CEE3430 Engineering Hydrology

Infiltration example problem

Consider a soil of given type (e.g. **silty clay loam**) and given an input rainfall hyetograph, calculate the infiltration and the runoff. Initial soil moisture content 0.3. Rainfall rate 2 cm/hr, for 3 hours.

This is an event based calculation of runoff

Solution outline

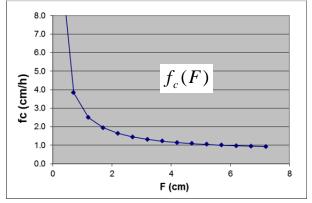
1. Determine soil properties from texture (Table 1 p 4:18)

These are the parameters of the problem (time invariant quantities that describe behavior in a particular situation).

K _{sat}	
n	
Ψa	
b	

2. System state described by initial condition and the depth of water that has infiltrated up to any point in time

 $\theta_0 = 0.3$ F = 0 cm at t=0 cm (will change during course of the event)

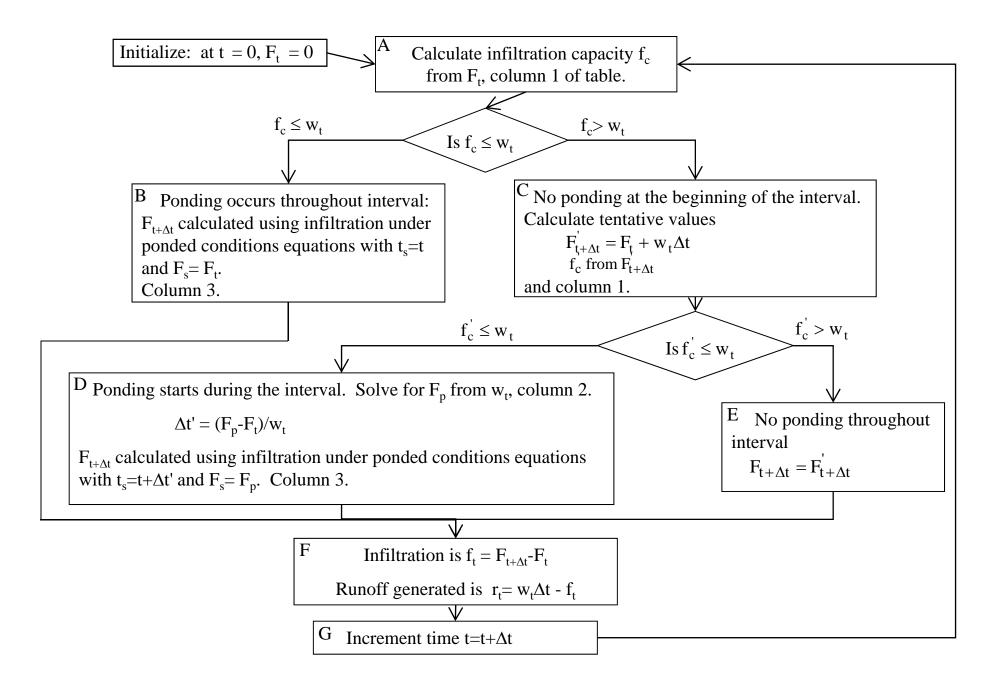

3. Establish Infiltrability – Depth approximation. In Green-Ampt approach this is based on hydraulic gradient over the depth of penetration of wetting front, Darcy's equation and suction in advance of a wetting front (Infiltration18.pptx, slide 13)

$$f_c = K_{sat} \left(1 + \frac{|\psi_f| \Delta \theta}{F} \right) = K_{sat} \left(1 + \frac{P}{F} \right)$$

$ \psi_f = \frac{2b+3}{2b+6} \psi_a \text{equation } 44$	
$\Delta \theta = n - \theta_o$	
Р	

F cm		
f _c cm/h		

 $f_c(F)$ relationship serves as foundation for calculations that follow


4. Ponding (saturation at the surface) first occurs when $f_c=W$ (water input rate or rainfall rate) This idea lets you solve for the depth of water that has to infiltrate before ponding occurs, F_p , and the time to ponding t_p for a particular input rate W.

