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a b s t r a c t

Land surface topography is one of the most important terrain properties which impact hydrological,
geomorphological, and ecological processes active on a landscape. In our previous efforts to develop
a soil depth model based upon topographic and land cover variables, we derived a set of hydrological
proximity measures (HPMs) from a Digital Elevation Model (DEM) as potential explanatory variables for
soil depth. These HPMs are variations of the distance up to ridge points (cells with no incoming flow) and
variations of the distance down to stream points (cells with a contributing area greater than a threshold),
following the flow path. The HPMs were computed using the D-infinity flow model that apportions flow
between adjacent neighbors based on the direction of steepest downward slope on the eight triangular
facets constructed in a 3 � 3 grid cell window using the center cell and each pair of adjacent neighboring
grid cells in turn. The D-infinity model typically results in multiple flow paths between 2 points on the
topography, with the result that distances may be computed as the minimum, maximum or average of
the individual flow paths. In addition, each of the HPMs, are calculated vertically, horizontally, and along
the land surface. Previously, these HPMs were calculated using recursive serial algorithms which suffered
from stack overflow problems when used to process large datasets, limiting the size of DEMs that could
be analyzed. To overcome this limitation, we developed a message passing interface (MPI) parallel
approach designed to both increase the size and speed with which these HPMs are computed. The
parallel HPM algorithms spatially partition the input grid into stripes which are each assigned to separate
processes for computation. Each of those processes then uses a queue data structure to order the pro-
cessing of cells so that each cell is visited only once and the cross-process communications that are
a standard part of MPI are handled in an efficient manner. This parallel approach allows efficient analysis
of much larger DEMs than were possible using the serial recursive algorithms. The HPMs given here may
also have other, more general modeling applicability in hydrology, geomorphology and ecology, and so
are described here from a general perspective. In this paper, we present the definitions of the HPMs, the
serial and parallel algorithms used in their computation and their potential applications.
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Email: david.tarboton@usu.edu
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compiled executables and as source code suitable for
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Toolbox, and a guide to using the TauDEM command line
functions are also included.
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Hardware requirements: It works on Windows PCs, Laptops, and
Linux clusters.

Software requirements: The compiled executables have been tested
onWindows XP, Vista, andWindows 7. The source code is
suitable for compilation on other systems including Linux
clusters. The open source MPICH2 library from Argonne
National Laboratory, available at (http://www.mcs.anl.
gov/research/projects/mpich2/), is required.

Programming language: Standard Cþþ
Size: 12 MB

1. Introduction

Topography has a major impact on the hydrological, geomor-
phological, and ecological processes active on the landscape
(Moore et al., 1991). The most widely used digital representation of
topography is through Digital Elevation Models (DEMs) which
represent topography as rectangular grids of terrain data composed
of cells arranged as raster. Each grid cell holds a value for the
elevation of the geographic area it represents.

DEMs are widely applied in hydrology, geomorphology, ecology
and biology, encouraging scientists to derive useful topographic
attributes from a Digital Elevation Model (DEM) to represent the
role of topography in hydrological, geomorphological and ecolog-
ical models (Hengl and Reuter, 2009; Moore et al., 1991;Wilson and
Gallant, 2000). Moore et al. (1991) reviewed many topographic
attributes and their potential applications. Wilson and Gallant
(2000) documented examples of applications of topographic
attributes in hydrology, geomorphology and biology. Comprehen-
sive examples of applications of DEM and DEM derived attributes in
hydrology, geomorphology, geology, soil science, vegetation
science, climatology and meteorology have been documented in
Hengl and Reuter (2009).

Application of DEMs in hydrology ranges from definition of
awatershed, which is the basic modeling element, to predicting soil

moisture patterns on a landscape using various indices (Beven and
Kirkby,1979; Burt and Butcher,1985;Moore et al., 1993;Wilson and
Gallant, 2000). In geomorphology, topographic attributes are used
to automate classification of landform elements, and to predict
areas of specific landforms (Moore et al., 1993; Wilson and Gallant,
2000). Through its complex interactions with other soil forming
factors (parent material, climate, biological, chemical and physical
processes) topography plays an important role in pedometrics to
characterize soil properties (Dietrich et al., 1995; Hengl and Reuter,
2009; Jenny, 1941; Moore et al., 1993; Odeh et al., 1994; Saco et al.,
2006; Summerfield, 1997; Wilson and Gallant, 2000). In ecology
and biology topographic indices are used to predict the spatial
distribution of different plant species and to assess and manage
biological productivity and diversity (Hengl and Reuter, 2009;
Moore et al., 1991; Wilson and Gallant, 2000).

