
CEE6110 Probabilistic and Statistical Methods in Engineering

Homework 7.  Bootstrap Methods
Fall 2006, Solution
1. Reevaluating Kottegoda 5.2. 
Use t distribution given on page 249.

Confidence limits are 
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  (KR page 250)

data = [2437  2437 2425
2427
2428
2448
2456
2436
2435
2446
2441
2456
2444
2447
2433
2429
2435
2471
2472
2445
2436
2450
2454
2449
2441
2457
2447
2436 
2458
2415
2448
2445
2436
2469
2455
2473
2488
2454
2427
2411]; 
x=data(1:20);  
xbar=mean(x)
sdev=std(x)

n=length(x)

v=n-1  % Degrees of freedom

t1=tinv(0.025,v)
t2=tinv(0.975,v)  
xbar =

  2.4424e+003

sdev =

   13.3077

n =

    20

v =

    19

t1 =

   -2.0930

t2 =

    2.0930  

Limits
llimit=xbar+t1*sdev/sqrt(n)

ulimit=xbar+t2*sdev/sqrt(n)  
llimit =

  2.4362e+003

ulimit =

  2.4486e+003  

T-statistic confidence interval is 2436 <µ < 2448. 
(a) Bootstrap method to estimate 95% confidence limits on the mean using the first 20 concrete densities in table E.1.2.

B=1000;

n=length(x);

for ib=1:B;


rind=ceil(rand(n,1)*n);


xbs=x(rind);


bsmean(ib)=mean(xbs);

end

bsmean=sort(bsmean);

llimitboot =bsmean(25)

ulimitboot =bsmean(975)

hist(bsmean)

llimitboot =

  2.4373e+003

ulimitboot =

  2.4482e+003
[image: image2.emf]2430 2435 2440 2445 2450 2455

0

50

100

150

200

250

300

  

Bootstrap confidence limits for the mean calculated using the first 20 concrete densities 2437 <µ < 2448.

(b) Bootstrap method to estiamte 95% confidence limits on the mean using all 40 concrete densities in table E.1.2.  
B=1000;

n=length(data);%Note this uses all the data. The first
for ib=1:B;%  20 values are stored in the variable x.

rind=ceil(rand(n,1)*n);


xbs=data(rind);


bsmean(ib)=mean(xbs);

end

bsmean=sort(bsmean);

llimitboot= bsmean(25)

ulimitboot =bsmean(975)

hist(bsmean)  

llimitboot =

  2.4400e+003

ulimitboot =

  2.4502e+003
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Bootstrap confidence limits for the mean using all the data:  2440 <µ < 2450.

2.  Reevaluating Kottegoda 5.5 using the correct data
ch1=chi2inv(0.975,v)   % v, the degrees of freedom were calculated above in problem 1
ch2=chi2inv(0.025,v)  

ch1 =

   32.8523

ch2 =

    8.9065  

Limits

(n-1)*sdev^2/ch1

(n-1)*sdev^2/ch2  

ans =

  102.4220

ans =

  377.7908  

The confidence limits on the variance are 102< σ2< 378. Note that this range includes 162 unlike what was mentioned in the solution to assignment 5.
a) Bootstrap simulation for estimating 95% confidence limits  for variance and standard devaition with first 20 density values from Table E.1.2.

B=1000;

n=length(x);

for ib=1:B;


rind=ceil(rand(n,1)*n);


xbs=x(rind);

   bsvar(ib)=var(xbs);


 bsstd(ib)=std(xbs);

end

bsvar=sort(bsvar);

bsstd=sort(bsstd);

bsLvar= bsvar(25)

bsUvar=bsvar(975)

bsLstd= bsstd(25)

bsUstd=bsstd(975)

subplot(2,1,1)

hist(bsvar)

xlabel('variance');

ylabel('Frequency');

subplot(2,1,2)

hist(bsstd)

xlabel('standard deviation');

ylabel('Frequency');  

bsLvar =

   64.7237

bsUvar =

  275.1474

bsLstd =

    8.0451

bsUstd =

   16.5876
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The confidence limits for variance and standard deviation with the first 20 concrete densitites are 65 <σ2 < 275 and 8<σ <17.
b) Bootstrap simulation for estimating 95% confidence limits for variance and standard deviation with 40 density values from Table E.1.2.

