3)

A = the watershed drainage area (in square miles)

T, = the time of rise to the peak of the unit hydrograph from the beginning
of runoff (in minutes)

0, = the peak flow of the unit hydrograph (in cfs/in)

T = the time base of the unit hydrograph (in minutes)
Wso = the width of the hydrograph at 50 percent of Q, (in minutes)
W35 = the width of at 75 percent of Q, (in minutes)

SCS Dimensionless Hydrograph

The SCS dimensionless hydrograph is a synthetic unit hydrograph in which the
discharge is expressed by the ratio of discharge g to peak discharge g, and the

a/q,
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time by the ratio of time 7 to the time of rise of the unit hydrograph, T,. Given the
peak discharge and lag time for the duration of excess rainfall, the unit hydrograph
can be estimated from the synthetic dimensionless hydrograph for the given basin.
Figure 7.7.4(a) shows such a dimensionless hydrograph, prepared from the unit
hydrographs of a variety of watersheds. The values of g, and T, may be estimated
using a simplified model of a triangular unit hydrograph as shown in Figure
7.7.4(b), where the time is in hours and the discharge in m%/s-cm (or cfs/in) (Soil
Conservation Service, 1972).

From a review of a large number of unit hydrographs, the Soil Conservation
Service suggests the time of recession may be approximated as 1.67 T,. As the
area under the unit hydrograph should be equal to a direct runoff of 1 ¢cm (or 1
in), it can be shown that

CA
ap T, (7.7.14)
where C = 2.08 (483.4 in the English system) and A is the drainage area in
square kilometers (square miles).

Further, a study of unit hydrographs of many large and small rural water-
sheds indicates that the basin lag t, = 0.6, where T is the time of concentration
of the watershed. As shown in Fig. 7.7.4(b), time of rise T, can be expressed in
terms of lag time #, and the duration of effective rainfall ¢,

.

¥
=514 (7.7.15)

1.0

0.8 // \\ / Excess rainfall

0.6

/ \ Direct runoff

0.4

0.2 /

0 —
t

(a) (b)

FIGURE 7.7.4
Soil Conservation Service synthetic unit hydrographs () Dimensionless hydrograph and (b) trian-
gular unit hydrograph. (Source: Soil Conservation Service, 1972.)

S S
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Example 7.7.3. Construct a 10-minute SCS unit hydrograph for a basin of area
3.0 km? and time of concentration 1,25 h.

Solution. The duration £, = 10 min =0.166 h, lag time t,=0.6T,= 0.6 X 1.25 =
0.75 h, and rise time T, = /2 + t, = 0.166/2 + 0.75 = 0.833 h. From Eq.
(1.7.14), g, = 2.08 X 3.0/0.833 = 7.49 m?s-cm. The dimensionless hydrograph in
Fig. 7.7.4 may be converted to the required dimensions by multiplying the values
on the horizontal axis by T, and those on the vertical axis by g,. Alternatively, the
triangular unit hydrograph can be drawn with ¢, = 2.67T, = 2.22 h. The depth of
direct runoff is checked to equal 1 cm.

7.8 UNIT HYDROGRAPHS FOR DIFFERENT
RAINFALL DURATIONS

When a unit hydrograph of a given excess-rainfall duration is available, the unit
hydrographs of other durations can be derived. If other durations are integral
multiples of the given duration, the new unit hydrograph can be easily computed
by application of the principles of superposition and proportionality. However,
a general method of derivation applicable to unit hydrographs of any required
duration may be used on the basis of the principle of superposition. This is the
S-hydrograph method.

The theoretical S-hydrograph is that resulting from a continuous excess
rainfall at a constant rate of 1 cm/h (or 1 in/h) for an indefinite period. This is the
unit step response function of a watershed system. The curve assumes a deformed
S shape and its ordinates ultimately approach the rate of excess rainfall at a time
of equilibrium. This step response function g(f) can be derived from the unit pulse
response function A(f) of the unit hydrograph, as follows.

