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Abstract 

Topography is an important land surface attribute for hydrology that, in the form of Digital 
Elevation Models (DEMs), is widely used to derive information for the modeling of hydrologic 
processes.  Much hydrologic terrain analysis is conditioned upon an information model for the 
topographic representation of downslope flow derived from a DEM, which enriches the 
information content of digital elevation data.  This information model involves procedures for 
removing spurious sinks, deriving a structured flow field, and calculating derivative surfaces.  
We present a general method for recursive flow analysis that exploits this information model for 
calculation of a rich set of flow-based derivative surfaces beyond current weighted flow 
accumulation approaches commonly available in Geographic Information Systems, through the 
integration of multiple inputs and a broad class of algebraic rules into the calculation of flow 
related quantities.  This flow algebra encompasses single and multi-directional flow fields, 
various topographic representations, weighted accumulation algorithms, and enables untapped 
potential for a host of application-specific functions.  We illustrate the potential of flow algebra 
by presenting examples of new functions enabled by this perspective that are useful for 
hydrologic and environmental modeling.  Future opportunities for advancing flow algebra 
functionality could include the development of a formulaic language that provides efficient 
implementation and greater access to these methods.  There are also opportunities to take 
advantage of parallel computing for the solution of problems across very large input datasets. 

Introduction 
 
The land surface plays a crucial role in the hydrologic cycle by controlling the partitioning of 
precipitation into various components of runoff, infiltration, storage and evapotranspiration.  
Topography is arguably the most important land surface attribute for hydrologic applications 
since it serves to define watersheds, the most basic hydrologic model element.  Beven and 
Kirkby's TOPMODEL (Beven and Kirkby, 1979) has enjoyed widespread success as one of the 
first hydrologic models to take advantage of digital representations of topography.  Terrain 
analyses based on digital elevation data are increasingly used in hydrology (e.g. Wilson and 
Gallant, 2000). 
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Digital representation of topography is usually through one of three data structures (Wilson and 
Gallant, 2000): (1) regular grids, (2) triangulated irregular networks, and (3) contours (Figure 1).  
Square grid digital elevation models (DEMs) have emerged as the most widely used data 
structure, because of their simplicity and ease of computer implementation.  Triangulated 
irregular networks (TINs) have also found widespread use (Jones et al., 1990; Nelson et al., 
1999; Tucker et al., 2001) because they can be adapted to the scale or detail of terrain 
information.  The contour-based, stream tube concept first proposed by Onstad and Brakensiek 
(1968) has also been used in hydrology to avoid the bias associated with grid data structures 
(O'Loughlin, 1981; 1986; Moore et al., 1988; Moore and Grayson, 1991; Grayson et al., 1992; 
Dawes and Short, 1994).  Despite their potential, contour based methods have not seen 
widespread application, perhaps due to their complexity, with current implementations requiring 
careful handling of special cases (Wilson and Gallant, 2000).  The specific work reported in this 
paper relies on grid digital DEMs, although many of the concepts are generic and extend to TIN 
or contour/flow tube elements. 
 
Since the first grid-based DEMs appeared in the late 1980's there has been rapid ongoing 
improvement of DEM data available to the hydrologic community, including the U. S. National 
Elevation Dataset which provides seamless coverage across the United States (at 10 m resolution 
in many locations).  Worldwide, the Shuttle Radar Topography Mission (SRTM) data provides 
90 m resolution coverage globally with higher resolution data available in some places.  DEM 
acquisition techniques based on LIDAR (light detection and ranging) are producing centimeter 
accuracy high-resolution DEM datasets.  We stand at a threshold of improvement in surface 
topography precision due to LIDAR that provides both opportunities and computing challenges.  
Rapid expansion of digital elevation applications is also driven by increasing power available in 
personal computers and the capability to rapidly download and process DEM data.  This is 
leading to increased incorporation of terrain derivatives into analysis, in many fields, including 
hydrology and environmental modeling.  This paper contributes to methods for development of 
flow-related terrain derivatives that might enhance such analyses.   
  
Information science includes the precise representation of physical environments using data 
models that enhance the capability for analysis and integration of information.  This paper 
examines data models for the representation of flow over terrain in Geographic Information 
Systems (GIS) and presents new formalism for deriving flow-based information useful for 
hydrologic and environmental modeling.  A basic underlying assumption is that water and its 
associated constituents move downhill.  Terrain-based flow models enrich the information 
available from a DEM by deriving a structured digital representation of the flow field, which 
serves as the foundation for calculation of a wide range of flow-related quantities, the most basic 
of which is contributing area.  The algorithm for calculating contributing area can be generalized 
to include additional information and rules, and to produce additional spatial fields of interest.  
Here we review methods for calculating terrain-based flow fields and existing algorithms for 
efficient derivation of flow-based information.  Collectively, these methods form the conceptual 
basis for the encompassing formalism of flow algebra.  Flow algebra provides a general 
approach for the incorporation of rules into flow-related calculations that encompass existing 
flow accumulation methods as special cases while allowing for the development of additional 
applications.  While derived with the basic downhill assumption in mind, flow algebra is not 
limited solely to the movement of water over terrain.  The formalism applies to any non-
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circulating (non-looping) flow field and flow directions used in flow algebra can be derived from 
any potential surface.  Flow fields derived from the gradient in any potential field (such as 
topographic slope in a gravitational field) are non-circulating because flow is from high to low 
potential.  Flow algebra concepts thus have broad application for modeling the natural 
environment. 
 
This paper is organized as follows.  We first describe the terrain based flow data model.  This is 
a review of existing work from a data modeling perspective and presents the digital 
representation of the terrain flow field as the foundation for recursive flow analysis, presented in 
the next section and flow algebra presented in the section following.  The section on recursive 
flow analysis reviews how the digital representation of the flow field supports the calculation of 
derivative flow related surfaces.  This then leads in to the section on flow algebra as a 
generalization of recursive flow analysis that encompasses the use of algebraic rules in recursive 
calculations of flow related derivative surfaces.  We then present a section with examples that 
illustrate the capability of flow algebra and conclude with some thoughts on future directions for 
the development and use of flow algebra in terrain analysis for hydrologic and environmental 
modeling. 