Encouraged by the uses of DEMs in various fields of earth science,
there have been many efforts to improve DEM analysis methods.
Several DEM pit removal methods have been developed to create
a hydrologically correct DEM which is an important first step in the
development of a terrain based flow model (Arge et al., 2003;
Garbrecht and Martz, 1995, 1997; Grimaldi et al., 2007; Planchon
and Darboux, 2001; Soille et al., 2003, 2004). Terrain based flow
models enrich the information available from DEMs by deriving
a structured representation of the flow field that serves as a basis for
calculation of flow related quantities (Tarboton and Baker, 2008).
There are two types of terrain basedflowfield representations: single
and multiple flow direction models. The D8 single flow direction
model proposed by O’Callaghan and Mark (1984), uses the direction
of steepest descent toward one of the eight (cardinal and diagonal)
neighboring grid cells to represent the flow field (Band,1986; Jenson,
1991; Jenson and Domingue, 1988; Mark, 1988; Marks et al., 1984;
Martz and Garbrecht, 1992; Morris and Heerdegen, 1988;
O’Callaghan and Mark, 1984). This is limited because it can assign
flow in only one of the eight directions (Costa-Cabral and Burges,
1994; Fairfield and Leymarie, 1991; Tarboton, 1997) (Fig. 1). As an

Fig. 1. The D8 and DN flow models.
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attempt to overcome this limitation, multiple flow direction
methods, which proportion the outflow from each grid cell between
one or more down slope grid cells, were proposed in several papers
(Freeman, 1991; Quinn et al., 1991; Seibert and McGlynn, 2007;
Tarboton, 1997). The D-infinity (DN) flow model (Tarboton, 1997) is
a widely used multiple flow direction method. It represents flow
direction as a vector along the direction of steepest downward slope
on the eight triangular facets centered at each grid cell. Flow from
a grid cell is shared between the two down slope grid cells closest to
the vectorflowangle basedon angle proportioning (see Fig.1). Taking
the advantage of the D-infinity flow model, Tarboton and Baker
(2008) proposed a new flow formalism that generalizes the DN
algorithm for calculating contributing area to derive a wide range of
flow related quantities useful for hydrological and environmental
modeling.

Many efforts have been exerted to enhance topographic infor-
mation extracted from DEMs, their applications and DEM analysis
software tools. Land surface parameters, have been used to predict
terrain characteristics, using localized horizontal distance to
constrain the calculations (Etzelmuller et al., 2007; Florinsky et al.,
2002), and hydrologic proximity measures have been used to
predict terrain characteristics using terrain based flow models to
constrain the calculations (MacMillan et al., 2000). Slope angle, slope
aspect, curvature, altitude and distances to roads and rivers have
been used in combination with soil and land cover factors to predict
landslide susceptibility (Pradhan and Lee, 2010). Flow lengths have
been used to characterize geomorphological instantaneous unit
hydrographs (Rodriguez-Iturbe and Valdes, 1979) and to estimate
water residence times (McGuire et al., 2005). White et al. (2004)
used flow lengths to contrast geomorphologic and hydrodynamic
dispersion. Flow lengths have also been used to characterize water
quality (Alexander et al., 2000; Soranno et al., 1996) and to under-
stand the influence of the spatial arrangement of watershed attri-
butes onwater quality and biotic responses in a variety of ecological
analyses (Frimpong et al., 2005; King et al., 2005, 2004; Van Sickle
and Johnson, 2008). Software tools that couple DEM analysis with
distributed hydrological modeling have been developed, enabling
integrated model construction and data assimilation, enhanced
model set up and automatic generation of catchment datasets
(Birkinshaw et al., 2010; Karssenberg et al., 2010). Schwanghart and
Kuhn (2010) developed a set of Mathlab functions (TopoToolbox) for
topographic analysis providing utilities for hydrological and
geomorphological researches that involve DEM analysis and spatial
variability of material fluxes such as water, sediment, chemicals and
nutrients.

DEM production techniques have evolved from difficult time
consuming ground based surveys which may miss significant
elements of the landscape to the remote sensing based SRTM
(Shuttle Radar Topography Mission), airborne laser scanning
(LiDAR), terrestrial laser scanning (TLS) and interferometric
synthetic aperture radar (InSAR) that are robust and accurate tech-
niques resulting in high quality DEMs (Hengl and Reuter, 2009; Liu
et al., 2005; Rayburg et al., 2009). As a result of the improvement
in DEM production techniques, availability of large high resolution
DEMs is increasing rapidly. Encouraged by this and the advance-
ments in computing technology, Vaze et al. (2010) quantified the
impact of using different resolution DEMs on hydrologically impor-
tant variables and the loss of accuracy and reliability of results as one
moves from fine to coarser resolution, recommending to use finer
resolution DEMs. But, using large fine resolution DEMs taxes the
ability of current DEM analysis software tools. The TerraStream
package addresses this issue by using a detailed memory and I/O
management scheme (Danner et al., 2007). The developments in
computer technology have increased the availability of multi-core
PCs and multi-processor clusters, pointing to parallel processing as

another possible solution for analyzing large DEMs. Message Passing
Interface (MPI), is a common approach to distributing the execution
of a program over multiple processors. Unlike some of the other
common parallel processing approaches, MPI works in both shared
and distributed memory systems and permits both task and data
parallelism. In using MPI, the task is divided into parts (i.e., parti-
tions) where each partition is processed by a separate process
assigned to a separate processor using separate memory, and
messages are periodically sent between these separate processes to
coordinate processing so that the entire task is effectively completed
(Kumar, 2001). Exploiting parallel processing and MPI for DEM
analysis requires the development of new algorithms that allow for
decomposition into partitions and allocate the parts to separate
processes for computation.