From Eq. (7.2.4), the response at time ¢ to a unit pulse of duration Af
beginning at time 0 is

1
ho) = 1-lg®) — gl = M) (7.8.1)

Similarly, the response at time ¢ to a unit pulse beginning at time Af is equal
to h(t — Ar), that is, h(r) lagged by Af time units:

(it — Af) = Ait[g(t — Ar) — gt — 2A9)] (7.8.2)

and the response at time ¢ to a third unit pulse beginning at time 2Af is
h(t — 201 = Ait[g(t — 2A8) — g(t — 3 An)] (7.8.3)
Continuing this process indefinitely, summing the resulting equations, and

rearranging, yields the unit step response function, or S-hydrograph, as shown in
Fig. 7.8.1(a):

g@t) = At[h(t) + h(t — At) + h(t —2A0) + . ..] (7.8.4)

UNIT HYDROGRAPH 231

Continuous rainfall as a sequence of pulses

" e At >
T T T T T T T T
Ng() = MA@+ ht—A+h =280+ ...
S-hydrograph
t
(a)
1 - Ap' —]
0 A Single pulse of duration Ar'
g(f)\
g'N=gt —At")
Offset S—hydrograph
t
)
UAr o5t _j
0
Unit hydrograph of duration Az’
o) = L _
o = At.[g(f) gt—A]
t
(c)
FIGURE 7.8.1

Using the S-hydrograph to find a unit hydrograph of duration A’ from a unit hydrograph of duration
Ar.

where the summation is multiplied by Af so that g(#) will correspond to an input
rate of 1, rather than 1/Atf as used for each of the unit pulses.

Theoretically, the S-hydrograph so derived should be a smooth curve,
because the input excess rainfall is assumed to be at a constant, continuous rate.
However, the summation process will result in an undulatory form if there are
errors in the rainfall abstractions or baseflow separation, or if the actual duration
of excess rainfall is not the derived duration for the unit hydrograph. A dura-
tion which produces minimum undulation can be found by trial. Undulation of
the curve may be also caused by nonuniform temporal and areal distribution of
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rainfall; furthermore, when the natural data are not linear, the resulting unstable
system oscillations may produce negative ordinates. In such cases, an optimization
technique may be used to obtain a smoother unit hydrograph.

After the S-hydrograph is constructed, the unit hydrograph of a given
duration can be derived as follows: Advance, or offset, the position of the S-
hydrograph by a period equal to the desired duration At’ and call this S-hydrograph
an offset S-hydrograph, g'(¢) [Fig. 7.8.1(b)], defined by

g'(t) = gt — Ar') (7.8.5)

The difference between the ordinates of the original S-hydrograph and the offset
S-hydrograph, divided by Az, gives the desired unit hydrograph [Fig. 7.8.1(c)]:

1

() = =g — gt — Ar')] (7.8.6)
At

Example 7.8.1. Use the 0.5-hour unit hydrograph in Table 7.4.3 (from Example

7.4.1) to produce the S-hydrograph and the 1.5-h unit hydrograph for this watershed.

Solution. The 0.5-h unit hydrograph is shown in column 2 of Table 7.8.1. The S-
hydrograph is found using (7.8.4) with Ar = 0.5 h. For t = 0.5 h, g(t) = Ath(t) =
0.5%404 =202 cfs; for r=1h, g() = At[h(r) + h(t—0.5)] = 0.5 X (1079 + 404) =742
cfs; for r = 1.5 h, g(®) = At[h(t) + h(t—0.5) + h(t —1.0)] = 0.5 X (2343 + 1079 +
404) = 1913 cfs; and so on, as shown in column 3 of Table 7.8.1. The S-hydrograph
is offset by A’ = 1.5 h (column 4) to give g(t — Ar’), and the difference divided
by At to give the 1.5-h unit hydrograph A'(f) (column 5). For example, for # = 2.0
h, h(H) = (3166 — 202)/1.5 = 1976 cfs/in.

TABLE 7.8.1
Calculation of a 1.5-h unit hydrograph by the S-hydrograph

method (Example 7.8.1)

1 2 3 4 5

Time 0.5-h unit S-hydrograph Lagged 1.5-h unit
hydrograph S-hydrograph hydrograph

t h() g0 gt — At h'(©)

(h) (cfs/in) (cfs) (cfs) (cfs/in)

0.5 404 202 0 135

1.0 1079 742 0 495

1.5 2343 1913 0 1275

2.0 2506 3166 202 1976

2.5 1460 3896 742 2103

3.0 453 4123 1913 1473

3.5 381 4313 3166 765

4.0 274 4450 3896 369

4.5 173 4537 4123 276

5.0 0 4537 4313 149

5.5 0 4537 4450 58

6.0 0 4537 4537 . 0

e
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Instantaneous Unit Hydrograph