The Terrain-Based Flow Data Model 
 
The terrain-based flow data model comprises a digital representation of terrain (Figure 1) and a 
representation of the flow field that connects adjacent model elements enabling the routing of 
flow over a terrain surface and providing the basis for terrain-based flow calculations.  This 
section reviews existing methods for the construction of the terrain-based flow model comprising 
drainage correction and calculation of the flow field representation for grid DEMs, and some of 
the hydrologic and environmental modeling work that has exploited this model. 
 
In grid DEMs, sinks comprised of grid cells surrounded by higher-elevation neighbors occur due 
to deficiencies in DEM production processes and generalization in the representation of terrain 
(Jenson and Domingue, 1988; Jenson, 1991).  Drainage correction that removes sinks is an 
important, but not essential, first step in the development of the terrain-based flow information 
model.  Drainage correction is the processes of altering (correcting) the DEM to remove these 
sinks and a DEM that has had all sinks removed is referred to as hydrologically correct.  Care 
needs to be exercised not to "correct" non spurious sinks or alter the DEM surface so much as to 
introduce further error into hydrologic analyses.  The choice as to whether to remove sinks or not, 
therefore needs to be based upon the physical use and interpretation of the results.   
 
Several efficient implementations of sink filling have been developed (Planchon and Darboux, 
2001; Arge et al., 2003).  Breaching or carving alterations to the DEM to allow drainage through 
barriers have also been suggested using either a 3-4 grid cell search (Garbrecht and Martz, 1995; 
Garbrecht and Martz, 1997) or by tracing downwards from the pour point until an elevation 
lower than the sink is found then carving a path from the sink to the lower elevation (Soille et al., 
2003).  Soille (2004) developed a logical integration of the sink filling and carving approaches 
that minimizes overall modification of the DEM by optimizing between raising the elevation of 
terrain within sinks and lowering the elevation of terrain along sink outflow paths.  This 
approach provides a hydrologically correct DEM that is as close as possible to the original DEM 
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data.  Grimaldi et al. (2007) suggested a physically-based method that employs solutions from a 
landscape evolution model to remove sinks.  A concern with this approach is that it favors the 
landscape-evolution model over real terrain data, in some case altering the original DEM even 
more than a filling approach in order to bring the DEM surface into conformity with model 
solutions.   
 
The most common procedure for routing flow over a terrain surface represented by a grid DEM 
is the eight-directional method (D8) first proposed by O'Callaghan and Mark (1984). In this 
model, the direction of steepest descent towards one of the eight (cardinal and diagonal) 
neighboring grid cells is used to represent the flow field (O'Callaghan and Mark, 1984; Marks et 
al., 1984; Band, 1986; Jenson and Domingue, 1988; Mark, 1988; Morris and Heerdegen, 1988; 
Jenson, 1991; Martz and Garbrecht, 1992).  In cases where the steepest descent cannot be 
determined, a broader search radius or random selection from among ties may be used.  
Garbrecht and Martz (1997) presented a method for the routing of flow across flat surfaces both 
away from higher terrain and towards lower terrain that improved over prior methods.  However, 
the D8 approach is limited because it can assign flow to only one of eight possible directions, 
each separated by 45o in a square grid (Fairfield and Leymarie, 1991; Costa-Cabral and Burges, 
1994; Tarboton, 1997).   
 
Multiple flow direction methods (Quinn et al., 1991; Freeman, 1991; Tarboton, 1997; Seibert 
and McGlynn, 2007) have been suggested as an attempt to solve the limitations of D8.  Multiple 
flow direction methods proportion the outflow from each element between one or more 
downslope elements.  They thus introduce dispersion (spreading out) into the flow with the goal 
to represent downslope flow in an average sense.  A challenge in developing multiple flow 
direction approaches using grid DEMs involves balancing the introduction of dispersion against 
bias from routing flow along grid directions.  The D-infinity (D∞) multiple flow direction model 
(Tarboton, 1997) represents flow direction as a vector along the direction of steepest downward 
slope on eight triangular facets centered at each grid cell. Flow from a grid cell is shared between 
the two downslope grid cells closest to the vector flow angle based on angle proportioning.  
Siebert and McGlynn (2007) introduced an extension to D∞ called MD∞ that combines ideas 
from Tarboton (1997) with Quinn et al. (1991).  The MD∞ approach calculates slopes on 
triangular facets, but then proportions the flow between multiple downslope directions on 
triangular facets, thereby accounting for divergent situations where flow between more than two 
downslope grid cells is likely.  MD∞ introduces more dispersion than D∞, but reduces some of 
the grid bias that D∞ creates in divergent situations.  Figure 2 illustrates the representation of 
flow on a plane surface by single and multiple flow direction methods.   
 
All flow field methods assign or proportion flow from each grid cell to one or more of its 
adjacent neighbors.  In grid DEMs the basic model element is a grid cell, but the same concepts 
can be applied to any set of topologically connected model elements (Figure 3).  Grid, TIN, and 
contour-flow-tube-element flow field assignments are all subject to the general condition that the 
proportions assigned to each downslope element are positive and should satisfy the conservation 
constraint: 

1Pi ij =∑  (1) 
where Pij is the proportion of flow going from element i to a neighboring element j and the sum 
is over all the neighboring elements.  For the D8 grid model these proportions are either 1 
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(connected) or 0 (not connected).  For the multiple flow direction models these proportions fall 
between 0 and 1 for each neighboring element.  There is also a requirement that flow is non-
circulating such that no portion of flow leaving one element ever returns to the same element 
after passing through one or more of its neighbors.   
 
