From Bras, Hydrology, An Introduction to Hydrologic Science, 1990

4.7.3 Mean Areal Precipitation

There are two common spatial averages used in hydrology, the mean areal
precipitation of a storm event and the time-averaged mean areal precipita-
tion over a given period of time. Mathematically, they are defined as

Areal mean of an event:
1

Py =— [ f(x) dx (4.30}
Al, 4

Long-term areal average:

2='2—«KZI flx, ¢;) dx, _ f (4.31)

T—o>w

where f(x) is the function describing a storm total accumulation at all points
x;; and f(x, ¢;) is a function describing total precipitation at x and period ¢,.

Since rainfall observations are generally point values, imperfect for that
matter, we do not know the function f{x). Generally, the spatial integration is
then approximated by some sort of discrete weighted average. The weights
would be one over the number of stations if observations were uniformly dis-
tributed and the rainfall process is completely homogeneous in space. This is
certainly not the case.

Knowing a spatially varying mean behavior and/or the spatial correla-
. tion of the rainfall process, optimal weights could be determined (Lenton and
Rodriguez-Iturbe [1977]; Bras and Rodriguez-Iturbe [1976]; Delhomme and
Delfiner [1973]). The weights would be optimal in the sense that the mean
square error of approximating Eqgs. (4.30) and (4.31) is minimized. The mean-
square error is defined as E[(P — 13)2] where P is the desired statistic, P is its
estimate, and E is the expectation (computation of the mean) operator.

Commonly, two different methods to obtain areal averages of storm
events are used. The first method is the Thiessen weighting scheme. Fig-
ure 4.30 illustrates the method. An area with eight rainfall stations is shown.
Rainfall values at each location are also given. The weighting mechamsm is
of the form

N .
P=S,pP, | (4.32)
=1 .

where p; is the weight applied to observation P;. In the Thiessen method, the
weight is a measure.of rain-gage contributing area. In the procedure, all rain
gages are connected, shown in thin lines in the figure. Connecting lines are
bisected and extended until they intersect other bisectors. The result is a



4.7 PRECIPITATION DATA ANALYSIS 155

T - T T IR RS g8 T 3
“w Id l;; j L < + - ;.L‘ Iri 1T r{ 4.' ‘ 3 |
:r;.hk < 1 + :l; H Ry
T - Lt 4
waen o ESAPLEv: S o :
o : I 3 g 1 ¢
s u [~ 7 C L g ¥ ik 1
+ * 1: ¥ : ¥ .
Ly s 49 b4 -
s - hhdede = T <
L3 "E‘ ¥ HEH 1 3 31 px o
— ) ¥ 1 > T ) Y
P - I A
Ay & : ; H : = it : 8 H
b 1y 3 s 1 R
mns 3 : 1 12 » (= i
] & YEEER RN H —+ - W . L £
=3 ¥ b H | SN % A
- k : t 17 Fu sy P N } .
1 T = £y -
r 1
o bty E = PN Lta . ; A
H A
o ¥ - CH K L1 1 xR + 4
e }p-3-2 ry + T “ 14 ¥
HH T 3 T n s % (3 y 1
i i (21 . T '  § 13
b : i h 524 » ! 13 b !
* = T T ARuy jun e -
3 ] e 1 +5 > EaRLErY
s - + v REEER =1 - ? T ¥ f
: mam SENERS) 748 14 aey” Jsemasoen 27 afnganes:
1 . 2% 21
jwsa ; £ "REWN C #.-".4 I
f L oy t 4 1 waw|
y } e i 1 L e
> » " 13
: i : ' 4 :
H - e vy % P
b 1 5 fa e ; Y AR
asnainas : > 14t £ + -4 e et T
| -1 L rd ) s 11 * B . oo = 5
HIELEE S o : o5 AN ; S3saasn F
it + f ~ s ohd W r4 o] + 1 +
T + ¥ | TIN
it 3 T = o En o R e e
E h . W LLr *
f o Q > A 1
e k REEa% 34 RS Eas ¥ el e P L Y
e T H : _’_’ﬁ“”."} B B s
: il dwh 1 1 : e ey
i | 1 i - : v 8 I
p 3 A B R R Fﬂ,_;‘% N I
R ot % RARE (P R . [ |
by pw A mn) - TEEW 1 ah TR Y yL Tt
ety H tn - 7 AR t z
o T [BERS” <233 IR EAs i TR nERe S o Ly
gantiia] N uzssasd’ ) NG st HTH T s
it = - --4:-;—1 uai : 2 i), v RS et ) 3
perde i - '.l  FEaa) T s ¥ red-e 4 o L:)-‘ . 5
R . - : : - ~bErge Fias . “
-y T =y FLi ] —— = H
SEain = 3 P = ) p;P;= 22in.;
[SEaE BaEy! i ~ g L B % 4 3
(RS pRA 3 Fopes i 3 HH =1 i
ek 5 5V 1 S it i et AN A s L T T LI TR e et it