If the excess rainfall is of unit amount and its duration is infinitesimally small,
the resulting hydrograph is an impulse response function (Sec. 7.2) called the
instantaneous unit hydrograph (IUH). For an TUH, the excess rainfall is applied
to the drainage area in zero time. Of course, this is only a theoretical concept
and cannot be realized in actual watersheds, but it is useful because the TUH
characterizes the watershed’s response to rainfall without reference to the rain-
fall duration. Therefore, the IUH can be related to watershed geomorphology
(Rodriguez-Iturbe and Valdes, 1979; Gupta, Waymire, and Wang, 1980).
The convolution integral (7.2.1) is

t
oM = Lu(t —nl(ndr (7.8.7)

If the quantities /() and Q(f) have the same dimensions, the ordinate of the
TUH must have dimensions [77!]. The properties of the IUH are as follows, with
l=t—T

0 = u(l)= some positive peak value for/ >0
u(l)y=0 forl =0
u()—0 as [ — (7.8.8)

f u(lydl=1 and J:u(l)ldl =1L

The quantity 77 is the lag time of the IUH. It can be shown that 7 gives the
time interval between the centroid of an excess rainfall hyetograph and that of
the corresponding direct runoff hydrograph. Note the difference between f; and
the variable #, used for synthetic unit hydrograph lag time—, measures the time
from the centroid of the excess rainfall to the peak, not the centroid, of the direct
runoff hydrograph. The ideal shape of an TUH as described above resembles that
of a single-peaked direct-runoff hydrograph, however, an TUH can have negative
and undulating ordinates.

There are several methods to determine an IUH from a given ERH and
DRH. For an approximation, the ITUH ordinate at time ¢ is simply set equal to the
slope at time ¢ of an S-hydrograph constructed for an excess rainfall intensity of
unit depth per unit time. This procedure is based on the fact that the S-hydrograph
is an integral curve of the IUH; that is, its ordinate at time ¢ is equal to the integral
of the area under the IUH from O to 7. The IUH so obtained is in general only
an approximation because the slope of an S-hydrograph is difficult to measure
accurately.

The IUH can be determined by various methods of mathematical inversion,
using, for example, orthogonal functions such as Fourier series (O’Donnell, 1960)
or Laguerre functions (Dooge, 1973); integral transforms such as the Laplace
transform (Chow, 1964), the Fourier transform (Blank, Delleur, and Giorgini,
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1971), and the Z transform (Bree, 1978); and mathematical modeling related to
watershed geomorphology (Sec. 8.5).
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PROBLEMS

7.2.1 A system has a discrete pulse response function with ordinates 0.1, 0.5, 0.3, and
0.1 units. Calculate the output from this system if it has a pulse input of (a) 3
units, (b) 4 units, (¢) 3 units in the first time interval followed by 4 units in the
second.

7.2.2 A system has the following unit pulse response function: 0.27, 0.36, 0.18, 0.09,
0.05, 0.03, 0.01, 0.01. Calculate the output from this system if it has input (a)
2 units, (b) 3 units, (¢) 2 units in the first time interval followed by 3 units in
the second time interval.

7.2.3  Calculate and plot the impulse response function u(f), the step response function
g(®), the continuous pulse response function h(f), and the discrete pulse response
function U, for a linear reservoir having k = 1 h and At = 2 h.

7.2.4 A watershed is modeled as a linear reservoir with k = 1 h. Calculate its impulse
response function and its pulse response functions for unit pulses of durations
0.5, 1.0, 1.5 and 2.0 h. Plot the response functions for 0 <t <6 h.

7.2.5 A watershed modeled as a linear reservoir with k = 3 h receives 3 in of excess
rainfall in the first two hours of a storm and 2 in of excess rainfall in the second
two hours. Calculate the direct runoff hydrograph from this watershed.

7.2.6  Show that the lag time 7; between the centroids of the excess rainfall hyetograph
and the direct runoff hydrograph is equal to the storage constant k for a watershed
modeled as a linear reservoir.

7.3.1 A watershed has a drainage area of 450 km?, and its three-hour unit hydrograph
has a peak discharge of 150 m%/s-cm. For English units, what is the peak discharge
in cfs/in of the three-hour unit hydrograph?

7.4.1 The excess rainfall and direct runoff recorded for a storm are as follows:

Time (h) 1 2 3 4 5 6 7 8 9
Excess rainfall (in) 1.0 2.0 1.0
Direct runoff (cfs) 10 120 400 560 500 450 250 100 50

Calculate the one-hour unit hydrograph.