Many measures useful in hydrologic and environmental modeling have been derived from this 
flow model.  Without being comprehensive, these include the wetness index (Beven and Kirkby, 
1979), a quasi-dynamic wetness index (Barling et al., 1994), terrain stability (Montgomery and 
Dietrich, 1994; Pack et al., 1998a; 1998b; 2001; Borga et al., 2002), erosion (Roering et al., 
1999; Jones, 2002; Istanbulluoglu et al., 2002; 2003; Cochrane and Flanagan, 2003), 
contaminant transport (Ning et al., 2002; Endreny and Wood, 2003), and riparian buffers (Tomer 
et al., 2003; McGlynn and Seibert, 2003; Baker et al., 2006).  Typically these measures have 
involved combining existing fields (e.g., slope) with outputs of an accumulation operation (e.g., 
specific contributing area).   
 
Recursive Flow Analysis 
 
Once a flow data model comprising a set of flow proportions for each model element is defined, 
it may be used to evaluate contributing area and other accumulation derivatives across a DEM 
domain.  In the most general sense, the flow field derived from a DEM defines the surface 
connectivity between any two parts of a landscape.  Given a flow field, the general accumulation 
function is defined by an integral of a weight or loading field )x(r  over a contributing area, CA. 

∫==
CA

xd)x(r)]x(r[A)x(A  (2) 

In this expression x  represents the location of an arbitrary point in the domain, A( x ) represents 
the result of the accumulation function evaluated at that arbitrary point, and A[.] denotes the 
accumulation operator, which operates on )x(r  to get the result A(x).  Figure 4 illustrates this 
concept.  For a direct contributing area calculation, the weighting field, r(x), is set equal to 1.  In 
an example calculation of streamflow from excess rainfall, the weighting field would be set 
equal to rainfall minus infiltration.   
 
Mark (1988) presented a recursive algorithm for evaluation of accumulation in the D8 case that 
was extended to multiple flow direction methods by Tarboton (1997).  Numerically flow 
accumulation is evaluated recursively for each element as 

∑
>

+∆==
}0P:k{

kkiiii
ki

)x(AP)x(r)x(AA  (3) 

where xi is a location in the field represented numerically by a model element such as grid cell in 
a DEM and Ai=A(xi) represents the accumulation at that element.  The model element area is ∆  
and the notation {k:Pki>0} denotes that summation is over the set of k values such that Pki>0 (i.e., 
summing the contribution from neighboring elements k to element i).  In other words, 
accumulated flow at any model element is the sum of flow arising from that element and flow 
arising from all contributing neighboring elements, each weighted according to the proportion of 
flow it contributes.  This is a recursive definition because the accumulated flow for any model 
element depends upon the accumulated flow of adjacent upslope elements.  Recursive definition 
includes a requirement that in tracing each path upstream, one must eventually arrive at a source 



6 

element that has no other elements draining into it.  This “termination requirement” is satisfied as 
long as the flow field is non circular.  Contributing area, as we have defined it in (2) and (3) 
above, is ill-posed for any flow field that includes looping.  Appendix A presents pseudocode for 
the general upslope recursive algorithm for evaluating equation (3) that can be used for any flow 
field expressed in terms of the proportion of flow between elements, Pki.   
 
Figure 5 illustrates the contributing area computed using D8 flow directions.  In this case Pki is 
either 1 or 0 and is assigned to the neighboring element in the direction of steepest downwards 
slope.  The streaks aligned with grid directions illustrate the grid bias of the D8 approach.  Figure 
6 illustrates the contributing area computed using D∞ flow directions.  In this case the 
proportions Pki are proportioned among downslope neighbors, thus reducing grid bias and 
providing a contributing area result that is smoother, due to the dispersion, and appears to be 
better reflective of the topography indicated by the contour lines.  Tarboton (1997) evaluated the 
differences between D8 and D∞ for theoretical surfaces where the contributing area is known 
and showed that the D∞ calculations had smaller bias and mean square error.   
 
The recursive algorithm presented above is an upslope recursion because it examines all the 
elements upslope from the element at which the quantity of interest is being evaluated.  Tarboton 
(2003) presents a number of other functions that exploit upslope recursion for the development 
of hydrologically useful quantities, such as downslope influence, decaying accumulation, and 
concentration limited accumulation.  Downslope influence, illustrated in Figure 7, represents a 
special case of weighted flow accumulation from any target set of elements y within a given 
domain so that 

I(x|y)=A[i(x|y)] (4) 
where A[.] is the weighted accumulation operator presented in (3).  Isolation of the contribution 
from the target zone y is accomplished with the condition that r(y)=1 for x ∈ y and r(x)=0 
elsewhere, denoted by a (1,0) indicator function i(x|y) on the set y.  I(x|y) is the contribution 
(influence) from the set of elements y at each element x in the map.  Downslope Influence is 
useful in hydrology, water quality analysis, and land management for tracking where 
contaminants or sediment from a specific source are expected to move.  Contributions from a set 
of source elements can follow several different pathways in a multi-direction flow field.  The 
level of influence along these pathways can decrease with transport distance if source 
contributions are spread across a greater number of receiving elements in a divergent flow field. 
 
