CEE3430 Engineering Hydrology

Practice Test (There are six practice questions here – A 50 min test will likely not have more than three)

Solutions

1. Frequency Analysis

Following is peak annual flow data from a stream in Utah

			Mean of		
Mean	294.7		Logs	2.389	
Variance	29693		Var Logs	0.0786	
			Std Dev		
Std Dev	172.3		Logs	0.280	
			Skewness		
Skewness	0.864		Logs	-0.407	
Count	78		Logs are to base 10		
					-
Q (cfs)					
787	436	368	276	224	160
787 774	436 436	368 355	276 264	224 206	160 151
774	436	355	264	206	151
774 705	436 432	355 351	264 255	206 201	151 141

a) What is the probability of a flow of 500 cfs being exceeded in any one year

There are 9 flows greater than 500 cfs out of 78 years, so the probability is p=9/78 = 0.115

b) It is the end of the first year of a 5 year project and the flow of 500 cfs was not exceeded. What is the probability of a flow of 500 cfs being exceeded at least once in years 2 to 5 of the project.

What happened in year 1 is independent and hence not germane, so we are interested in the probability of 500 cfs being exceeded at least once in four sequential years. The probability of non exceedence in 4 years is $(1-p)^4$, so the probability of exceedence at least once in 4 years is $1-(1-p)^4=1-(1-9/78)^4=0.388$

c) Assume that this data fits a log-normal distribution, what is the flood with 50 year return period. Comment on whether this is consistent with the data.

For 50 year return period, exceedence probability is 1/T=1/50 = 0.02. Cumulative normal distribution value is F=1-1/T=0.98. Looking up in Normal distribution tables, the standard Z value corresponding to 0.98 is Z=2.054.

50 year return period flow is thus $Q = 10^{(Z \sigma_{logs} + \mu_{logs})} = 10^{(2.054 \times 0.28 + 2.389)} = 921 cfs$

d) Based on the information given is a normal or log-normal distribution likely to be a better fit for this data.

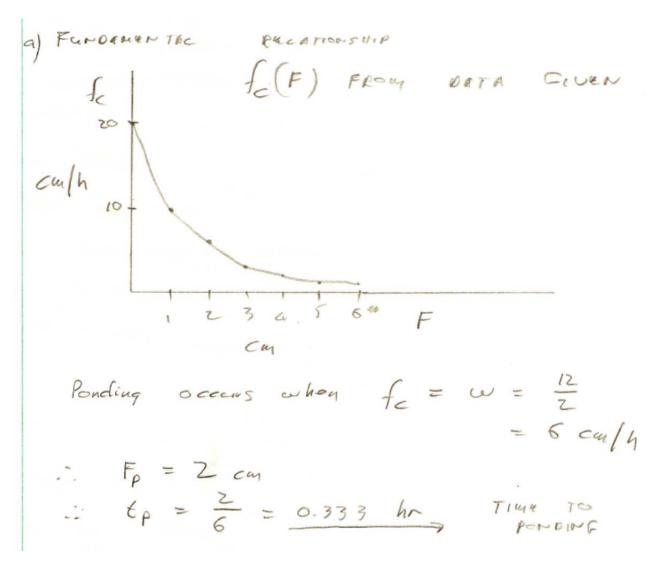
Since the skewness of the logs is closer to 0 than the skewness of the actual data, a log normal distribution fits better. However the difference (skewness of -0.407) is not trivial so in practice a better distribution should be saught. Another indicator of poor fit is the fact that the 50 year return period estimate is larger than the largest flood in 78 years.

2. The relationship between infiltration capacity and cumulative infiltration at a site has been determined from measurements to be given by

Cumulative infiltration (cm)	0	1	2	3	4	5	6	7	8	9	10
Infiltration capacity (cm/hr)	20	10	6	3	2	1	1	1	1	1	1

Consider a storm in which 12 cm of precipitation falls during 2 hours.