7.4.2
7.4.3

7.4.4

7.4.5

o 151
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What is the area of the watershed in Prob. 7.4.1?
Derive by deconvolution the six-hour unit hydrograph from the following data

for a watershed having a drainage area of 216 km?, assuming a constant rainfall
abstraction rate and a constant baseflow of 20 m?¥/s.

Six-hour period 1 2 3 4 5 6 7 8 9 10 11
Rainfall (cm) 1.5 35 25 1.5
Streamflow (m%s) 26 71 174 226 173 99 49 33 26 22 21

Given below is the flood hydrograph from a storm on a drainage area of 2.5 mi2

Hour 1 2 3 4 5 6 7
Discharge (cfs) 52 48 44 203 816 1122 1138

Hour 8 9 10 11 12 13
Discharge (cfs) 685 327 158 65 47 34

Excess rainfall of nearly uniform intensity occurred continuously during the
fourth, fifth, and sixth hours. Baseflow separation is accomplished by plotting the
logarithm of the discharge against time. During the rising flood, the logarithm of
baseflow follows a straight line with slope determined from the flow in hours 1-
3. From the point of inflection of the falling limb of the flood hydrograph (hour
8), the logarithm of baseflow follows a straight line with slope determined from
the flow in hours 11-13. Between the peak of the flood hydrograph and the point
of inflection, the logarithm of baseflow is assumed to vary linearly. Derive the
one-hour unit hydrograph by deconvolution.

An intense storm with approximately constant intensity lasting six hours over a
watershed of area 785 km? produced the following discharges Q in m¥s:

Hour O 2 4 6 8 10 12 14 16 18 20
o 18 21 28 44 70 118 228 342 413 393 334
[ 18 20 25 32 40 47 54 61 68 75 79

Hour 22 24 26 28 30 32 34 36 38 40
0 270 216 171 138 113 97 84 75 66 59
Qp 71 73 69 66 63 60 57 55 52 49

Hour 42 44 46 48 50 52 54 56 58 60
0 54 49 46 42 40 38 36 34 33 33
[ 47 44 42 40 38 37 35 34 33 33

The baseflow @, has been estimated from the appearance of the observed
hydrograph. Use deconvolution to determine the two-hour unit hydrograph.

Use the unit hydrograph developed in Prob. 7.4.3 to calculate the streamflow
hydrograph from a 12-hour-duration storm having 2 cm of rainfall excess in the
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7.5.4

7.5.5

7.5.6

7.5.7

7.5.8

7.5.9

first six hours and 3 cm in the second six hours. Assume a constant baseflow rate
of 30 m%/s.

Use the one-hour unit hydrograph developed in Prob. 7.4.4 to calculate the
streamflow hydrograph for a three-hour storm with a uniform rainfall intensity of
in/h. Assume abstractions are constant at 0.5 in/h and baseflow is the same as
determined in Prob. 7.4.4.

Use the two-hour unit hydrograph determined in Prob. 7.4.5 to calculate the
streamflow hydrograph from a four-hour storm in which 5 cm of excess rainfall
fell in the first two hours and 6 cm in the second two hours. Assume the same
baseflow rate as given in Prob. 7.4.5.

The six-hour unit hydrograph of a watershed having a drainage area equal to 393

km? is as follows:

Time (h) 0 6 12 18 24 . 30 36 42

Unithydrograph(m3/5'cm) 0 1.8 309 856 418 146 55 1.8

For a storm over the watershed having excess rainfall of 5 cm for the first six
hours and 15 cm for the second six hours, compute the streamflow hydrograph,
assuming constant baseflow of 100 m%/s.

The one-hour unit hydrograph for a watershed is given below. Determine the
runoff from this watershed for the storm pattern given. The abstractions have a
constant rate of 0.3 in/h. What is the area of this watershed?

Time (h) 1 2 3 4 5 6
Precipitation (in) 0.5 1.0 1.5 0.5
Unit hydrograph (cfs/in) 10 100 200 150 100 50

Use the same unit hydrograph as in Prob. 7.5.5 and determine the direct runoff
hydrograph for a two-hour storm with 1 in of excess rainfall the first hour and 2
in the second hour. What is the area of this watershed?