Recursive flow analysis can also examine elements downslope from the element at which the 
quantity of interest is being evaluated.  A function that uses this idea (Tarboton, 2003) is the 
Upslope Dependence function, which is the inverse of Downslope Influence.  Upslope 
dependence of a set of model elements y, may be related to downslope influence by 

)x|y(I)y|x(D =  (5) 
D(x|y) gives the proportion of flow from a model element x than contributes to (eventually flows 
through) one or more of the elements in the set y.  In this case the target y is downslope rather 
than upslope of the elements being evaluated.  Evaluation of this function requires reversal of the 
direction in which the flow direction field is traversed.  Whereas the accumulation operator in (3) 
tracks the proportion of flow from a set of elements k to a receiving element i if Pki>0, here the 
operator moves in the opposite direction, Pik>0, such that 
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In this expression R[.] is a general reverse weighted accumulation operator that operates on the 
weighting field r(x) tracking the downslope amount back up the slope.  The result at each model 
element, denoted Ri=R(xi) is the sum of the contribution from element xi, r(xi)∆, and the 
accumulation from downslope elements, xk, according to the proportions Pik.  Upslope 
dependence of the target set y is evaluated by setting R(x)=1 for x ∈ y, initializing these 
elements as 1, setting r(x)=0 elsewhere and evaluating equation (6) recursively.  Pseudocode for 
recursive downslope, or reverse, flow accumulation that evaluates equation (6) is given in 
Appendix B. 
 
There is an irony in the terminology here, in that evaluation of upslope dependence requires 
recursion in the downslope direction.  This occurs because evaluation of whether an element is 
upslope of a target area, requires one to search downslope.  Figure 8 illustrates how Upslope 
Dependence can be used to identify the area comprising elements that contribute some fraction 
of their area to the flow through a target area.  Given this, the upslope dependence function can 
be useful for tracking the likely origins of sediment or other dissolved contaminant at a receiving 
location.  The upslope dependence function can also be used for delineating the area draining to 
a watershed outlet.  It should be noted that in contrast to single direction contributing areas, 
multiple flow direction approaches allow a single model element to contribute to both the target 
set (i.e., i(x|y) = 1) as well as elements outside the target set (i.e., i(x|y) = 0), or to more than one 
catchment outlet.  Thus, to identify discrete watersheds draining to separate outlets, a rule based 
on the largest upslope dependence value or an upslope dependence threshold is needed. 
 
Towards a Flow Algebra 
 
Examination of the recursive flow analysis examples presented above reveals some generality 
and pattern to these calculations:  (1) multiple direction accumulations rely on weighted flow 
proportioning whereas single direction accumulations are a special case where all flow follows 
one pathway; (2) flow proportioning can occur to any number of neighboring model elements, so 
long as it conforms to the conservation constraint; (3) recursion can occur in both upslope and 
downslope directions; and (4) accumulations can be weighted by additional field(s) (e.g., rainfall 
minus infiltration).  This capability, at least for upslope recursions, is available in flow 
accumulation functions in general purpose Geographic Information System software.  However, 
we suggest here that recursive flow analysis need not be limited to the incorporation of 
additional weight fields into flow accumulation.  Rather, what is needed is the ability to involve 
one or more additional fields in the accumulation functions that operate during the recursion 
according to a set of logical rules.  We call these general rules for flow related calculations flow 
algebra.  Because these general rules encompass all existing flow-related procedures, what we 
present here comprises a unifying approach for understanding past, present, and future flow 
related calculations.  By exposing the generality of flow-field related calculations, we hope to 
suggest a direction for software development that will enable and stimulate generation of 
additional flow-derived measures useful in hydrology and environmental modeling.   
 
Flow algebra logic exploits the recursive evaluation methodology illustrated in equation (3).  
Recursion serves to simplify the evaluation of a flow algebra function from its global or zonal 
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integral definition, such as in equation (2), to a local evaluation where the function value at an 
element depends only on variables at that element and at either elements immediately upstream 
or downstream in the flow network, but not both at the same time.  Flow algebra also generalizes 
the capability of zonal integral functions, enabling the evaluation of quantities that could not be 
defined in terms of a zonal integral because the result depends on both the flow field as well as 
local rules or additional value fields. We distinguish within flow algebra between simple input 
variables and variables with recursive dependence.  Simple input variables or fields, denoted 

)x(γ , are fully quantified before the evaluation of a flow algebra expression.  Variables that have 
recursive dependence on the flow field, denoted )x(θ , are quantified during the course of 
evaluating a flow algebra expression.   
 
In general, a flow algebra expression may be written as  

))(),(,),(()( kkkiii xxPxfx γθγθ =    (7) 
for an upstream function, or 

))(),(,),(()( kkikii xxPxfx γθγθ =  (8) 
for a downstream function.  The function f(.) may include any mathematical operators such as: +, 
-, ÷, ×, summation, conditional, logical, trigonometric and mathematical functions.  In this 
expression θ(xi) is a list (of dimension m) of the recursive variables being evaluated at location i 
by the expression.  γ(xi) is a list (of dimension q) of all simple input variables.  Pik or Pki is a 
vector giving the proportion of flow from the first subscript element to the second subscript 
element, defined over all k for which P(⋅⋅) is non-zero.  Pik or Pki is of dimension n where n 
represents the number of connected neighbor nodes.  θ(xk) is a list of all recursive variables 
evaluated at each neighbor location k.  It has dimension m×n.  γ(xk) is a list of simple input 
variables at each neighbor node k.  It has dimension q×n.   
 
The recursive variables, θ(x), appear on the right-hand side of the expression because evaluation 
of the expression at location x depends on the values for these variables at adjacent logical 
network nodes, either upstream or downstream.  With this structure, not only can )x(γ  be applied 
as a weight, both )x(γ and )x(θ fields can be applied during the calculation of any quantity with 
recursive dependence.  A flow algebra expression is either of type "upstream" (e.g., contributing 
area, downslope influence) or "downstream" (e.g., upslope dependence, reverse accumulation) 
depending on whether the functional dependence is on upstream or downstream quantities.  
Recursive dependence upon both upstream and downstream variability in the same expression is 
not allowed because such recursions would not terminate.  Appendix C gives general pseudocode 
for the implementation of an upstream flow algebra function.  The similarity of this to flow 
accumulation (Appendix A) is apparent.  Downstream flow algebra is obtained by reversing Pki 
to Pik.  Upstream and downstream flow algebra is similar in all other respects. 
 