PRECIPITATION, P.  THIESSEN
STATION (INCHES) WEIGHT, p;

1.9 0.105
2.3 0.1611
2.1 0.0540 -
2.3 0.0705
2.2 0.1607 °
2.4 0.1567
2.1 01560
2.2 0.1360

G ~1 0 G oo

FlGUFlE 4.30 llustration of Thiessen coefficients.

polygonal pattern, shown in thick lines in the figure. Each station is sut-
rounded by a closed polygon of given area. The weights p; are given by A, /A,
where A, is the area of the polygon around station i and A is the total area.
The area of each polygon can be estimated by planimeter or any other valid
approximation. Here, the area was measured by counting the small squares
of the superimposed fine grid. The reader is challenged to repeat the exercise.
There is a good chance of proving me wrong! The obtained mean areal pre-
cipitation was 2.2 in.



156 CHAPTER 4 / PRECIPITATION OCCURRENCE AND MEASUREMENT

The second common methed is the isohyetal method. An isohyetal map is
- one showing lines of equal precipitation (isohyets). In this method, the
weights p; are again A; /A, where A; is the area between isohyets. The
weighted precipitation values are the average between contiguous curves of
equal precipitation. This is illustrated in Figure 4.31. Shown in the figure
are isohyets every 0.1 in. for the same storm of Figure 4.30. The areas en-
closed by equal precipitation curves are numbered I to XIV. Again, the areas
were measured by counting enclosed squares of the superimposed grid. To
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FIGURE 4.31 lllustration of the isohyetél method for compuling mean areal precipitation.
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each area we assigned the mean precipitation of the two boundary isohyets.
Where necessary, the basin boundary was given a value 0.1 in. less than the
encompassing interior isohyet. The obtained mean areal precipitation was
2.21 in., very close to that resulting from the Thiessen polygon method. Given
the uniformity of the storm we are dealing with, this is not surprising.

The isohyetal method is preferable and more accurate. Its main limita-
‘tion is that it requires enough observations to permit the drawing of contours
of equal precipitation. On the other hand, a hydrologist knowledgeable of the
typical precipitation patterns in a given area can obtain a better estimate of
mean areal precipitation. : |

Depth—Area-Duration Curves s

In Section 4.5 we saw that the area-averaged rainfall depth decreased
with increasing area. We also mentioned that as depth and duration increase,
the areal average increases and the accumulation generally becomes more
uniform in space. It is sometimes useful to quantify these relationships for
a given storm or set of storms. The result is.the depth—area—duration curve.
To obtain this curve for a given storm, we must have the storm history, say
at intervals At, for a large number of stations within the area. A normal pro-
cedure would then be . '

1. Select intervals of area AA such that the total area is given by A =
mAA DefineA, =nAA;n=m. : ST .

2. Define the precipitation over the area at all time intervals At. .

3. For all time intervals A¢, find the maximum mean areal precipitation
over a subarea of size A,, arbitrarily located within the region. In order to
maximize the mean areal precipitation over A,,. it is recommended that
isohyetal maps of precipitation at time interval A¢ be prepared. Repeat
this step for all subareas A,; n = 1,..., m. o . ‘

‘4. Repeat Step 3 for accumulations over time intervals 2At, 3A¢, and so on,
~ until a period equal to the storm duration is covered: L

5. Plot the maximum areal average depth for each period ¢ A¢, £ = 1,...,L.

(where L is storm duration divided by At) against its corresponding A,.