An agricultural watershed was urbanized over a period of 20 years. A triangular
unit hydrograph was developed for this watershed for an excess rainfall duration
of one hour. Before urbanization, the average rate of infiltration and other losses
was 0.30 in/h, and the unit hydrograph had a peak discharge of 400 cfs/in at
3 h and a base time of 9 h. After urbanization, because of the increase in
impervious surfaces, the loss rate dropped to 0.15 in/h, the peak discharge of the
unit hydrograph was increased to 600 cfs/in, occurring at 1 h, and the base time
was reduced to 6 h. For a two-hour storm in which 1.0 in of rain fell the first
hour and 0.50 in the second hour, determine the direct runoff hydrographs before
and after urbanization.

The ordinates at one-hour intervals of a one-hour unit hydrograph are (in cfs/in):
269, 538, 807, 645, 484, 323, and 161. Calculate the direct runoff hydrograph
from a two-hour storm in which 4 in of excess rainfall occurs at a constant rate.
What is the watershed area (mi?)?

The 10-minute triangular unit hydrograph from a watershed has a peak discharge
of 100 cfs/in at 40 min and a total duration of 100 min. Calculate the
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§treamﬂow hyergraph from this watershed for a storm in which 2 in of rain falls
in th.e first 10 m}nutes and 1 in in the second 10 minutes, assuming that the loss
rate is ¢ = 0.6 in/h and the baseflow rate is 20 cfs.

The July 19-20, 1979, storm on the Shoal Creek watershed at Northwest Park
in Austin, Texas, resulted in the following rainfall-runoff values. .

Time(h) 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Rainfall (in) 1.17 0.32 0.305 0.67 0.545 0.10 0.06
Direct runoff (cfs) 11.0 372.0 440.0 506.0 2110.0 1077.0 429.3
Time (h) 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Direct runoff (cfs) 226.6 119.0 64.7 39.7 28.0 21.7 16.7
Time (h) 1.5 8.0 8.5 9.0

Direct runoff (cfs) 13.3 9.2 9.0 7.3

Detemine the half—h.our unit hydrograph using linear programming. Assume that
a uniform los§ rate is valid. The watershed area is 7.03 mi2. Compare the unit
hydrograph with that determined in Example 7.4.1 for this watershed.

A st(?rm on April 16, 1977, on the Shoal Creek watershed at Northwest Park in
Austin, Texas, resulted in the following rainfall-runoff values:

Time (h) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 40 4.5
Rainfall (in) 0.28 0.12 0.13 0.14 0.18 0.14 0.07
Direct runoff (cfs) 32 67 121 189 279 290 237 160 108

Time (h) 5.0 5.5 6.0 6.5 7.0 7.5 8.0 85 9.0
Direct runoff (cfs) 72 54 44 33 28 22 20 18 16

Detemine the half-hour unit hydrograph by linear programming. Assume that
a uniform loss rate is valid. The watershed area is 7.03 mi% Compare the unit
hydrograph with that developed in Example 7.4.1 for this watershed.

Combine the data from Probs. 7.6.1 and 7.6.2 and calculate a composite unit
hy-drograph from this watershed by linear programming. Compare the composite
unit hydrograph with those determined from the individual storms. ’
Solve Prob. 7.6.1 by linear regression.

Solve Prob. 7.6.2 by linear regression.

Solve Prob. 7.6.3 by linear regression.

The C'ity of Austin, Texas, uses generalized equations (7.7.9)—(7.7.13) to
determine the parameters for 10-minute-duration unit hydrographs foi‘ small
watersheds. Determine the 10-minute unit hydrographs for levels of impervious-
nes§ 10, 40, and 70 percent, on a watershed that has an area of 0.42 mi2 with a
main channel length of 5760 ft. The main channel slope is 0.015 ft/ft as defined
in Sec. 7.7. Assume @ = 0.8. Plot the three unit hydrographs on the same graph.
Us.mg the 10-minute unit hydrograph equations (7.7.9)-(7.7.13), develop the
unit hydrograph for a small watershed of 0.3 mi? that has a ;nain channel
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slope of 0.009 ft/ft. The main channel area is 2000 feet long and the percent
imperviousness is 25. Next, develop the 10-minute unit hydrograph for the same
watershed assuming the main channel length is 6000 feet long. Plot and compare
the two unit hydrographs. Assume n = 0.05 for the main channel.