F _p cm	
t _p h	

5. After ponding the rate of increase in F (remember, this is a state variable describing the state of the system) is limited by the infiltration capacity

$$\frac{dF}{dt} = f_c(F) = K_{sat} \left(1 + \frac{P}{F} \right)$$

Solving this gives an equation relating F and t for ponded conditions

Equations for variable surface water input intensity infiltration calculation.

	Infiltration capacity	Cumulative infiltration at ponding	Cumulative infiltration under ponded conditions
Green-Ampt	$f_c = K_{sat} \left(1 + \frac{P}{F} \right)$	$F_{p} = \frac{K_{sat}P}{(w - K_{sat})}$	$t - t_{s} = \frac{F - F_{s}}{K_{sat}} + \frac{P}{K_{sat}} ln\left(\frac{F_{s} + P}{F + P}\right)$
Parameters K _{sat} and P		$W > K_{sat}$	Solve implicitly for F
Horton	$\mathbf{F} = \frac{\mathbf{f}_{\mathbf{O}} - \mathbf{f}_{\mathbf{C}}}{\mathbf{k}} - \frac{\mathbf{f}_{1}}{\mathbf{k}} \ln \left(\frac{\mathbf{f}_{\mathbf{C}} - \mathbf{f}_{1}}{\mathbf{f}_{\mathbf{O}} - \mathbf{f}_{1}} \right)$	$F_p = \frac{f_o - w}{k} - \frac{f_1}{k} ln \left(\frac{w - f_1}{f_o - f_1}\right)$	Solve first for time offset t_o in $F_s = f_1(t_s - t_o) + \frac{(f_o - f_1)}{k}(1 - e^{-k(t_s - t_o)})$
Parameters k, f ₀ , f ₁ .	Solve implicitly for f _c given F	$f_c \le w \le f_o$	$\Gamma_{S} = \Gamma_{I}(\tau_{S} - \tau_{O}) + \frac{1}{k} (1 - e^{-\varepsilon_{O}})$ then
			$F = f_1(t - t_0) + \frac{(f_0 - f_1)}{k}(1 - e^{-k(t - t_0)})$
Philip	$f_{c}(F) = K_{p} + \frac{K_{p}S_{p}}{\sqrt{S_{p}^{2} + 4K_{p}F} - S_{p}}$	$F_{p} = \frac{S_{p}^{2}(w - K_{p}/2)}{2(w - K_{p})^{2}}$	Solve first for time offset to in
Parameters K _p and S _p		$W > K_p$	$t_{o} = t_{s} - \frac{1}{4K_{p}^{2}} \left(\sqrt{S_{p}^{2} + 4K_{p}F_{s}} - S_{p} \right)^{2}$
			then
			$F = S_p(t - t_o)^{1/2} + K_p(t - t_o)$

Parameters		Column 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
T arameters	-		Incremental	Rainfall	4	5	0	,	0	3	10		12	15	14	15	10	
f _o (cm/h)	6	Time	Rainfall	Intensity	Ft	g(f _c)	f	F'	g(f _c ')	f _c '	$F_p \text{ or } F_s$	dť'	t	t _o	h(t _o)	$F_{t+\Delta t}$	Infiltration	Bunoff
	0	Time	rtainai	interiory	' t	9(ic)	f _c	Г	9(ic)	'C	1 _p OI1 _s	aı	t _s	۰ ₀	II(t ₀)	• t+∆t	inintration	Runon
f ₁ (cm/h)	1	(h)	(cm)	(cm/h)	(cm)		(cm/h)	(cm)		(cm/h)	(cm)	(h)	(h)	(h)		(cm)	(cm)	(cm)
k (h ⁻¹)	2	0	0.7															
Δt (h)	0.50	0.50	2															
		1.00	0.8															
	-	1.50	1															
		1.00	•															
	-	2.00																

Short Example. Calculation of runoff using the Horton infiltration equation.