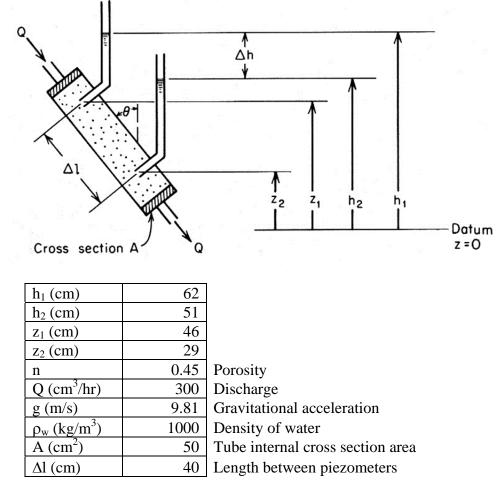
a) Calculate the time to ponding.



b) Calculate the depth of direct runoff from this storm.

b)
$$B_1 = 0.333 = \frac{1}{3} hr$$
 in to the storm
 $2 c_{44} hos infilleoter.$
 $C_{45} four f infilleoter role with finne
graph
 f
 $c_{4}h = \frac{1}{2}$
 $c_{5}h = \frac{1}{2}$
 $c_{6}c_{2}c_{4}h = \frac{1}{2}$
 $c_{6}c_{6}c_{6}c_{6}h = \frac{1}{2}c_{6}h =$$

Let f_{5} denote time of aling F = 5 cm and $f_{c} = 1$ cm/hr $\left(f_{5} - f_{4}\right) \times \frac{2 \cdot 1}{2} = 1$ \vdots $f_{5} = f_{4} + \frac{2}{3} = 1.622$ hr So ofta 1.622 hr 5 cm has infiltedod Roin stype of a 2 hr in time from 1.622 to 2 hr f = 1 cm/m \vdots Infiltedon = 2-01.622 = 0.378 cm So fotal infiltedon = 5.378 cm = 6.62 cm 3. Following is data for a Darcy experiment as depicted in the figure.



a) Calculate the hydraulic gradient

 $\frac{\Delta h}{\Delta l} = \frac{62 - 51}{40} = \frac{11}{40} = 0.275$

b) Calculate the hydraulic conductivity

$$Q = K A \frac{\Delta h}{\Delta l}$$
$$K = \frac{Q}{A \frac{\Delta h}{\Delta l}} = \frac{300 \ cm^3 / hr}{50 \ cm^2 \times 0.275} = 21.8 \ cm/hr$$

4. Consider a soil with the following Green-Ampt infiltration parameters.

K _{sat}	0.6 cm/h
$ \psi_{\rm f} $	20 cm
$\Delta \theta$	0.2

a) Calculate the cumulative infiltration required for ponding and time to ponding for a constant water input rate of 1.5 cm/h.

$$f_c = K_{sat} \left(1 + \frac{|\psi_f| \Delta \theta}{F} \right)$$

At ponding f_c=w
$$F_p = \frac{K_{sat} |\psi_f| \Delta \theta}{W - K_{sat}} = \frac{0.6 \times 20 \times 0.2}{1.5 - 0.6} = 2.67 \ cm$$
$$t_p = \frac{F_p}{W} = \frac{2.67}{1.5} = 1.78 \ hr$$

b) Assume the following storm

Time	Rainfall
(hours)	(cm)
0-1	1.5
1-2	2
22	

Calculate the runoff generated in each 1 hour time interval

In first hour time does not reach t_p for rainfall rate of 1.5 cm/h so there is no runoff For rainfall rate (water input rate) w = 2 cm/h

$$F_p = \frac{K_{sat} |\psi_f| \Delta \theta}{W - K_{sat}} = \frac{0.6 \times 20 \times 0.2}{2 - 0.6} = 1.7 \text{ cm}$$

This represents an additional 0.2 cm infiltration in the second hour so
$$t_p = 1 + \frac{0.2 \text{ cm}}{2 \frac{\text{cm}}{hr}} = 1.1 \text{ hr}$$

Now solve for infiltration under ponded conditions (equation 49)
$$t - t_s = \frac{F - F_s}{K_{sat}} + \frac{P}{K_{sat}} \ln \left(\frac{F_s + P}{F + P}\right)$$

With $t_s = t_s = 1.1$ hr, $t_s = 2$ hr $F_s = F_s = 1.7$ cm, $P = 20 \times 0.2 = 4$ cm and $K_{sat} = 0.6$ cm

With $t_s=t_p = 1.1$ hr, t=2 hr $F_s=F_p=1.7$ cm, $P=20 \ge 0.2 = 4$ cm and $K_{sat} = 0.6$ cm Solving implicitly I get F = 3.142 cm, Therefore runoff generated = 3.5 - 3.142 = 0.358 cm. This is all in the second hour.

Runoff
(cm)
0
0.358

4.5. A reservoir has a linear *S*-*Q* relationship of

S = KQ,

where K = 1.21 hr. The inflow hydrograph for a storm event is given in the table.

- a) Develop a simple recursive relation using the continuity equation and S-Q relationship for the linear reservoir [i.e., $aQ_2 = bQ_1 + c\overline{I}$, where a, b, and c are constants and $\overline{I} = (I_1 + I_2)/2$].
- b) Storage route the hydrograph through the reservoir using $\Delta t = 1$ hr.
- c) Explain why the shape of storage-discharge relations is usually not linear for actual reservoirs.