B=1000;

n=length(data);

for ib=1:B;


rind=ceil(rand(n,1)*n);


xbs=data(rind);

   bsvar(ib)=var(xbs);


 bsstd(ib)=std(xbs);

end

bsvar=sort(bsvar);

bsstd=sort(bsstd);

bsLvar= bsvar(25)

bsUvar=bsvar(975)

bsLstd= bsstd(25)

bsUstd=bsstd(975)

subplot(2,1,1)

hist(bsvar)

xlabel('variance');

ylabel('Frequency');

subplot(2,1,2)

hist(bsstd)

xlabel('standard deviation');

ylabel('Frequency');  

bsLvar =

  146.8692

bsUvar =

  385.3846

bsLstd =

   12.1190

bsUstd =

   19.6312
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The confidence limits for variance and standard deviation with all the concrete density data:  147 <σ2 < 385 and 12<σ <20.
3.

i) Parametric bootstrap with the first 20 concrete density data.

B=1000;

n=length(x)

xbar=mean(x);

xstd=std(x);

for ib=1:B;

    rnorm=randn(n,1);


xbs=rnorm*xstd+xbar;


bsmean(ib)=mean(xbs);

    bsvar(ib)=var(xbs);

    bsstd(ib)=std(xbs);

end

bsmean=sort(bsmean);

bsvar=sort(bsvar);

bsstd=sort(bsstd);

bsLmean= bsmean(25)

bsUmean=bsmean(975)

bsLvar= bsvar(25)

bsUvar=bsvar(975)

bsLstd= bsstd(25)

bsUstd=bsstd(975)  

n =

    20

bsLmean =

  2.4365e+003

bsUmean =

  2.4485e+003

bsLvar =

   82.5161

bsUvar =

  304.9485

bsLstd =

    9.0838

bsUstd =

   17.4628  
Confidence limits with parametric bootstraping using the first 20 concrete densities

2437 <µ < 2449 , 82.5 <σ2 < 305 and 9 <σ <17.
3.ii) Parametric bootstrap with 40 concrete density data.

B=1000;

n=length(data);

xbar=mean(data);

xstd=std(data);

for ib=1:B;

    rnorm=randn(n,1);


xbs=rnorm*xstd+xbar;


bsmean(ib)=mean(xbs);

    bsvar(ib)=var(xbs);

    bsstd(ib)=std(xbs);

end

bsmean=sort(bsmean);

bsvar=sort(bsvar);

bsstd=sort(bsstd);

bsLmean= bsmean(25)

bsUmean=bsmean(975)

bsLvar= bsvar(25)

bsUvar=bsvar(975)

bsLstd= bsstd(25)

bsUstd=bsstd(975)  