In our work (Tesfa et al., 2009) to identify explanatory variables
for soil depth, we derived a set of HPMs from a Digital Elevation
Model (DEM) based on the DN flow model (Tarboton, 1997).
Initially, the HPMs were evaluated using memory based recursive
serial algorithms which were computationally demanding,

Table 1
Hydrologic proximity measures calculated.

Direction Path Flow path
variation

Measure name Measure
abbreviation

Distances
up

Horizontal
(hr)

Maximum Maximum horizontal
distance to ridge

lhr

Minimum Minimum horizontal
distance to ridge

shr

Average Average horizontal distance
to ridge

ahr

Vertical (vr) Maximum Maximum vertical rise to
ridge

lvr

Minimum Minimum vertical rise to
ridge

svr

Average Average vertical rise to
ridge

avr

Surface (sr) Maximum Maximum surface distance
to ridge

lsr

Minimum Minimum surface distance
to ridge

ssr

Average Average surface distance to
ridge

asr

Direct
transect (pr)

Maximum Maximum direct transect
distance to ridge

lpr

Minimum Minimum direct transect
distance to ridge

spr

Average Average direct transect
distance to ridge

apr

Distances
down

Horizontal
(hs)

Maximum Maximum horizontal
distance to stream

lhs

Minimum Minimum horizontal
distance to stream

shs

Average Average horizontal distance
to stream

ahs

Vertical (vs) Maximum Maximum vertical drop to
stream

lvs

Minimum Minimum vertical drop to
stream

svs

Average Average vertical drop to
stream

ava

Surface (ss) Maximum Maximum surface distance
to stream

lss

Minimum Minimum surface distance
to stream

sss

Average Average surface distance to
stream

ass

Direct
transect (ps)

Maximum Maximum direct transect
distance to stream

lps

Minimum Minimum direct transect
distance to stream

sps

Average Average direct transect
distance to stream

aps
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especially in terms of memory requirements that limited their
application to large datasets.

To overcome the limitations, we developed Message Passing
Interface (MPI) parallel algorithms to compute this class of HPMs
(Table 1). The parallel implementations enable rapid calculation
over large areas by spatially decomposing the input grid into
partitions which are assigned to separate processes for computa-
tion. They make use of a queue data structure to order the
consideration of cells such that each cell is visited only once and
cross-partition communications are handled in an efficientmanner.
These algorithms enhance the memory management and pro-
cessing speed of large DEMs as compared to the serial recursive
algorithms. In this paper, we present the definitions of the HPMs,
the serial and parallel algorithms used in their computation and
their potential applications in hydrology, geomorphology and
ecology.

The paper is organized as follows: Section 2 presents the defi-
nition of the hydrologic distance measures. Section 3 reports the
serial and parallel computation of the variables. Section 4 presents
the results of the evaluation and timing tests using large datasets.
Section 5 discusses some potential additional applications of the
variables. Finally, we give our concluding remarks in Section 6.

2. Definitions

To derive the topographic attributes, first a hydrologically
correct DEM is created by filling sinks. Then flow direction is
calculated using the DN flowmodel (Tarboton, 1997). The DN flow
model (Fig. 1) represents flow direction as a vector along the
direction of the steepest downward slope on eight triangular facets
centered at each grid cell. The important outcome fromderiving the
flow field based on the DN model is a set of proportions, Pij,
defining the proportion of grid cell i that drains to grid cell j. The
values of Pij range between 0 and 1, subject to the condition
that

P
j Pij ¼ 1. With the flow field defined using proportions,

recursion, extending the recursive algorithms used for contributing
area (Tarboton, 1997; Tarboton and Baker, 2008), is used to define
and initially compute the set of hydrologic proximity measures
grouped as Distances Up and Distances Down. Within each group,
there are measures for each combination of flow path (horizontal,
vertical, surface and transect) and flow path variation (maximum,
minimum and average), for a total of 12 measure variations in each
group (Table 1).

2.1. Distances up

The distances up represent flow distances from the grid cell of
interest to upslope ridge grid cells. A ridge grid cell is defined as
a grid cell that does not receive any flow from its upslope neigh-
bors. There are a number of different ways that distance up to
a ridge cell may be calculated and we define four distance up
measures that comprise horizontal, vertical, surface and direct
transect distances (Fig. 2).

2.1.1. Horizontal distance to ridge (hr)
The horizontal distance to ridge is defined as the horizontal flow

distance tracing upslope from a grid cell to a ridge grid cell
computed based on the DN flow model. Because multiple flow
paths may converge at any grid cell, there may be multiple upslope
ridge grid cells. We therefore define three variants of the horizontal
distance to ridge. The longest horizontal distance to ridge (lhr) is
the flow distance to the furthest upslope ridge grid cell. The
shortest horizontal distance to ridge (shr) is the flow distance to the
nearest upslope ridge grid cell. The average horizontal distance to
the ridge (ahr) is the mean horizontal flow distance based on the
proportions of incoming flow from upslope grid cells. Numerically,
these are computed as follows:

lrðiÞ ¼
� Max

fk:Pki>0g
ðdistði; kÞ þ lrðkÞÞ P

Pki>0

0
P

Pki � 0
(1)

srðiÞ ¼
� Min

fk:Pki>0g
ðdistði; kÞ þ srðkÞÞ P

Pki>0

0
P

Pki � 0
(2)

arðiÞ ¼
8<
:

P
Pkiðdistði; kÞ þ arðkÞÞP

Pki

P
Pki>0

0
P

Pki � 0
(3)

Here dist(i, k) gives the horizontal distance from grid cell i to its
upslope neighbor k, using the x (dx) and y (dy) dimensions of the
grid cell, accounting for whether the cells are adjacent or diagonal
neighbors.

distði; kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dy2

q
(4)

In Eqs (1)e(3), lr, sr, and ar are used with Eq. (4) to evaluate lhr,
shr and ahr, respectively. The h is omitted from the notation in Eq.
(1)e(3) because these equations are used with different distance
definitions to compute other distance measures. Pki defines the
proportion of grid cell k that drains to grid cell i and the notation
{k:Pki> 0} indicates the set of neighbors, k, that have a proportion of
their flow contributing to grid cell i. The minimization or maxi-
mization of the distance is over this set. Eq. (3) computes an
average based on the proportion of neighbor cell k that drains to
cell i. Thus, all measures derived from ar are the average of the
multiple flow paths based on flow fraction. When in ahr, this
proportion based average is combined with the horizontal distance
shown in Eq. (4), the result does not represent a straight line hor-
izontally. Rather it represents an average of horizontal (plan)
distances along the flow paths ending at a ridge point.

2.1.2. Vertical rise to ridge (vr)
The vertical rise to ridge is a vertical flow distance from any grid

cell i defined by tracing upslope from the grid cell based on the DN
flow model. Analogous to the horizontal distance to ridge, it has
longest (lvr), shortest (svr) and average (avr) variants. Numerically,
these are evaluated using Eqs. (1)e(3) but calculating distance

Fig. 2. Definition of distances up and distances down: hr ¼ horizontal distance to
ridge; vr ¼ vertical rise to ridge; sr ¼ surface distance to ridge; pr ¼ direct transect
distance to ridge; hs ¼ horizontal distance to stream; vs ¼ Vertical drop to stream;
ss ¼ surface distance to stream; and ps ¼ direct transect distance to stream.
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vertically, that is as the elevation difference between grid cell i (zi)
and its upslope neighbor k (zk).

distði; kÞ ¼ zk � zi (5)

The vertical rise to the ridge has its highest value at stream grid
cells at the foot of high hillslopes and a value of 0 at ridge grid cells
(Fig. 3).

2.1.3. Surface distance to ridge (sr)
The surface distance to ridge is defined as flow distance from the

ridge to any grid cell i along the surface (Fig. 2). This is evaluated
using an “along the surface distance metric”:

distði; kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dy2 þ ðzk � ziÞ2

q
(6)

Longest (lsr), shortest (ssr) and average (asr) variants of surface
flow distance to ridge from any grid cell i are calculated using Eqs.
(1)e(3) in conjunction with Eq. (6).

2.1.4. Direct transect distance to ridge (pr)
The direct transect distance to ridge is defined by combining

vertical and horizontal flow distances along the full length of
a hillslope (Fig. 2) using the Pythagorean theorem. Three variants of
direct transect distances to ridge (longest, shortest and average) are
defined from the corresponding horizontal and vertical distance to
the ridge as follows:

Longest direct transect distance to ridge lpr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lhr2 þ lvr2

p
(7)

Shortest direct transect distance to ridge spr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
shr2 þ svr2

p
(8)

Average direct transect distance to ridge apr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ahr2 þ avr2

p
(9)

Note that because the measures lhr and lvr do not necessarily result
from the same ridge cell (as is true of shr and svr, and ahr and avr),
these measures are somewhat abstract and can only be conceptu-
ally visualized as shown in Fig. 2.

2.2. Distances down

The distances down represent flow distances from the grid cell
of interest to down slope grid cells that represent a designated flow
path end point. Here we designate these as stream grid cells,
although any set of grid cells could be used. In hydrologically
correct fluvial terrain (where sinks have been removed) all flow
paths eventually leave the DEM, but the point where a flow path
leaves the domain is arbitrary, and lacking in physical meaning. To
have down slope distances that are interpretable as distances to
streams the designated flow path end points should be streams. In
this work the stream network was mapped using TauDEM software
(http://hydrology.usu.edu/taudem) with a drainage area threshold
specified in terms of the number of contributing grid cells. Another
method that could have been used to identify the streamnetwork is
drop analysis, where a weighted support area threshold is chosen
objectively using a t test to select the highest resolution drainage

Fig. 3. Visualization of horizontal distance to stream and vertical rise to ridge.
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network with mean drop of first order streams not significantly
different from the mean drop of higher order streams. Thus, drop
analysis allows a drainage network consistent with geomorphology
to be delineated without the need to subjectively choose a support
area threshold parameter (Tarboton and Ames, 2001; Tarboton
et al., 1991, 1992). We define four measures of distance to stream:
the horizontal distance to stream, vertical drop to stream, surface
distance to stream and direct transect distance to stream (Fig. 2).