Determine direct runoff hydrographs using the two 10-minute unit hydrographs
derived in the previous problem for the watersheds with main channel lengths
of 2000 ft and 6000 ft. Consider a storm having 1.2 inches rainfall uniformly
distributed over the first 30 minutes and 1.5 inches in the second 30 minutes.
The infiltration losses are to be determined using the SCS method described in
Chap. 5 for curve number CN = 85.

The 10-minute unit hydrograph for a 0.86-mi? watershed has 10-minute ordinates
in cfs/in of 134, 392, 475, 397, 329, 273, 227, 188, 156, 129, 107, 89, 74, 61,
51, 42, 35, 29, 24, 10, 17, 14, 11, . . .. Determine the peaking coefficient C,
for Snyder’s method. The main channel length is 10,500 ft, and L. = 6000 ft.
Determine the coefficient C,.

Several equations for comiputing basin lag have been reported in the literature.
One such equation that also considers the basin slope was presented by Linsley,

Kohler, and Paulhus (1982):
LL n
t,=C <
’ '( \/5)

For a basin slope of § = 0.008 and n = 0.4, determine the coefficient C, for the
unit hydrograph in the previous problem.

The following information for watershed A and its two-hour unit hydrograph has
been determined: area = 100 mi%, L, = 10 mi, L = 24 mi, tg=2h, 1,7 =6 h,
Qp = 9750 cfs/in, Wso = 4.1 h, and Wis = 2 h. Watershed B, which is assumed
to be hydrologically similar to watershed A, has the following characteristics:
area = 70 mi2, L = 15.6 mi, and L. = 9.4 mi. Determine the one-hour synthetic
unit hydrograph for watershed B.

(a) Determine the coefficients C, and C, for a watershed of area 100 mi? with
L =20 mi and L, = 12 mi, for tzg = 2 h and 7,5 = 5 h. The peak of the unit
hydrograph is 9750 cfs/in. Assume Snyder’s synthetic unit hydrograph applies.
(b) Determine the two-hour unit hydrograph for the upper 70-mi? area of the
same watershed, which has L = 12.6 mi and L, = 7.4 mi. The values of Ws
and Wsg for the entire 100-mi2-area watershed are 2.0 h and 4.2 h, respectively.
The Gimlet Creek watershed at Sparland, Illinois, has a drainage area of 5.42
mi?; the length of the main stream is 4.45 mi and the main channel length from
the watershed outlet to the point opposite the center of gravity of the watershed
is 2.0 mi. Using C, = 2.0 and C, = 0.625, determine the standard synthetic unit
hydrograph for this basin. What is the standard duration? Use Snyder’s method
to determine the 30-minute unit hydrograph for this watershed.

The Odebolt Creek watershed near Arthur, Ohio, has a watershed area of 39.3
mi?; the length of the main channel is 18.10 mi, and the main channel length
from the watershed outlet to the point opposite the centroid of the watershed is
6.0 mi. Using C, = 2.0 and C, = 0.625, determine the standard synthetic unit
hydrograph and the two-hour unit hydrograph for this watershed.

An 8-mi? watershed has a time of concentration of 1.0 h. Calculate a 10-minute
unit hydrograph for this watershed by the SCS triangular unit hydrograph method.
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Determine the direct runoff hydrograph for a 20-minute storm having 0.6 in of
excess rainfall in the first 10 minutes and 0.4 in in the second 10 minutes.

A triangular synthetic unit hydrograph developed by the Soil Conservation Service
method has g, = 2900 cfs/in, T, = 50 min, and #, = 10 min. Compute the direct
runoff hydrograph for a 20-minute storm, having 0.66 in rainfall in the first 10
minutes and 1.70 in in the second 10 minutes. The rainfall loss rate is ¢ = 0.6
in/h throughout the storm.

For the data given in Prob. 7.4.4, use the assumption of constant rainfall intensity
in hours 4-6 to construct the S-hydrograph. Use the S-hydrograph to calculate
the one-, three-, and six-hour unit hydrographs.

For the data given in Prob. 7.4.5, use the assumption of constant rainfall inten-
sity for six hours to construct the S-hydrograph for this watershed. From the S-
hydrograph, determine the 2-, 6-, and 12-hour unit hydrographs for this water-
shed.

The ordinates of a one-hour unit hydrograph specified at one-hour intervals are
(in cfs/in): 45, 60, 22, 8, and 1. Calculate the watershed area, the S-hydrograph
and the two-hour unit hydrograph for this watershed.
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