Flow algebra expands upon the concept of map algebra available in popular GIS systems by the 
inclusion of flow field operations.  Map algebra involves point-by-point (cell-by-cell) 
mathematical operations between spatial fields.  Flow algebra adds to this capability by 
incorporating operations based on the flow field and algebraic or functional descriptions of how 
the quantity being modeled is related to, and involved with, the flow field.   
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Because flow algebra encompasses multidirectional flow algorithms, it is applicable to any 
numerical representation of a flow field, including single or multiple flow direction grids, 
Voronoi polygons based upon a TIN discretization, or flow net model elements based upon a 
contour and flow line discretization.  Each flow field representation has an underlying logical 
network structure defining the connectivity between elements (Figure 3).  This may be implicit 
(as in the case of grids) or explicit (for Voronoi polygons and flow net model elements).  Flow 
algebra elements could also be topographically delineated catchments.  For example, the Arc 
Hydro data model (Maidment, 2002) provides connectivity between stream reaches and stream 
reach catchments (the area draining directly to a stream reach) within a stream network and 
implements accumulation functions using reach catchments as model elements.   
 
Examples of functions constructed using Flow Algebra 
 
This section gives examples to that illustrate how flow algebra may be used to extend the 
functional capability of recursive flow analysis through the incorporation of rules into the 
recursive evaluation methodology.  The examples have an increasing level of complexity so as to 
develop basic concepts using simple functions and then by gradually adding modifications, 
illustrate potential for more specific applications. 
 
A natural measurement derived from any flow field is that of distance along a flow pathway.  
Specifically, we consider here the distance in a downslope direction from each model element to 
a target set, such as a stream or catchment outlet though upslope distances may also be defined 
using an upslope recursion.  In hydrologic analyses, flow lengths have been used to characterize 
geomorphologic instantaneous unit hydrographs (Rodriguez-Iturbe and Valdes, 1979) estimate 
water residence times (McGuire et al., 2005), contrast geomorphologic versus hydrodynamic 
attenuation/dispersion (White et al., 2004), and characterize water quality (Alexander et al., 
2000; Soranno et al., 1996).  A variety of ecological analyses have used flow path distances to 
understand the influence of the spatial arrangement of watershed attributes on water quality and 
biotic responses  (King et al., 2004; Frimpong et al., 2005; King et al., 2005; Van Sickle and 
Johnson, 2008).  
 
In the D8 model, flow can only proceed to a single downslope element.  D8 flow length 
calculations are consequently relatively straight-forward and comprise accumulation of cardinal 

(∆x, ∆y) or diagonal ( 22 yx ∆+∆ ) cell traverses, where ∆x and ∆y are element dimensions.  In 
a multiple direction flow model, the distance from any model element xi to another element xj is 
not uniquely defined.  Flow that originates at element xi may arrive at xj by a number of distinct 
pathways and flow length is thus defined by a distribution rather than a single number.  Bogaart 
and Troch (2006) proposed calculating the average of this length distribution by weighting by the 
fraction of flow directed along a particular flow pathway.  We present a general implementation 
below using flow algebra.  Practically speaking, the full length distribution cannot be 
accumulated easily over large domains due to excessive computational demands, however 
distance functions that retain the longest and shortest paths may also be defined.   
 
For the evaluation of average distance using flow algebra, the vector of simple inputs, γ(x), is 
comprised of the coordinates of the center of each element and a target set indicator y (e.g. yi=1 



10 

on the stream and 0 off the stream).  The vector of recursive variables, θ(x), comprises the 
average distance to the target set from element xi, denoted ad(xi).  Average distance is calculated 
using a downslope recursion with flow algebra expression f(.), equation (8), defined as: 
if  yi=1    (if on the indicator set) 

ad(xi)=0 
else 

}0)x(ad&0P:k{
ik

}0)x(ad&0P:k{
kkiiki

kikkik

P/))x(ad)x,x(dist(P)x(ad
≥>≥>

∑∑ +=  (9) 

The extra condition ad(xk)≥0 is placed in the summation to accumulate only those elements for 
which the average distance is defined, because distance is not defined for those elements with no 
downslope elements in the target set.  Division by the sum of proportions is to account for partial 
contribution of a model element to downslope elements for which distance is defined.  In most 
case, the denominator will be equal to one except, for example, when a downslope element flows 
into a neighboring catchment and out of the domain in which case ad(xk) will be undefined.  The 
function dist(xi, xk) evaluates the geometric distance between the center of elements i and k. 
 
Similarly, the longest distance to the target set from each element xi, denoted ld(xi), is calculated 
using a downslope recursion   
if  yi=1 

ld(xi)=0 
else 

))x(ld)x,x(dist(Max)x(ld kki
}0)x(ld&0P:k{

i
kik

+=
≥>

 (10) 

where for each downslope neighbor (Pik > 0) the function selects the maximum of the longest 
distance from that neighbor plus the distance to that neighbor.  The shortest distance, sd(xi), is 
calculated as: 
if  yi=1 

sd(xi)=0 
else 

))x(sd)x,x(dist(Min)x(sd kki}0)x(sd&0P:k{i
kik

+=
≥>

 (11) 

 
It may be of practical interest to weight the flow distance to calculate distance differently across 
a set of element values.  A weighted flow distance may be calculated by adding a weight field, 
w(xi), to the input vector γ(x).  A flow algebra expressions for weighted flow distance, similar to 
equation (9) above is:  
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The weights associated with the originating and receiving elements are averaged and multiplied 
by the distance between elements in this calculation.   
 