2.2.1. Horizontal distance to stream (hs)
The horizontal distance to stream is defined as a horizontal flow

distance from a grid cell i to a stream grid cell calculated by tracing
down slope based on the DN flow model. There are three variants
for this: the longest (lhs), shortest (shs) and average (ahs) horizontal
flow distance to stream. Numerically, these are represented as
follows:

lsðiÞ ¼ Max
fk:Pik>0g

ðdistði; kÞ þ lsðkÞÞ (10)

ssðiÞ ¼ Min
fk:Pik>0g

ðdistði; kÞ þ ssðkÞÞ (11)

asðiÞ ¼
X

Pikðdistði; kÞ þ asðkÞÞ=
X

fk:asðkÞ�0g
Pik (12)

Eqs. (10)e(12) are similar to (1)e(3) except that subscripts i and
k are interchanged so that the neighbor grid cell k is down slope
from grid cell i. In Eqs. (10)e(12) ls, ss, and as are computed using
the horizontal distance between the center of the target grid cell i
and its down slope neighbor k given by Eq. (4). The notation
{k:Pik> 0} indicates the set of neighbors, k, that receive a proportion
of flow contributed from grid cell i. The minimization or maximi-
zation is over this set. The h is omitted from the notation in Eqs.
(10)e(12) because these equations are also used with different
distance definitions to compute other distance measures. Compu-
tation of these measures requires that their distance values be
initialized to 0 on the designated end point (stream) grid cells. The
denominator in Eq. (12) is to normalize for flow paths that leave the
domain without reaching a designated end point grid cell. There is
the option that we have implemented in the code to report no data,
rather than use this normalization. This effectively limits compu-
tation to grid cells where all down slope flow paths end at
a designated end point. The horizontal distance to stream is highest
at the ridge grid cells and 0 at the stream grid cells (Fig. 3).

2.2.2. Vertical drop to stream (vs)
The longest (lvs), shortest (svs) and average (avs) vertical drop to

stream from any grid cell i is calculated by tracing down slope from
a grid cell completely analogously to the horizontal distance to
stream calculations based on the DN flow model. But, in this case,
elevation differences (Eq. (5)) are used for the distance function.

2.2.3. Surface distance to stream (ss)
Similar to the surface distance to ridge, surface distance to

stream from any grid cell i is calculated based on the DN flow
model using the dist(i,k) function in Eq. 6. There are longest (lss),
shortest (sss) and average (ass) variants of surface distance to the
stream.

2.2.4. Direct transect distances to stream (ps)
Similar to the direct transect distance to the ridge, direct tran-

sect distance to stream is computed from both vertical and hori-
zontal flow distances to stream along the full length of a hillslope
(Fig. 2) by combining them using the Pythagorean theorem. The

three variants of direct transect distances to stream (longest,
shortest and average) are similar to Eqs. (7)e(9) respectively,
except that stream (s) replaces ridge (r).

3. Computation algorithms

Initially we developed serial algorithms to calculate the various
distances up and down from the DEM using Eqs. (1)e(12). The
serial algorithms use recursion implemented directly following the
definitions of the variables. However, the recursive algorithms can
be inefficient in terms of memory requirements for computation of
a large dataset because the entire grid is held in RAM and function
state is saved on a stack at each recursion step and may cause stack
overflow problem when used to process large datasets. To over-
come this limitation, we developed MPI parallel algorithms. The
parallel algorithms divide the domain into separate partitions to be
evaluated in separate processes running on potentially separate
processors with potentially separate memory. A queue is used in
each process to manage the computation of grid cells after their
dependencies have been evaluated. Both the serial and parallel
algorithms are described in the following subsections.

3.1. Distances up e serial

The serial algorithms that compute the distances up are recur-
sive because the distance value at the target grid cell i depends on
the value at its upslope neighbor, grid cell k. The function calls itself
if it finds a neighbor that contributes flow to the target grid cell. The
terminal condition for the recursion is that the ridge grid cells that
have no contribution from upslope neighbors (i.e.

P
Pki ¼ 0) are

assigned a distance value of 0. The functions have an option to
check edge contamination; that is, tracking if the target grid cell
receives flow from a neighbor grid cell which has a no data value
(edge grid cells or grid cells that receive flow from edge grid cells).
In such case, if the edge contamination option is selected the
distance up of the target grid cell is set to no data value.

The inputs include the D-infinity flow direction grid and pit
filled elevation grid. The D-infinity flow direction grid, measured in
radians, counter clockwise from east (computed using TauDEM), is
used to calculate the proportion of flow from each upslope
neighbor to the target grid cell. The pit filled elevation grid is used
to compute elevation differences between the target grid cell and
its neighbors in calculating the vertical rise to ridge and surface
distances. The serial implementation of the distance up function is
shown in Algorithm 1 (Table 2).

3.2. Distances down e serial

The serial distances down functions use a recursive algorithm
similar to Algorithm 1, but the direction of recursion is down slope
because the distance at the grid cell i depends on the value of its
down slope neighbor, grid cell k. The function calls itself whenever
it finds a neighbor that receives flow from the target grid cell. The
recursion terminates at grid cells on a designated flow path end
point (stream) where the distances are initialized to 0.