A typical depth—area—duration curve is shown in Figure 4.32. If the
storm has multiple centers, it can be analyzed by centers and the results com-
bined at the plotting stage: ‘ '

4.7.4 Frequency Anélysis

Precipitation, streamflow, evaporation, and all other hydrologic and geo-
physical processes can be characterized as random occurrences. It is impos-
sible to predict what the future realizations of the processes will be, The
analysis of precipitation data should then follow well-established statistical
procedures. For example, intensity—frequency—duration (IFD) curves are a
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FIGURE 4.32 Diagrammatic presentation of maximum depth—area—duration curves for a
catchment. Symbols indicate separate storms. Note the enveloping of data points. Source:
A.J. Raudkivi, Hydrology: An Advanced Introduction to Hydrological Processes and
Modelling. Copyright 1979 by Pergamon Press. Reprinted with permission by the author.

classical rainfall analysis tool that relates the probability of occurrence of
storms of given duration and intensity. Probability of occurrence is usually
measured in terms of recurrence interval (return period). The recurrence in-
terval of a storm T is the mean time that will go by before an event equaling
or exceeding the storm magnitude occurs. Mathematically, it is equal to the
inverse of the probability of equalihg or exceeding the event in a unit time
period. For example, a 50-year-recurrence storm is one that has a probability
of being equaled or exceeded in any one year of 1/50. On the average it will
take 50 years before that occurs. IFD curves and other probabilistic and sta-
tistical measures will be studied in Chapter 11. They are discussed separately
in order to make a more complete presentation and to emphasize their appli-
cability to all types of data. ~

4.7.5 Network Design

As remarked by Lenton and Rodriguez-Iturbe [1974], it is necessary that
“all aspects of data management be integrated — the initial collection of data
cannot and should not be treated separately from the later stages of data
analysis and synthesis.” The data management and collection procedure
must be defined in terms of the final objectives, goals, and uses of coliected
information.



4.7 PRECIPITATION DATA ANALYS'S 159

Hydrologic-data-collection networks have been divided into various levels
(Rodda [1969]). Levels I and II can be related to problems of regional estima-
tion —i.e., there is no clearly defined final goal or use for the collected data.
The problem of rainfall monitoring for estimating the total precipitation
areal average for a storm event and the problem of finding the long-term
(time) mean areal precipitation fall in these two levels. Level III networks
are those designed to collect data for a specific, clearly defined, objective,
which would imply known net benefits or utility of the data. The probiem of
rainfall monitoring for use together with a flood forecasting system theoreti-
cally fits this framework.

Historically, network design has been strongly influenced by issues of
convenience and cost, ignoring the issues of required accuracy. Network de-
sign should involve stating the number and location of stations necessary for
achieving the accuracy demanded by a given data use and under stated bud-
getary constraints. -

Traditionally, the above objectives were accomplished using heuristic
criteria. For example, McKay (Gray [1973]) mentions that for standard pre-
cipitation gages a 15-mile separation is adequate for Canadian conditions.
Following are a few traditional design criteria and results. ‘

The “index approach” requires the logical condition that sensors have
the highest possible correlation with the effects that are being measured.
One gage should be located in each “homogeneous” area. Each station
should be highly correlated with surrounding effects but uncorrelated among
themselves. , .

Several experiments have been performed on very densely gaged regions,
McGuinness [1963] suggests the following formula for Coshocton, Ohio:

‘B = 0.03P"54G%24, ‘ (4.33)

where E is the absolute difference in inches between observed and true aver-
age rainfall; P is the rainfall in inches for the “true” dense network; and G is
the network density in square miles per gage for a reduced network. The
above formula was developed from data of watersheds less than 25 mi? but
was found to be consistent for larger areas. Being of local origin, extrapola-
tion fo other areas is speculative.

Hershfield [1965] suggested that the average spacing between gages
should be that required for obtaining a correlation of 0.9 between station
values. He related this spacing and correlation to the two-year recurrence,
24-hour duration rainfall and the two-year recurrence, one-hour duration
rainfall. Figure 4.33 gives Hershfield’s results. Holtan et al. [1962] recom-
mend various rain-gage densities for agricultural areas. These are given in
Table 4.5.
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FIGURE 4.33 Diagram for estimating the distance between gages as a function of the
two-year, 24-hour and two-year, one-hour rainfall. Source: After Hershfield [1965]. “On the
Spacing of Rain Gages”, in Symposium on Design of Hydrological Networks, vol. 1,
pp. 72-81. |IAHS Publ. no. 67.

‘A well-khown study in the Muskingum River Basin by the U.S. Weather
Bureau [1947] resulted in Figure 4.34, giving the standard error of estimat-
. ing mean areal precipitation as a function of gage density and total area.

" The following minimum densities of precipitation networks have been
recommended for general hydrometeorologic purposes (Gray [1970]).