Weighted distances have recently been applied to the problem of scaling filtering effects of 
streamside forests and wetlands, which have been observed to reduce concentrations of dissolved 
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nutrients along field-to-stream transects.  Baker et al., (2006) used distances measured from row 
crop agriculture to streams weighted by the presence of forest or wetlands along each flow 
pathway to characterize the extent of riparian filtering across catchments.  In this calculation, 
croplands are identified from a land cover raster as potential nutrient sources, whereas potential 
sinks (buffers) include forest and wetlands along flowpaths between each crop element and the 
stream (Figure 9A&B).  Importantly, forests and wetlands occuring adjacent to the stream but 
not downslope of a nutrient source are not considered in the analysis because they are assumed 
not to be involved in nutrient transport or filtering.  A similar approach was recently used to 
understand how stream map resolution or seasonal expansion and contraction of stream networks 
might influence estimation of source-sink connectivity and relative nutrient uptake in streamside 
forests versus headwater streams (Baker et al., 2007).  Figure 9 also illustrates how flow length 
and connectivity estimates may be altered through the use of single (C) versus multidirectional 
(D) flow fields.  In some cases, alternate pathways identifed by a multidirectional flow field may 
be less (e.g.,  label 1 in Figure 9D) or more (e.g., 2 in Figure 9D) buffered compared to single-
direction paths.  In every case where multidirectional flow dispersion occurs (e.g., 3 Figure 9D), 
estimates of the area of potential buffer used in buffering will be necessarily greater than when 
using single directional estimates. 
 
A simple extension of the above recursion, the Drop Function is defined for any model element 
as the elevation difference from a location xi on the land surface to a target region downslope, 
usually the stream or catchment outlet.  In this case, a DEM serves as an additional input field, 
γ(x), providing the value z.  McGuire et al. (2005) used MD∞ to accumulate flow in their study 
of water residence time, but were limited to using D8 for flow distance, flow gradient 
(drop/distance), and gradient-to-distance ratios.  Below we present a flow algebra solution to this 
problem.  Given a multiple flow direction field with flow out of each element being proportioned 
between downslope model elements, there is no single pathway by which flow from any xi 
reaches a set of downslope elements y.  The Drop Function may therefore be defined in term of 
the maximum drop 

))y(z()x(z(Max ji
}0Q:j{ ij

−
>

 (13) 

the minimum drop 
))y(z()x(z(Min ji}0Q:j{ ij

−
>

  (14) 

or the average drop 
)y(zQ)x(z j

}0Q:k{
iji

ij>
∑−   (15) 

As in flow distance calculations, the target region to which drop is being measured is indicated 
by the set of elements y.  These may be quite a long way from the element xi. A subset of these 
receive flow from the element xi.  Qij denotes the proportion of flow from element xi that 
eventually gets to yj in the set y.  The maximum drop formula evaluates the elevation drop to the 
lowest point where flow from element xi enters y.  The minimum drop formula evaluates the 
elevation drop to the highest location where any flow from element xi enters y.   The average 
drop formula weights the drop based on the proportion of flow entering element yj at each 
location.  Numerically, these equations are evaluated using a downslope recursion based on the 
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multiple flow proportions Pik giving flow from grid cell i to grid cell k.  The maximum drop is 
calculated as 

))x(mxdrpzz(Max)x(mxdrp kki
}0P:k{

i
ik
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>

 (16) 

This adds the drop from i to neighbor k to the longest drop from neighboring element k.  The 
maximum is over all the neighbors that receive a positive proportion of the flow, Pik>0.  The 
minimum drop is similarly calculated as 
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and the average drop as 
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These recursive definitions have the escape condition that mxdrp(xk), mndrp(xk) and avdrp(xk) 
are 0 for model elements xk that belong to the set of target elements y.  
 
Similarly, minimum, maximum and average Rise to Ridge Functions (rtr) from any element xi 
may be defined, essentially just by switching i and k in equations (16) to (18) to switch from 
downslope to upslipe recursion, and renaming the functions 
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Otherwise 0  ,0P  if  
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In the rise to ridge functions the escape condition for the recursion is 0Pki >∑  that defines 
ridge elements as elements that do not have any upslope elements.  In equations (19) to (21) we 
also introduced the option for a user input threshold, T, to control upslope paths from neighbors 
k that enter element xi that are considered to be upslope. 
 
Transport Limited Accumulation is a flow algebra function that introduces further rules into 
flow-related calculations.  This function is designed to calculate the transport of sediment that 
may be limited by both the sediment supply and the capacity of the flow field to transport 
sediment.  Importantly, this is an example of an algorithm not currently available to general GIS 
users without the functionality of flow algebra.  We have framed the calculation in a general way 
with supply and transport capacity fields as inputs (components of γ(x)), so as to apply to any 
transport process where there is both distributed supply of a substance and a limited capacity for 
transport of that substance.  This function accumulates substance flux subject to the rule that 
transport out of any model element is the minimum between supply and transport capacity.  The 
total supply is calculated as the sum of transport in to the element from upslope elements plus the 
supply contribution from the element.  This is again a recursive definition, since it depends upon 
the transport flux from upslope elements.  Specifically,   

))x(S)x(TP),x(C(Min)x(T
}0P:k{
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ki

∑
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where C(xi) is the transport capacity associated with model element xi, and S(xi) the supply (e.g., 
erosion potential) at model element xi, and T(xi) gives the resulting transport limited 
accumulation flux.  If C(xi) exceeds transport to the element plus local supply, then the flux is 
supply limited and the second term in the Min is chosen.  If the available substance from the sum 
of influx plus local supply exceeds C(xi), then the flux is transport limited and the outflux is the 
transport capacity, C(xi).  Both transport capacity and local supply fields (C(xi) and S(xi)) are 
inputs and thus components of γ(x), while the resultant transport limited accumulation flux is the 
result of recursion on the flow field and thus an element of the vector θ(x).  Another part of θ(x) 
and byproduct of this calculation is the deposition D(xi) at any point, calculated as total supply 
minus actual transport,   

)x(T)x(S)x(TP)x(D i
}0P:k{

ikkii
ki

−+= ∑
>
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D(xi) is 0 at supply limited elements, while at transport limited elements it quantifies the excess 
of total supply over transport capacity.  Comparison of D(xi) to S(xi) is required to distinguish 
deposition of substance from local supply, versus substance that is transported into an element 
from another upslope element.  This model for accumulation of a substance subject to supply and 
transport capacity limits is consistent with sediment transport and erosion theory involving the 
separate processes of detachment and transport (Hairsine and Rose, 1992a; 1992b).  Figure 10 
illustrates Transport Limited Accumulation.  The supply field may be based on erodibility from 
soil surveys, while transport capacity in this example is based on slope-area relationships 
(Dietrich et al., 1992; Montgomery and Dietrich, 1994).  Reductions in sediment delivery ratios 
as drainage area increases are naturally modeled by this function due to the trapping of sediment 
at locations where transport capacity is limited.   
 