Similar to the distance up functions, these functions have an
option to check edge contamination where, if the option is selected,
the distance down of the target grid cell is set to the no data value
unless all flow paths from that cell end at a designated flow path end
point. Unlike the distance upmeasures which do not require that the
path continue to the edge of the spatial extent, distance down
requires a designated flow path end point (stream). Therefore a no
data result can occur if there are no designated flow path end points
on any down slope flow paths, regardless of how the edge
contamination option is set. This asymmetry in the functionsmirrors
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Table 2
Algorithm for serial implementation of distance up and distance down functions.
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the asymmetry in topography where flow paths can start anywhere,
but with a hydrologically correct DEM, they have to leave the
domain. The distance down functions use the D-infinity flow
direction grid, pit filled elevation grid, and stream raster grid as
inputs. The stream raster is a grid indicating designated flow path
end points by the grid cell value 1 on streams and 0 off streams used
to initialize the distances to stream to 0. The serial implementation
of the distance down function is shown in Algorithm 1 (Table 2).

3.3. Parallel computations

The first requirement to compute the distances up and distances
down according to formulas (1)e(12) in parallel is to be able to
partition the data across parallel processes. We use a striped par-
titioning approach where an input grid is divided horizontally into
equal parts based on the number of processes, with any extra
portion remaining being attached to the last partition (Wallis et al.,
2009). Each process reads in its assigned portion of the grid from
a file. Space is allocated for each process to hold a copy of a row of
border grid cells from the adjoining partitions directly below and
above its assigned portion. A share function was implemented to
pass information from the adjoining partition into these rowswhen
necessary. This approach allows each process to have access to all
neighboring cells without any extra communication between them.

The strategy for parallel computation of both distance up and
distance down variants is for different grid cells to be evaluated
simultaneously in different processes. To compute the distance up
at a grid cell i all of the grid cells that drain to grid cell imust be first
calculated. Similarly, to compute distance down at a grid cell i all of
the grid cells that receive flow from grid cell i must be first calcu-
lated. To facilitate this, computation is done in two steps: depen-
dency evaluation and distance computation steps. In the
dependency evaluation step, a dependency grid is created to
facilitate the identification of grid cells for which dependent grid
cells have been processed and that are ready for computation.
Distance is computed in the distance computation step.

In the distance up function, the dependency grid contains at
each grid cell i the number of immediate neighbors that drain into
grid cell iwhose distance value has not yet been computed. If there
are no neighboring grid cells that drain into grid cell i, that grid cell

is considered to be a peak (ridge) grid cell of the DEM and receives
a dependency value of 0. It is placed on the queue for distance
computation and when computed will be assigned a distance value
of 0. If there are grid cells that drain into grid cell i, the number of
neighbors that drain into grid cell i is initially stored in the
dependency grid. This number is used in the computation of
distances up to determinewhen grid cell iwill be ready to be placed
on the queue for distance computation. Each time a grid cell is
processed the dependency value of down slope neighbors is
decreased by one and when a dependency value becomes 0 it
indicates that all upslope neighbors have been processed, so it is
put on the queue for distance computation.

In the distance down function, the dependency grid contains at
each grid cell i the number of immediate neighbors that receive
flow from grid cell i whose distance value has not yet been
computed. If grid cell i is on the stream (designated flow path end
point), it is assigned a dependency value of 0, placed on the queue
for distance computation, and when processed will be assigned
a distance value of 0. The dependency grid for other grid cells, i, is
initializedwith the number of neighbors that receive flow fromgrid
cell i. In the DN model this is always either 1 or 2 as flow is never
shared with more than two neighbors. The dependency value is
used in the computation of distances down to determine when grid
cell i will be ready to be placed on the queue for distance compu-
tation. Each time a grid cell is processed the dependency value of
upslope neighbors is decreased by one and when a dependency
value becomes 0 it indicates that all down slope neighbors have
been processed, so it is put on the queue for distance computation.

In both distance up and distance down functions, the depen-
dency evaluation step is done independently by each process
without communication. Two dependency buffers of a single row of
cells each are created and initialized to 0 to keep track of depen-
dency information that will need to be transmitted to each of the
processes for the neighboring partitions. Once the dependency
evaluation step has completed, each process contains a queue of
cells that are ready for computing the distances and a dependency
grid filled with number of dependent cells. The formal algorithms
for creating the dependency grid are presented in Table 3.

In the distance computation step (Table 4) there is an option
to check for edge contamination that determines whether

Table 3
Algorithm to initialize the dependency grids in parallel distance up and distance down functions.
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Table 4
Algorithm to compute the distance up and distance down grids in parallel implementation.
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computation of the target grid cell depends on a neighbor grid cell
which has a no data value, and if so reports the result as no data.

It is possible however, in both functions, that grid cell n whose
dependency needs to be decremented, may not be part of the
partition of that process, but rather part of the partition in
a neighboring process. In that case, instead of decrementing the
dependency grid by 1 at n and putting n on the queue if necessary,
the dependency buffer at n is decremented and n is not put on the
queue. Once all processes queues are empty, communication
between processes is performed to obtain the dependency infor-
mation each process has been storing in its buffers. Each process
swaps their buffers with the neighboring processes and then
decrements its dependency grid according to the buffer received
from its neighboring process. If this results in a cell i with
dependency value of 0, indicating that all of i’s dependencies have
finished calculating their distances cell i is put on the queue. Result
information comprising distances that have been computed along
the edges of each partition is also communicated to update the
shared border grid cells of adjacent partitions so that it is available

for proper distance computation of grid cells that depend upon
values in the adjoining partition. Once this is done, all the
processes resume popping cells off their queue, calculating the
distances, and decrementing dependency values. This is repeated
until every queue on every process is empty. Table 4 presents the
algorithms used in this step for both distance up and distance
down functions.