For test

Time (hr)	Inflow (m^3/s)
0	0
1	200
2	100
3	0

Solution

a) The continuity equation is:

$$In - Out = \Delta S / \Delta t$$

Or

$$(I_i + I_{i+1})(\Delta t/2) - (O_i + O_{i+1})(\Delta t/2) = \Delta S = S_{i+1} - S_i$$

Substituting for S = KQ and rearranging yields:

$$(I_i + I_{i+1})(\Delta t/2) - (O_i + O_{i+1})(\Delta t/2) = K (O_{i+1} - O_i)$$

$$(K/\Delta t + 0.5)O_{i+1} = I + (K/\Delta t - 0.5)O_i$$

b) For K = 1.21 and Δt = 1, the equation found in part (a) becomes:

$$1.71 O_{i+1} = I + (0.71) O_i$$

Time (hr)	Inflow (m^3/s)	$I = (I_i + I_{i+1})/2$	Outflow (m ³ /s)
0	0	-	0
1	200	100	(100+0.71*0)/1.71= 58.5
2	100	150	(150+0.71*58.5)/1.71= 112
3	0	50	(50+0.71*112)/1.71= 75.7

c) Storage is rarely uniform with depth since few reservoirs are uniform in shape. Most outflow structures have flow relations which are a function of depth raised to a power. Both of these facts lead to a non-linear storage-discharge relation.

6.

4.6. Given the reservoir with a storage-discharge relationship governed by the equation

$$S = KQ^{3/2},$$

route the inflow hydrograph for problem 4.5 using storage routing techniques and a value of K = 1.21 for Q in m³/s and S in m³/s-hr. Discuss the differences in the outflow hydrograph for this reservoir and for the reservoir of problem 4.5. Use $\Delta t = 1$ hr.

Solution

From the storage equation given,

$$S = KQ^{3/2}$$
, $K = 1.21$

We can obtain the storage-discharge relationship and the storage-indication curve:

For example, take Q = 50 cms:

 $S = 1.21 (50)^{3/2} = (1.21)(353.55) = 427.80 \text{ cms-hr}$

$$2S/\Delta t + Q = [2 (427.80) \text{ cms-hr} / 1 \text{ hr}] + 50 \text{ cms} = 906 \text{ cms}$$

The following table and graph show these computations for a range of outflows:

Storage	Outflow	2S/∆t + Q	·
(cms - hr)	(cms)	(cms)	Storage-Indication Curve
0.00	0	0	storage marcation curve
38.26	10	87	3300
108.23	20	236	3000
198.82	30	428	2700
306.11	40	652	5 2100
427.80	50	906	α 1800
562.36	60	1185	+ 1500 = 1200
708.65	70	1487	1200 St 900
865.81	80	1812	600
1033.12	90	2156	0
1210.00	100	2520	0 20 40 60 80 100 120
1395.96	110	2902	Q (cms)
1590.59	120	3301	Q (cms)

The above is from the solutions manual, but you can evaluate fewer values in a test

Puls method	routing is ba	used on the equation
$\frac{(S_{i+1}+S_i)}{2}$	$I_{i+1} + I_i$	$Q_{i+1} + Q_i$
Δt –	2	2
which gives		
$\frac{2S_{i+1}}{\varDelta t} + Q_{i+1}$	$= I_{i+1} + I_i$	$+\frac{2S_i}{\Delta t}-Q_i$

Time (hr)	Inflow I (m^3/s)	2S/∆t-Q	$2S/\Delta t+Q$	Outflow (m ³ /s)
0	0	0 (initial value)		0 (initial value)
1	200	3. 200-2*17.6 =164.8	1. 200+0+0=200	2. 17.6 (interpolating from column to left in the table above) (200-87)/(236-87)*20+ (236-200)/(236-87)*10
2	100	6. 464.8-2*31.6 =401.6	4. 164.8+200+100 =464.8	5. 31.6 by interpolating (464.8-428)/(652-428)*40+ (652-464.8)/(652-428)*30
3	0	9 . 501.6-2*33.3 =435	7. 401.6+100+0 =501.6	8. 33.3 by interpolating (501.6-428)/(652-428)*40+ (652-501.6)/(652-428)*30
4	0		10. 435+0+0 =435	11. 30.3 by interpolating (435-428)/(652-428)*40+ (652-435)/(652-428)*30

The sequence of calculations is shown by the red numbers.