Calculation of an Avalanche Runout Zone provides another, more comprehensive opportunity to 
illustrate the generality and potential of flow algebra for calculations involving multiple terrain 
and flow fields.  In this application, avalanche source zones, identified manually using expert 
knowledge and visual interpretation of maps, is used as input (although there is clearly potential 
for modeling avalanche source zones based upon topographic attributes such as has been done 
for landslides, Pack et al., 1998a; 1998b; Tarolli and Tarboton, 2006).  The rule for identifying 
runout zones is that all locations downslope from a source zone are potentially affected up until 
the energy from the avalanche is depleted.  This depletion point is estimated when the slope 
between the source and the affected area is less than a threshold angle (alpha).  The alpha angle 
is calculated using the distance from the highest point in the source zone to points within the 
potential runout zone (Figure 11).  Distance may be measured either along a straight line or 
along a flow path.  This alpha-angle model is a simple model for avalanche or debris flow runout 
that is used in practice to evaluate potential hazards (e.g. Schaerer, 1981; McClung and Schaerer, 
1993; Iverson, 1997; Toyos et al., 2007).  Because evaluation of the runout zone requires looking 
upslope, flow algebra with upslope recursion is used.   
 
For the avalanche application using a multidirectional flow field, it may be desirable to exclude 
model elements from the runout zone that receive only a small fraction of flow from the 
avalanche source.  We therefore specify a threshold, T, supplied by the user, that must be 
exceeded before an element is counted as contributing to a downslope neighbor for the purposes 
of defining the avalanche runout zone and calculating alpha angle (e.g., Pki > T where T=0.2).  T 
may be input as 0 if all fractional contributions to a downslope element, no matter how small, are 
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to be counted.  The avalanche source zone is input as an indicator set as (asi=1 in avalanche 
source zone and 0 otherwise).  The simple and recursive variables involved in avalanche runout 
calculation cast in terms of the general flow algebra construct are listed in Table 1. 
 
Table 1.  Variables in avalanche runout flow algebra function 
Symbol Description 
Simple input variables: γ(x) 
T Flow proportion threshold 
α Alpha angle 
as Avalanche source set 
xi, yi Coordinates of the center of each element 
zi Elevation of the center of each element. 
Recursive variables: θ(x) 
rz A runout zone indicator with value 0 to indicate that this grid cell is not in the runout 

zone and value > 0 to indicate that this grid cell is in the runout zone.  Since there may 
be information in the angle to the associated source site, this variable will be assigned 
the angle to the source site, denoted as β here (in degrees). 

xm, ym X and Y locations of the source site that has the highest angle to the point in question. 
zm Elevation of the source site that has the highest angle to the point in question 
dm Flow distance from the source site that has the highest angle to the point in question.  

This is included to allow evaluation of source angles using either straight-line or flow 
path distances.   

 
The flow algebra expression ))x(),x(,P),x((f kkkii γθγ  for )x( iθ  at element ix is evaluated by 
the pseudocode in Appendix D.  Clearly, the suite of inputs and calculated fields in this function 
far exceeds the capacity of currently available accumulation operators, but is relatively straight 
forward within the flow algebra construct.  Figure 12 illustrates the avalanche runout from three 
potential source zones computed using α = 22o for a snow avalanche prone area in Logan 
Canyon, Utah, USA. 
 
Future Directions 
 
The example flow algebra functions presented above have been programmed for use with grid 
DEM data using the D∞ multiple flow direction model and included as part of the Terrain 
Analysis Using Digital Elevation Models (TauDEM) software distributed by the first author 
(http://www.engineering.usu.edu/dtarb/taudem).  Code that implements the recursion is in a C++ 
library that has been wrapped with a Visual Basic graphical user interface callable from the ESRI 
ArcGIS geographic information system as an ArcMap toolbar or geoprocessing toolbox, as well 
as from the open source Mapwindow geographic information system 
(http://www.mapwindow.org).  Source code and compiled executables for a PC are distributed 
using an open source license.   However, such implementations, though based on flow algebra 
concepts, do not provide the full capability we envision.  The recursive algorithms, though 
compact in terms of coding and efficient in terms of model element evaluations (each element is 
visited only once), can be inefficient in terms of memory requirements (because at each 
recursion step the function state is saved on a stack), and are not implemented to take advantage 

http://www.engineering.usu.edu/dtarb/taudem
http://www.mapwindow.org/
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of parallel processing.  Broad-scale application of these methods to large datasets will require 
work to address these limitations.  Another step in the implementation process will involve the 
development of text parsing software for translating user inputs into process-specific recursive 
accumulations.  This software would provide an interface that enables users to design their own 
combinations of )x(γ and )x(θ , specifying their own algebraic and logical rules for custom flow 
algebra functions.   
 
Despite rapid advances in computer technology, there remains a considerable gap among digital 
representations of terrain, flow fields and real world observations.  As a result, geographic and 
hydrologic models lag behind current hydrologic theory in their representation of physical 
processes.  Computational modeling frameworks are required that enable the implementation and 
rapid evaluation of new theories and field based concepts.  Flow algebra provides a formalism 
for thinking about and modeling spatial processes that are related to, or occur embedded within, 
a flow field.  We hope that flow algebra therefore serves to fill some of this gap through the 
terrain-based flow analyses it enables. 
 