4. Evaluation and timing tests

To evaluate the effectiveness of the parallel algorithms of both
distance up and distance down functions, we compared run times
from the parallel algorithms with the run times from the serial
recursive algorithms. Testing of both the parallel and serial algo-
rithms was performed on a 64 bit Dual Quad-Core Xeon Processor
E5405, 2.00 GHzwith 16 GB of RAM, 3�1 TB disks configured using
Raid 5 and Windows Server 2008 operating system. Additional
testing was performed on a 128 core cluster composed of 16 disk-
less Dell SC1435 compute nodes, each with 2.0 GHz dual quad-core

Table 4 (continued )
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AMD Opteron 2350 processors with 16 GB RAM operating under
a Linux operating system. Care was taken for each process to be run
by a separate processor core, allowing each process to run simul-
taneously. Two datasets were used to evaluate the parallel algo-
rithms, the smaller is entitled “Boise Front” and has 4751 � 6989
cells; and the larger is entitled “Boise River” with 24,856 � 24,000
cells, covering the entire Boise River basin and surrounding area.
Two of the HPMs, average vertical rise to ridge (distance up) and
average vertical drop to stream (distance down) are included in this
evaluation. Compute time is defined as the time needed to perform
the calculations minus the time necessary for disk I/O, where as the
total time includes the disk I/O time. Speed up (for both compu-
tation and total times) is defined as the ratio of execution time on
one processor to the execution time on n processors where n ranges
from 1 to maximum number of processors applied.

Fig. 4 shows the time taken to complete the calculation of both
distance up and distance down using both the serial recursive and
the MPI parallel algorithms for the small dataset. The parallel
algorithms also show both the total time and the compute time and
their speed up versus the number of processes, where as the serial
recursive algorithms only show the total time. The larger dataset
was too big for the serial algorithms as they were initially imple-
mented in the earlier serial implementation of the TauDEMsoftware
which cannot handle grids larger than 7000 � 7000, so serial
timings are not reported for this dataset.With the larger dataset, the
algorithms were run on both the 8 core PC and a 128 core Unix
cluster, with separate timings and speed ups shown for the compute
and total times. The timings (a) and speed ups (b) for distance up are

shown in Fig. 5 and those for distance down are shown in Fig. 6. The
speed up as a function of the number of processes is compared with
the ideal (linear) speed. When using the MPI parallel algorithm,
each process is analyzing a subset of the spatial extent; so as the
number of processes increase, each process has fewer calculations
to perform. Since all of the processes are running simultaneously,
using more processes results in the calculation taking less time. In
computing both distance up and distance down grids, the times
taken by the parallel algorithmwith a single process are longer than
the serial algorithm when the serial algorithm can be used. The
reason for this difference may be the additional preprocessing scan
made on the data. However, the advantage of the parallelization is
apparent in both functions with the crossover point achieved at two
processors. Using the smaller Boise Front dataset the total
improvement in compute time in both functions with eight
processors was about 86% of the time taken by the serial algorithm.
The speed up for the compute time of both distance up and distance
down functions using the small dataset are fairly linear. The total
improvement in the larger Boise River dataset between 1 processor
and 32 was about 96% for calculation of both distance up and
distance downwith fairly linear speed up. Please note that compute
time is generally closely linked to the number of processes, but total
time is less so. This is because using additional processes does not
have a significant effect on the amount of disk I/O necessary. The
factor 7 increase for the smaller Boise Front dataset approaches the
number of processors and indicates that for this data there is
a relatively small overhead due to the parallelization. When the
large dataset was used with a larger number of processes, the

Fig. 4. Time taken to perform average vertical distance calculations (with edge
contamination check on), for both the MPI parallel algorithm and the serial recursive
algorithm, as a function of the number of processes working on the calculation, for a
grid of 4751 � 6989 cells. Both the compute time and total time (total time ¼ compute
time þ disk I/O time) are shown for the MPI parallel algorithm.

Fig. 5. Time taken to perform average vertical rise to ridge (distance up) with edge
contamination check on using the MPI parallel algorithm on both a PC and a Unix
cluster as a function of the number of processes working on the calculation for a grid of
24,856 � 24,000 cells. Both the compute time and total time (total time ¼ compute
time þ disk I/O time) are shown.
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amount of availablememory increased, allowing for amore efficient
execution, thus causing the significant decrease in execution time.
The efficiency of swapping data blocks in and out of physical
memory may be hampered when multiple processes are doing this
at the same time.We also noted that the timings for the larger Boise
River datasets increased (speed up decreased) noticeablywithmore
than 32 processes. Thismaybe caused by the fact that as the number
of processes gets very large; thewidth of the spatial extent assigned
to each process gets comparatively narrow, resulting in a larger
fraction of inter-process communication, which is far less efficient
than intra-process communication. Improving the data partitioning
approach in a way that reduces communication needs may help to
improve scalability further in future versions.