bsLmean =

  2.4399e+003

bsUmean =

  2.4496e+003

bsLvar =

  159.9685

bsUvar =

  382.1098

bsLstd =

   12.6479

bsUstd =

   19.5476  

Confidence limits with parametric bootstraping using all the concrete densities

2440 <µ < 2450 , 156 <σ2 < 382 and 13 <σ <20.
4. Summary

	 
	Statitic
	Lower limit
	Upper limit
	Range

	Mean
	Parametric, assignment 6
	2436.2
	2448.6
	12.4

	
	Bootstrap 20 points
	2437.3
	2448.2
	10.9

	
	Bootstrap 40 points
	2440
	2450.2
	10.2

	
	Parametric bootstrap 20 points
	2436.5
	2448.5
	12

	
	Parametric bootstrap 40 points
	2439.9
	2449.6
	9.7

	Variance
	Parametric, assignment 6
	102.4
	377.8
	275.4

	
	Bootstrap 20 points
	64.72
	275.14
	210.42

	
	Bootstrap 40 points
	146.86
	385.38
	238.52

	
	Parametric bootstrap 20 points
	82.5
	304.94
	222.44

	
	Parametric bootstrap 40 points
	159.9
	382
	222.1

	Std Deviation
	Parametric, assignment 6
	10.12
	19.44
	9.32

	
	Bootstrap 20 points
	8
	16.6
	8.6

	
	Bootstrap 40 points
	12.1
	19.6
	7.5

	
	Parametric bootstrap 20 points
	9.1
	17.5
	8.4

	
	Parametric bootstrap 40 points
	12
	19.6
	7.6


The uncertainty ranges in the means are consistent across all the methods.  The uncertainty ranges of variance and standard deviation appear to be less for bootstraping methods than for parametric methods.  This may be because the bootstrap approach of sampling with repalcement ends up drawing a subset of the sample at each bootstrap trial.  On average the variance of a subset of data is less than the variance of the sample data, due to being based on fewer independent data values since data values are sampled with replacement and hence repeated in the bootstrap samples.  This appears to be a shortcoming of the bootstrap approach.  This sampling effect only applies to the non-parametric bootstrap.  The parametric bootstrap bootstrap results were generated by taking σ2 = Ŝ2 = 13.3077 evaluated in problem 5.2, and then drawing bootstrap samples from the resulting distribution.  The true distribution for the bootstrap samples has variance Ŝ2.  The sample distribution for the bootstrap samples has variance (Ŝ*)2 which has confidence intervals given by 5.3.14.a, that has χ2 in the numerator, different from 5.3.14 b that had χ2 in the denominator.  Evaluating the interval in 5.3.14 a we get, 
χ2n-1, 1-α/2  Ŝ2/(n-1)  ≤ (Ŝ*)2 ≤ χ2n-1, α/2  Ŝ2/(n-1)  

= 8.91*13.30772/19 ≤ (Ŝ*)2 ≤ 32.85*13.30772/19 

= 83 ≤ (Ŝ*)2 ≤ 306

This matches with the parametric boostrap simualtions.

5. a) 95% confidence limits on pre 1947 and post 1947 means.
flow= [ 1092
1099
1440
1083
1621
1132
935
1540
1966
775
1166
843
1508
1876
1696
1690
2730
1440
985
1346
1553
1370
743
1340
896
1600
2190
1600
714
794
1460
1240
1230
1270
861
1355
612
822
1370
1380
510
810
735
259
1290
1325
528
622
355
468
472
664
717
950];

time=[1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974];

pre=flow(1:27);% pre 1947 data. This includes 1947 data

post=flow(28:54);% post 1947 data. 

B=1000;

n1=length(pre);

n2=length(post);

for ib=1:B;


rind1=ceil(rand(n1,1)*n1);

    rind2=ceil(rand(n2,1)*n2);


xbspre=pre(rind1);

    xbspost=post(rind2);


bsmeanpre(ib)=mean(xbspre);

    bsmeanpost(ib)=mean(xbspost);

end

bsmeanpre=sort(bsmeanpre);

llimitbootpre= bsmeanpre(25)

ulimitbootpre =bsmeanpre(975)

bsmeanpost=sort(bsmeanpost);
llimitbootpost= bsmeanpost(25)

ulimitbootpost =bsmeanpost(975)

subplot(2,1,1);

hist(bsmeanpre);
xlabel('Pre 1947 mean');

ylabel('Frequency');

subplot(2,1,2);

hist(bsmeanpost);
xlabel('Post 1947 mean');

ylabel('Frequency');  
llimitbootpre =

  1.2320e+003

ulimitbootpre =

  1.5614e+003

llimitbootpost =

  751.0370

ulimitbootpost =

  1.0434e+003
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The 95% confidence limits for pre and post 1947 means,
1232 <µpre < 1561  and 751 <µpost < 1043  There is no overlap between the pre and post means; therefore based on confidence intervals we would deduce that the difference is statistically significant. 
5.b)  Using bootstrap samples estimate 95% confidence limits on the difference between pre 1947 and post 1947 means.  

Significance of difference
B=1000;

n1=length(pre);

n2=length(post);

for ib=1:B;


rind1=ceil(rand(n1,1)*n1);

    rind2=ceil(rand(n2,1)*n2);


xbs1=pre(rind1);


xbs2=post(rind2);


bsdiff(ib)=mean(xbs1)-mean(xbs2);

end

bsdiff=sort(bsdiff);

ldiff=bsdiff(25)

udiff=bsdiff(975)

hist(bsdiff)

xlabel('Difference between \mu1 and \mu2');

find(bsdiff < 0); 

ldiff =

  275.6296

udiff =

  704.0000
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The 95% confidence limits from the bootstrap method on the difference between means is 275 < (µpre -µpost) < 704.  

Since the range does not include zero, difference between the means is significant in this two sided test.

c) The null hypothesis is, Ho: T=µ1 –µ2=0.

alternate hypothesis is, H1: T > 0.

Where µ1-is pre 1947 mean and µ2 is the post 1947 mean.

p=length(find(bsdiff < 0))/B

p1=[1:length(bsdiff)]/B; %Empirical cumulative probabilities
tc=bsdiff(find(p1>= 0.05, 1))   

% 'tc' gives the first value of the sorted difference between means, where the cumulative probabiity is greater than or equal to 0.05.