This paper has framed an existing information model for the analysis of flow over terrain in 
Geographic Information Systems.  This model establishes a flow field through (1) drainage 
correction involving the removal of sinks followed by (2) definition of the flow field through a 
general multidirectional proportioning of flow from each element among downslope neighbors.  
The flow field is required to be non-circulating, and as such is suitable for representation of flow 
derived from the gradient of any potential field.  Flow proportions arising from any model 
element should sum to one to ensure conservation.  Once this flow field is defined, a broad class 
of upstream and downstream recursive functions may be constructed using the formalism of flow 
algebra.  We have presented some examples for exploiting this capability including new 
techniques for addressing the measurement of flow distances, elevation drops, sediment transport, 
and avalanche run-outs.  The new techniques have already been utilized in several distinct 
applications and they serve to illustrate a small portion of the as yet untapped potential of the 
recursive flow algebra approach.  Although the examples we present, have been developed using 
grid data structures, the logic of flow algebra is applicable for any set of logically connected 
elements defining flow in a non-circulating flow field.  Many advances in hydrologic modeling 
have not made their way to GIS applications for the simple reason that they did not work well 
within a grid data structure, or suffered from limitations due to single flow direction approaches.  
Advances have also been hampered by the difficulty associated with implementation of rules and 
logic within flow field related calculations.  It is our hope that flow algebra will provide a more 
inclusive modeling framework for moving across data structures in hydrologic modeling of the 
natural environment. 
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a) Grid

c) Contour and flowlineb) Triangulated 
Irregular Network

Figure 1.  Models for the digital representation of terrain

 

Figure 2.  Flow across a plane surface represented by 
(a) Single flow direction approach, (b) Multiple flow 
direction approach 
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Figure 3.  Downslope flow apportioning among topologically 
connected model elements using different flow field assignments 
and terrain representations.
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Figure 5.  Flow field and contributing 
area from the D8 method. 
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Figure 7.  Downslope Influence, calculated as the weighted 
accumulation from a target set (blue).  
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Figure 8.  Upslope Dependence quantifies the proportion of 
flow in a domain (red to light blue) that contribute to a 
target set (blue). Note cells with fractional contributions 
along the margin. 
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Figure 9.  Weighted flow length-to-stream measures used in buffer 
analyses for water quality modeling in tributaries of Chesapeake Bay, 
Maryland, USA.
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Figure 10.  Transport limited accumulation is a function of distributed 
supply and transport capacity. 
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α

Avalanche 
source

Figure 11.  Alpha (α) angle from point in 
avalanche runout to avalanche source.

 
 

Figure 12.  Avalanche Runout zones for Wood Camp Hollow 
in Logan Canyon, Utah, USA, computed using α = 22o.  
Contour interval is 10 m.  The intensity of the color is scaled 
by the angle to source, β, subject to the constraint β> α.  
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APPENDIX A.  Pseudocode for Recursive Upslope Flow Accumulation  
Global variables Ai, r(xi), Pij, ∆ 
Function FlowAccumulation(xi) 

if Ai is known 
then 

no action 
else 

for each neighbor location xk indexed by k 
if(Pki > 0)then 

call FlowAccumulation(xk)  
//This is the recursive call to calculate area for the neighbor 

Next k 
//  At this point all the neighboring Ak inputs are available 

∑
>

+∆=
}0P:k{

kkiii
ki

AP)x(rA  

return 
 
 
APPENDIX B.  Pseudocode for Recursive Downslope or Reverse Flow Accumulation  

Global variables Ri, r(xi), Pij, ∆ 
Function ReverseAccumulation(xi) 

if Ri is known 
then 

no action 
else 

for each neighbor location xk indexed by k 
if(Pik > 0)then 

call ReverseAccumulation(xk)  
//This is the recursive call to the downslope neighbor 

Next k 
//  At this point all the neighboring Rk inputs are available 

∑
>

+∆=
}0P:k{

kikii
ik

RP)x(rR  

return 
 
APPENDIX C.  General Pseudocode for Upstream Flow Algebra Evaluation  

Global variables γ, θ, Pij 

Function FlowAlgebraUpstream(xi) 
if θ(xi) is known 
then 

no action 
else 

for each neighbor location xk indexed by k 
if(Pki > 0)then 

call FlowAlgebraUpstream(xk)  
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//This is the recursive call to traverse to an upslope neighbor 
Next k 
//  At this point all the necessary inputs are available 
Evaluate Algebraic expression ))x(),x(,P),x((f)x( kkkiii γθγ=θ  

return 
 
APPENDIX D.  General Pseudocode for Avalanche Runout Zone Evaluation 

Global variables γ, θ, Pij 

Function AvalancheRunout(xi) 
if asi > 0  (if in source zone) 

rzi = α 
xm = xi    
ym = yi    
zm = zi    
dm = 0 

else 
initialize rzi = nodata 
For each k with Pki > T 

if rzk >= α (neighbor k is in the runout zone) 
if path distance  

d=dmk + dist(xi, yi, xk, yk)    (This is the total distance along flow paths 
through a neighbor k to the element i) 

else 
d=dist(xi, yi, xmk, ymk)    (This is the horizontal distance from element i to 

the element with maximum angle on the upslope flow path ending at 
neighbor k) 

zd=zmk-zi    (This is the elevation difference from the source on a path coming   
through neighbor k to cell i) 

β=atan(zd/d)*180/π    (This is the angle in degrees from a source on a path 
coming through neighbor k to cell i) 

if β ≥ α and β > rzi   (The set of assignments below assign the vector )x( iθ  
using the flow path from a neighbor k for which the angle to the source on 
that flow path, β, is a maximum)   
rzi=β    
xm=xmk 
ym=ymk 
zm=zmk 
dm=d 

Next k 
Return 
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