1. Flat regions of temperate, mediterranean, and tropical zones, 600 to
900 km® per station.

TABLE 4.5 Number of Rainfall Stations Required

SIZE OF GAGING ' MINIMUM

DRAINAGE AREA RATIO NUMBER OF
(ACRES) (mi®/gage) STATIONS
0-30 0.05 1
30-100 0.08 2
100-200 0.10 - 3
200-500 0.16 1 per 100 acres
500-2500 0.40 1 per 250 acres
2500-5000 1.00 1 per square mile
over 5000 3.00 1 per each 3mi’

Source: Holtan et al. [1962].
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FIGURE 4.34 Standard error of storm precipitation averages as a function of network den-
sity and area for the Muskingum Basin. Source: U.S. Nationa! Weather Service [1972].

2. For mountainous regions of temperate, mediterranean, and tropical
zones, 100 to 250 km® per station.

3. For small mountainous islands with irregular precipitation, 25 km® per
~ station.

4. For arid and polar zones, 1500 to 10,000 km® per station.

* Generalized Network Design
(Generalized and theoretical approaches to rainfall network design exist.
Although different in techniques and assumptions, all procedures require
some knowledge of the rainfall-process spatial correlation. The spatial corre-
lation measures the level linear dependence of precipitation at two points
separated a distance v from each other. A correlation of 1 (or —1) will imply
perfect linearity. For precipitation, correlation is generally between 0 and 1
and gets smaller as the points are farther apart. A point is perfectly corre-
lated with itself, since v is zero in that case. ‘
Rodriguez-Iturbe and Mejia [1974] developed design curves for the mean
square error of estimating the areal average of precipitation (Eq. 4.30) using
a random sampling technique. Figure 4.35 gives one such curve, correspond-
ing to random sampling and exponential-type correlation function in space,
~ implying that the correlation fells exponentially with distance between sta-
tions. For isotropic, homogeneous random fields, the correlation is just a func-
tion of the distance between points v. The results of Figure 4.35 correspond to
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FIGURE 4.35 Variance reduction factor due to spatial sampling with random design used
in the estimation of areal mean of rainfall event with r(v) = e ™. Source: |. Rodriguez-
Iturbe and J. M. Mejia, “The Design of Rainfail Networks in Time and Space,” Water
Resources Res., 10(4):725, 1974, Copyright by the American Geophysical Union.

a correlation of the form e ™™, so v = 0 implies that rainfall at a point is per-

fectly correlated with itself. The correlation deereases as the distance be-
tween points v increases. The parameter 2 (km~ 1y controls the decay in
correlation with distance. Random sampling implies that the observations
can.be anywhere in space. The ratio of mean square error (MSE) to point
variance (it is assumed that the process has the same variance everywhere) is
given in terms of the number of stations N randomly located in space, and a non-
dimensional area Ah?%, where h is the parameter of the correlation function:

MSE = F(N; Ah% . (4.34)

Figure 4.36 gives a similar curve for stratified sampling. Stratified sam-
pling refers to random data collection within prespecified strata or regions.
Note that the sampling error is smaller under these conditions. Rodriguez-
Iturbe and Mejia [1974] assume perfect observations.

In the same work, Rodriguez-Iturbe and Mejia developed curves for evalu-
ating networks designed to obtain the long-term areal average as defined pre-
viously (Eq. 4.31). They assume a separable, in time and space, covariance
structure of the form cov(v,7) = o?r(v)p”, where a* is the point variance of
rainfall, 7(v) is the correlation due to distance v between points, p is the lag-
_ one serial (time) correlation of data, and 7 is the time between data points
The results are that the MSE of estlmatmg the long-term areal average is
given by

MSE = F(T)FyN; Ak%o?, | (4.35)
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FIGURE 4.36 Variance reduction factor due to spatial sampling with stratified design used
in the estimation of areal mean of rainfall event with r(v) = e ™. Source: . Rodriguez-
lturbe and J.M. Mejia, “The Design of Rainfall Networks in Time and Space,” Water
Resources Res., 10(4):726, 1974. Copyright by the American Geophysical Union.

where F, is a factor function of the number of time periods of observation 7
and the lag-one autocorrelation of the process. The dependence is shown
in Figure 4.37. Figures 4.38 and 4.39 give Fy(N; Ah?), which is the space-
dependent factor, for random and stratified sampling and exponential-type -
spatial correlation. The variables are the same as for Figures 4.35 and 4.36.
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FIGURE 4.37 Variance reduction factor due to temporal sampling used in the estimation of
long-term mean areal rainfall. Source: I. Rodriguez-lturbe and J. M. Mejia, “The Design of
Rainfall Networks in Time and Space,” Water Resources Res., 10(4):718, 1974. Copyright
by the American Geophysical Union. .