% tc is the critical value of the statistic T that defines the region of %rejection to its left at 0.05 level of significane.  Note that this is %a one sided test and hence 0.05 is not divided by two.

p =

     0

tc =

  304.7407  
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The test statistic T=0 (i.e µ1 = µ2) falls in the rejection region at 0.05 level of significance (left of the value tc=304.7).  The probability that the difference between means is ≤305 is 0.05 or there is .95 probability that the difference is greater than 305, i.e the difference between the means is statistically significant. Hence we reject the null hypothesis that the two means are similar and accpet the alternate hypothesis that µ1 > µ2.  We are saying µ1 > µ2, because we have defined our statistic as µ1-µ2 and differences are all positive.  Because no bootstrap sample resulted in a difference between means less than 0, the bootstrap estimate of the p value is zero, implying that we reject the hypothesis at all levels of significance.  This could be refined using a larger sample set, but is going to be a small number.
5.d) 

B=1000;

n1=length(pre);

n2=length(post);

for ib=1:B;


rind1=ceil(rand(n1,1)*n1);

  rind2=ceil(rand(n2,1)*n2);


xbspre=pre(rind1);

  xbspost=post(rind2);


bsvarpre(ib)=var(xbspre);

    bsvarpost(ib)=var(xbspost);

end

bsvarpre=sort(bsvarpre);

llimitbootpre= bsvarpre(25)

ulimitbootpre =bsvarpre(975)

bsvarpost=sort(bsvarpost);

llimitbootpost= bsvarpost(25)

ulimitbootpost =bsvarpost(975)

subplot(2,1,1);

hist(bsvarpre);

xlabel('Pre 1947 variance');

ylabel('Frequency');

subplot(2,1,2);

hist(bsvarpost);

xlabel('Post 1947 variance');

ylabel('Frequency');  

llimitbootpre =

  8.9182e+004

ulimitbootpre =

  3.5126e+005

llimitbootpost =

  9.5973e+004

ulimitbootpost =

  1.9436e+005
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The confidence limits on pre and post varainces are;
89182<σ2pre < 351260  and 95973 <σ2post < 194360.
There is considerable overlap between the variances, suggesting that variance has not changed.
5.e)
The null hypothesis is, Ho: T=σ1 –σ2=0.
alternate hypothesis is, H1:T ≠ 0.

Where σ1-is pre 1947 variance and σ2 is the post 1947 variance.  Unlike in the previous problem where we tested if one mean is greater than the other, here we are merely testing if the variances are different, hence it is a two sided test.
B=1000;

n1=length(pre);

n2=length(post);

for ib=1:B;


rind1=ceil(rand(n1,1)*n1);

  rind2=ceil(rand(n2,1)*n2);


xbs1=pre(rind1);


xbs2=post(rind2);


bsdiff(ib)=var(xbs1)-var(xbs2);

end

bsdiff=sort(bsdiff);

ldiff=bsdiff(25)

udiff=bsdiff(975)

hist(bsdiff)

xlabel('Difference between  \sigma1 and  \sigma2');
p1=[1:length(bsdiff)]/B;%Empirical cumulative probabilities

F0=p1(find(bsdiff < 0,1,'last'))%F(0),see Note 1 below
if(F0 < 0.5)

p=2*F0
else

p=2*(1-F0)

end
tc1=bsdiff(find(p1>= 0.01/2, 1)) %see Note 2
tc2=bsdiff(find(p1>= (1-0.01/2), 1))   

Note 1: F0 is the empirical probability that the differnce between variances is less than or equal to zero.  
Note 2:  tc1 is the critical value of the statistic T, on one side of the distribution at which the p1 value is equal to 0.01/2.  Note that the level of significance 0.01 is divided by 2 to accommodate the two sided distribution. tc2 is the critical value on the other side of the distribution. 
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Note that tc2 is not exactly equal to –tc1, because the distribution is empirical and not exactly symmetrical. 
In this case, T=0 does not fall in the rejection region at 0.01 level of significance (Note that this is a two tailed test).   Hence we accept the hypothesis that the pre 1947 variance is same as the post 1947 variance.
Compare results from assignment 6, problem 5.10

In testing the difference between the means, both the methods (parametric approach in assignment 6 and bootstrap) gave similar p values and the hypothesis that the two means are similar was rejected.  The advantage of bootstrap is that it did not make any assumptions about the variability of the variance nor was it required to estimate the variance.
While testing variances, the p value got from bootstraping is rather high that supports accepting the hypothesis that the variances are similar.  This p valuse is not comparable with the one we got in the parametric approach in assignment 5, because the test statistic used here (T=σ1 –σ2) is different from the F-statitic used in assignement 5 that is a ratio of variances.
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