The parallel implementation of theses HPMs has two significant
advantages, some datasets such as the Boise River dataset are larger
than was possible to process with the earlier serial recursive
implementation and can now be calculated using the MPI parallel
implementation. The importance of this advantage will certainly
increase as the availability of high resolution DEMs increase in the
future. Also the timings and speed up gains demonstrate significant
improvement in the speed at which these HPMs can be calculated.

5. Potential additional applications

The topographic variables described in this paper were derived
as explanatory variables for soil depth and were used to develop

statistical soil depth predictionmodels in Tesfa et al. (2009), but, we
envisage that they can also have other more general applications in
hydrology, geomorphology and ecology. They quantify similar
topographic characteristics; consequently, there may be some
overlap in their applications.

In hydrology, the distance down variables may be used to map
areas subjected to potential flooding hazards and to delineate areas
that are safe for urban and other development purposes using
threshold values. They may be applied inmapping areas with water
logging and shallow groundwater table. The topographic variables
may also be used in studies of erosion, sediment transport and
geomorphology. The distance up variables such as the longest
horizontal distance to the ridge and the longest vertical rise to the
ridge are related to specific catchment area and stream erosive
power index (Moore et al., 1991). Thus, they may be applied to
study formation of gullies in conjunction with soil properties. They
may also be applied in the Universal Soil Loss Equation (Moore
et al., 1991) as the slope-length component. In erosion prone
areas, these may be used to identify places where soil conservation
measures should be installed. The distance down variables may be
applied to map areas of sediment source (erosion) and sediment
deposition.

The topographic variables may also have application in ecolog-
ical and biological modeling related to vegetation patterns on
a landscape. Different vegetation types grow on different parts of
a landscape depending on their water demand and resistance to
moisture stress. Vegetation species that have highwater demand or
low resistance to moisture stress usually grow close to the streams,
while drought resistant species grow further from the streams or
closer to the ridges. Therefore, values of the distance up or distance
down variants may be used to study the distribution of vegetation
species on a landscape. The distance up and down functions can
also be modified to have an additional input, a weight grid that is
used to provide a per-cell weighting factor. This input weight grid
might be used to represent an attenuation process. Our imple-
mentation in the TauDEM 5 software package has theweight grid as
an optional input for the distance down functions. The distance
downmeasures with the optional weight gridmay be useful tomap
riparian vegetation and their effect on contaminant and/or nutrient
interception. For example, Baker et al. (2006) used distances
measured from row crop agriculture to streams weighted by the
presence of forest or wetlands along each flow pathway to char-
acterize the extent of riparian filtering of nutrients across catch-
ments. The distance up variables may be applied to map vegetation
types that have high resistance to drought or low water demand.

6. Concluding remarks

This paper has presented a class of topographic variables
derived in our effort to develop statistical soil depth prediction
models. These variables were initially calculated using recursive
algorithms implemented in Cþþ for use with DEM data and
included in the TauDEM 4, software distributed by the second
author (http://hydrology.usu.edu/taudem/). However, these recur-
sive algorithms can be inefficient in terms of memory requirements
because the function state is saved on a stack at each recursion step
and may cause stack overflow problem when used to process large
datasets. To overcome this limitation, we present MPI-based
parallel implementations of the functions used to compute the
distances up and distances down topographic variables from digital
elevation model. These parallel algorithms improve upon the
respective serial recursive algorithms by using a queue based
approach that works concurrently within multiple data partitions
assigned to separate processes. Also, MPI is a parallel framework
that works on both shared and distributed memory systems,

Fig. 6. Time taken to perform average vertical drop to stream (distance down) with
edge contamination check on using the MPI parallel algorithm on both a PC and a Unix
cluster as a function of the number of processes working on the calculation for a grid of
24,856 � 24,000 cells. Both the compute time and total time (total time ¼ compute
time þ disk I/O time) are shown.
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allowing the same parallel source code to be compiled for both
multi-cored PCs and multi-computer clusters, providing opportu-
nities for access to clusters with more memory than is usually
available on a single PC. Run times have also been significantly
improved. This is especially evident on larger datasets. The parallel
methods have also enabled the capability for evaluation of these
methods using even larger datasets.

These parallel versions of the distance up and distance down
functions have been included in TauDEM 5, the parallel version of
our open source hydrologic terrain analysis software available at
http://hydrology.usu.edu/taudem. The software is distributed
under the GNU General Public License as both compiled execut-
ables for Windows PCs (both 32 and 64 bit versions are available;
tested on Windows XP, Vista, and Windows 7), and as source code
suitable for compilation on other systems including multi-
computer Linux clusters. The functions are written in standard
Cþþ. A Visual Studio 2008 project, a makefile, and an ArcGIS (9.�)
toolbox wrapper are also included. TauDEM 5 uses the open source,
freely-available MPICH2 library from Argonne National Laboratory
(http://www.mcs.anl.gov/research/projects/mpich2/).

While these measures were initially used as explanatory vari-
ables for a soil depth model (Tesfa et al., 2009), like many other
terrain proximity measures (MacMillan et al., 2000), they may also
have other more general modeling applicability in hydrology,
geomorphology and ecology, especially as the parallel algorithms
allow them to be applied to larger datasets.
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