164 CHAPTER 4 / PRECIPITATION OCCURRENCE AND MEASUREMENT

= 47
a F] e
N = mumber of starlous T T N=3
A =zrs / - . _
& = correlation poramster N - . - N=5
F, = varance reductien duz to spatial sampling - i
corrclstion functicn = ¢ A" [ T L\_ L N=10
000 sanpling geermctry = random ~] T4 ™~ u 1
K -
~ J N2
1
‘ \“K
© ESTIMATION OF LONG-TERM AREA MEAN RAINFALL L\
‘ : \\L
J A L F“r‘ N= 100
oele 4 : =
i) 0.9 1.0 n %0 1000 10009

A
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in the estimation of long-term mean areal rainfall with r(v) = ™™, Source: I. Rodriguez-
lturbe and J. M. Mejia, “The Design of Rainfall Networks in Time and Space,” Water
Resources Res., 10(4):719,-1974. Copyright by the American Geophysical Union.

Bras and Rodriguez-Iturbe [1976] developed a method to handle the sys-
tematic sampling condition and instrument error. Systematic sampling im-
plies that stations are given known positions in space. The procedure uses
estimation theory and solves for the optimal network to obtain mean areal
precipitation of an event by minimizing an objective function of mean square
error (accuracy measure) and cost.

- Bras and Colon [1978] address the network design for the long-term areal
average under the previously mentioned systematic sampling techniques
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FIGURE 4.39 Variance reduction factor due to spatlal sampling with stratified desugn used
in the estimation of Iong-term mean areal rainfall with 7(v) = e ™. Source: |. Rodriguez-
lturbe and J. M. Mejia, “The De3|gn of Rainfall Networks in Time and Space,” Water
Resources Res., 10(4):721, 1974. Copyright by the American Geophysucal Union. ’
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(i.e., not only number but station locations are specified). Est1mat1on theory
was used to ﬁnd the mean square error of estimation expression and include
instrumeént errors in the analysis. The interested readér is referred to Bras
and Rodriguez-Iturbe [1985] for a complete view of the above procedures.

EXAMPLE 4.4
Monitoring Network Design

Rodriguez-Iturbe and Mejia [1974] illustrated the network-design exercise
with an example from the Central Venezuela region. The region is shown in
Flgure 4.40, together with the location of its 26 rain gages, over its 30,000-
km? area. Also shown are the mean annual precipitation’ isohyets. Table 4.6
gives the stations’ annual means and their standard dev1at10n computed as
‘ 1 - 1/2J
standard deviation = s = [N_——— (X, ~X )2] "
i=1

where N is the number of years of data, X, is the data pomt for year i, and X
is the mean for the particular statlon ‘

lN

j=1

-~

FIGURE 4.40 Central Venezuela region (Portuguese state) used in the example of moni-
toring network design. Source: L. Rodriguez-lturbe and J. M. Mejia, “The Design of Rainfall
Networks in Time and Space,” Water Rescurces Res., 10(4):715, 1974. Copyright by the
American Geophysical Union.
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TABLE 4.6 Description of Rainfall Data Used in the Central Venezuela Example

STANDARD

. YEARS OF MEAN  DEVIATION
STATION RECORD {(mm) (mm)
1 1958-1971 1445 193
2 19551971 1412 131
3 1955-1965 1269 234
4 1951-1971 1404 127
5 1956-1971 1500 156
6 19551971 1342 189
7 1953-1971 1328 234
.8 1948-1971 1294 248
9 1954-1971 - 1144 195 - .
10 1943-1971 1440 194
11 1956-1971 1341 223
12 1950-1971 1427 261
13 1944-1971 1318 200
14 1958-1971 1296 210
15 1953-1971 1308 225
16 1961-1971 1240 228
17 19611971 1255 215
18 19541971 1155 206
19 - 1952—-1964 1325 221
20 1958-1971 1252 276
21 1952-1971 1269 246
22 ©1952-1971 1514 318
23 1961-1971 1462 283
24 1948-1965 1370 194
25 1952-1965 1429 191
26 1946-1965 1452 199

Source: 1. Rodriguez-Iturbe and J.M. Mejia, “The Design
" of Rainfal] Networks in Time and Space,” Water Re-
sources Res. 10(4);721, 1974. Copyright by the American
Geophysical Unign. ' .

The objective is to study the trade-off between number of stations and
years of data when it is desired to design a sampling network that will
achieve a given level of accuracy in computing the long-term mean areal pre-
cipitation (Eq. 4.31). To achieve this, we will make use of Eq. (4.35), which
expresses the mean square error of estimation as a function of the point vari-
ance, a factor involving the number of years in the record F,(T'); and a factor
involving the number of stations in the region F,(N; Ah?). |

The procedure requires us to compute the point variance over the region,
the lag-one (one-year lag) autocorrelation coefficient, and the spatial correla-
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tion. Computing the variance of all records of all stations put together, we get
o = 5.44 x 10*mm?. A study of the correlation between records one year
apart indicates that there is no linear statistical relationship between the
rainfall accumulation of two adjacent years, i.e., p = 0. We will assume that
the spatial correlation falls exponentially with distance between points v:

riv) = e™.

The question is what value to give the decay parameter A. In their work,
Rodriguez-Iturbe and Mejia [1974] argue that the spatial correlation should
be calibrated to a typical distance in the area in question. Their suggestion is
to calibrate the correlation between two points chosen randomly in the area.
The distance between two random. points in an area obeys a precomputable
‘probabilistic distribution. Details are beyond the scope of this work but it suf-
fices to state the following. If X is the ratio of the sides of a rectangle, then the
mean distance between two points of a rectangle of unit area is

Unit Area Rectangle

A ]

1 0.5214

2 0.5691

4 07137
16

1.3426

‘Most basins are reasonably approximated by rectangles. The Central Venezu-
ela region is well represented by a rectangle of side ratio A = 2. This rect-
angle would have a diagonal (maximum distance) of 265 km. To obtain the
mean distance between two points for the Venezuelan region, we need only
scale the unit area rectangle results by the ratio of diagonals. The unit area
rectangle with A = 2 has diagonal of 1.58; therefore the Central Venezuela
region has a mean distance between points of

v = (265/1.58) x 0.5691 = 100km.

Rodriguez-Iturbe and Mejia [1974) computed the sample spatial correlation

between points 100 km apart as 0.21. Therefore the correlation function must
satisfy

r100) = e ™% = 0.21,

which yields & = 0.0156 km™ and Ah® = 7.3.
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TABLE 4.7 Variance Reduction Factor Due to Spatial Sampling Fi(N; Ak®) with
Ah* = 7.3 in the Central Venezuela Example. Exponential Correlation, Random
Sampling. ‘ ' :

N FN;ARD N FyN; ARY
1 1.00 10 0.37

2 0.65 20 0.93

3 0.54 100 0.31

5 0.43

Source: 1. Rodriguez-Iturbe and J.M. Mejia,
“The Design of Rainfall Networks in Time
and Space,” Water Resources Res., 10(4): '
721, 1974. Copyright by the American Gee- -
" physical Union. :

The variance reduction factors due to spatial sampling, Fo(N; Ah®) are
given in Table 4.7 and come from Figure 4.38 (assuming random sampling).
The temporal reduction factor is obtained from Figure 4.37 (p-= 0.0) and is
given in Table 4.8. o ) ,

Combining Tables 4.7 and 4.8, we can estimate the efficiency of different
network schemes for the area considered. In the case of one station in opera-
tion during 20 years, we can expect a total variance reduction factor of

F(T) x FyN: 7.3) = 1 X 0.050 = 0.050.

In other words, this network will produce an estimate of the long-term areal
mean precipitation with a variance on the order of 5% of the variance of the

TABLE 4.8 Variance Reduction Factor Due to Temporal Sampling with p = 0.0

e if F(T) T F(T)

1.000 15  0.067
0500 20  0.050
0.333 30  0.033
0.200 50  0.020
0.140 75 0013
10 0100 100 0.010

-1 0T QO DO =

Source: I. Rodriguez-Iturbe -and
J.M. Mejia, “The Design of
Rainfall Networks in Time and
Space,” Water Resources Res.,
10(4):722, 1974. Copyright by the
American Geophysical Union.
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“point rainfall process. If we wish to accomplish that type of precision in a
lapse of 10 years, we will need

F,(N; 7.3) = 0.050/F,(10) = 0.50.

This corresponds to N = 4 stations in the case of random sampling.
Tt is interesting to observe that the same precision of 0.050 cannot be ob-
tained in a lapse of five years because it will be necessary for

Fy(N; 7.3) = 0.050/0.20 = 0.25,

which is a value smaller than the asymptotic value of Fy(N; 7.3) when N
goes to infinity. From Figure 4.38 it can be seen that with A2” = 7.30 and
F,(N; 7.3) = 0.25, the corresponding value of N is still larger than 100. We
thus have the important conclusion that trading time versus space in hydro-
logic data collection can be done when we do not reduce the time interval too
much, but no “miracles” can be expected in short times even from the most
dense of all possible networks.

Table 4.9 presents the combined factors Fy(T') % Fy(N; Ah®) for the ex-
ample under consideration. This product represents the total reduction in
variance relative to variance of point rainfall when the long-term areal mean
with N stations during T years is estimated. It can be seen that even for quite
a small number of years (like 2, 5, or 10 years), five stations will accomplish

TABLE 4.9 Total Factor of Variance Reduction Due to Temporal and Spatial Sampling
FiT) x Fy(N;AR? in the Central Venezuela Region Constructed for the Exponential
Correlation Function with a Randomly Designed Network

N  T=2 T=5 T=10

1 0.500  0.200 0.100

2 0.325  0.130 0.065
-3 0.270  0.108 0.054
5 0.215  0.086 0.043
10 0.185 0.074 0.037
20 0.165  0.066 0.033
100 0.155 0.062 0.031

Source: 1. Rodriguez-lturbe and J. M.
Mejia, “The Design of Rainfall Net-
works in Time and Space,” Water
Resources Res., 10(4):722, 1974. Copy-

- right by the American Geophysical
Union.
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most of the possible reduction in variance, and there is little justification in
going over this number. It can also be observed that F,(T") weights more than
Fy(N; Ah?) in the reduction of the variance of {the long-term areal mean; when
T = 5yr, Fy(T) = 0.200, yet an equivalent value of F;(N; Ah®) = 0.200 can-
not be obtained in this example. This shows again that trading time versus
'space, although it is possible and in some instances necessary, is an expensive
proposition. ¢

4.8 summaRY

Hydrology has traditionally studied the fluxes of energy and water between
the land masses and the atmosphere and oceans. Atmospheric precipitation
is, after all, a key element of the hydrologic cycle, the major water input onto .
the land masses. For too long hydrologists have been content with just mea-
suring precipitation and letting meteorologists be preoccupied with the mecha-
nisms that lead to its formation. This must change. Hydrologists must
‘become knowledgeable about atmospheric processes, particularly those influ-
encing precipitation. This has become apparent as hydrologists realize that
most existing precipitation models and meteorologic predictive tools are in-
compatible with the time and space scales required by representations of the
hydrologic land processes of interest. It is also now clearer that the atmo-
spheric and surface processes are interdependent with negative and positive
feedbacks that must be understood before any one part becomes explainable.
In essence, hydrologists and meteorologists must learn more of each others’
efforts and begin to cross the artificial disciplinary barriers that exist.

Chapters 3 and 4, probably a very modest beginning, intended to intro-
duce hydrologists to some of the meteorology that relates to precipitation. A
significant amount of space is dedicated to cloud physics in this chapter. To-
gether with the stability issues discussed in Chapter 3, this chapter provides
a first-level discussion of all important convective mechanisms that control
most precipitation.

This chapter also introduced traditional and modern ways of obtaining
and analyzing precipitation data. The issue of monitoring network design
was treated at some length, if anything to point out that it pays to think
about and plan a monitoring experiment. Unfortunately, in traditional hy-
drology this most important step is more often than not skipped, commonly
~resulting in inefficient or even useless data-collection exercises.

' Chapter 5 will talk about evaporation, the mechanisms that provide the
atmospheric moisture that leads to precipitation. The reader is not to lose
sight of the fact that precipitation and evaporation are much more than mass
transfers. They are significant energy-transfer mechanisms. During precipi-
tation latent heat is released. Without it there would be little precipitation, .
since that heat drives the convective mechanisms that lead to further conden-
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sation. During evaporation latent heat is absorbed. The fact that evaporated
water at a site generally has little influence on precipitation at the same site
implies that energy is then transported laterally as well as vertically, a re-
guirement of the energy distributions discussed in Chapter 2.
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