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ABSTRACT

For science to reliably support new discoveries, its results must be reproducible. 
Assessing reproducibility is a challenge in many fields—including the geosciences—
that rely on computational methods to support these discoveries. Reproducibility in 
these studies is particularly difficult; the researchers conducting studies must agree 
to openly share research artifacts, provide documentation of underlying hardware 
and software dependencies, ensure that computational procedures executed by the 
original researcher are portable and execute in different environments, and, finally, 
verify if the results produced are consistent. Often these tasks prove to be tedious and 
challenging for researchers.

Sciunit (https://sciunit.run) is a system for easily containerizing, sharing, and 
tracking deterministic computational applications across environments. Geoscience 
applications in the fields of hydrology, solid Earth, and space science have actively 
used Sciunit to encapsulate, port, and repeat workflows across computational envi-
ronments. In this chapter, we provide a comprehensive survey of geoscience appli-
cations that have used Sciunit to improve sharing and reproducibility. We classify 
the applications based on their reproducibility requirements and show how Sciunit 
accommodates relevant interfaces and architectural components to support repro-
ducibility requirements within each application. We aim to provide these applications 
as a Sciunit compendium of use cases for replicability, benchmarking, and improving 
the conduct of reproducible science in other fields.

*Erratum: In the first version of this chapter published online, “Ayman Nassar” was misspelled as “Ayam Nassar.” GSA sincerely regrets this error.
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1. INTRODUCTION

During this decade, the scientific method has become increas-
ingly computational, involving large quantities of data, complex 
data manipulation tasks, and large and often distributed software 
stacks. To assess the reproducibility of the computation-based 
scientific method, scientists are increasingly encouraged to make 
their studies FAIR: findable, accessible, interoperable, and reusable 
(Wilkinson et al., 2016). Scientists generally comply with FAIR by 
uploading their computational artifacts to online repositories such 
as GitHub (https://github.com), Figshare (https://figshare.com), 
HydroShare (https://hydroshare.org), and Zenodo (http://zenodo 
.com). These repositories store and index code, data, and docu-
mentation. They also assign digital object identifiers (DOIs; https://
www.doi.org) and provide interfaces for finding (F) and access-
ing (A) artifacts. Tools for creating interoperable (I) and reusable 
(R) artifacts, however, are lacking, which is acutely evident when
reviewers attempt to reproduce a scientific study.

Consider the following scenario: Alice, a geoscientist, has 
recently published a journal article related to hydrology on the 
declining rate of evaporation in the Carolinas. Her model and 
analysis are available as part of five Jupyter (https://jupyter.org) 
notebooks, whereas both code and data are available via the 
HydroShare (https://hydroshare.org) portal. In the article, the 
author’s model predicts the rate of evaporation as 5 mm/d; Bob, 
a reviewer, believes it is close to 3.5 mm/d. He wants to change 
a few methods and use alternate data sets in the model to test the 
sensitivity of the evaporation rate. Bob downloads the notebooks 
and initially faces issues in setting up the environment. He fixes 
the environment by downloading the necessary packages, but his 
result is ~6 mm/d, which is surprising. He wonders if the note-
book is using the same data set as was used in the earlier experi-
ment. The data set used is large and requires careful comparisons. 
He is aware of alternate data sets on HydroShare with which he 
would like to experiment. However, using them will engage him 
in a drawn out, iterative process as the model sensitivity param-
eters of the previous data set are unknown.

In the above example, the scientists did adopt notebooks and 
data hubs that make computational artifacts findable and acces-
sible. However, verifying reproducibility continues to be both 
time-consuming and challenging due to the lack of tools that cre-
ate reusable artifacts and enable their interoperability with new 
methods and data. Consequently, researchers mostly implement 
the first two, but not all, of the FAIR practices. In a recent study, 
Stagge et al. (2019) found that of 360 articles from six leading 
hydrology and water resources journals, 49% made some mate-
rials available online; only 6% made code, data, and directions 
publicly available; and only 1.1% of sampled articles could be 
fully reproduced.

There are several known methods for creating reusable and 
interoperable artifacts. Two of the popular methods are virtual-
ization and containerization. Virtualization isolates computing 
environments and creates reusable artifacts. However, the main-
tenance cost of virtualization is high, and it is only supported by 

cloud computing platforms like AWS (https://aws.amazon.com) 
and Infrastructure as a service platform such as Jetstream (https://
jetstream-cloud.org) and XSEDE (https://www.xsede.org). In 
containerization, an application is built from well-known pack-
ages (https://docker.com) and is popularly used in DevOps to 
encapsulate standard applications such as database servers, web 
servers, and compilers. However, containerization continues to 
require significant training and education to create Dockerfiles, 
resolve versions, determine appropriate image identifiers, and 
manage the resulting Docker containers on the server-side. Com-
mercial systems such as Binder (https://mybinder.org) create 
Docker containers but restrict the languages in which workflows 
are developed, and they do not equip users to create, share, and 
manage containers.

We recently proposed an alternative method for creating con-
tainers that uses the reference execution of an application to auto-
matically create a container with application provenance to ensure 
repeatability across environments (Pham et al., 2013). Sciunit 
(Yuan et al., 2018), the resulting tool, simplifies container creation 
and maintenance. To examine whether Sciunit can be directly 
used by scientists and efficiently integrated with the underlying 
cyberinfrastructure used by them, we teamed with geoscientists as 
part of the National Science Foundation’s EarthCube-funded proj-
ects “GeoDataspace,”1 “GeoTrust,”2 and “Repro Bench.”3 These 
projects resulted in some significant outcomes:

• Scientists created containers, and, thus, reusable objects,
using Sciunit with a single command. These containers are
unlike the commercial containerization tools available and
have simplified the containerization process.

• Scientists downloaded and reran the resulting reusable
artifacts without additional server or client maintenance.
This simplified repeatability.

• Sciunit is easily integrated with findable and accessible
data portals such as HydroShare, which is used by hydrol-
ogists. This made it easy to build and share reusable arti-
facts over the web.

• Sciunit included additional interfaces—such as integra-
tion with Jupyter notebooks—to efficiently support the
complex reproducibility requirements of geoscience com-
putational models.

In this chapter, we demonstrate these outcomes through 
geoscience applications to model development and their repro-
ducibility requirements. In these applications, the objective is to 
containerize the application and create a reusable research object 
using Sciunit. We describe additional features of the Sciunit 
interface and architecture to create a reusable and interoperable 
research object. We primarily focus on demonstrating Sciunit 
commands within the geoscience applications and the specific 

1https://nsf.gov/awardsearch/showAward?AWD_ID=1722152
2https://nsf.gov/awardsearch/showAward?AWD_ID=1639759
3https://nsf.gov/awardsearch/showAward?AWD_ID=1928288; https://nsf.gov/
awardsearch/showAward?AWD_ID=1928369; https://nsf.gov/awardsearch/
showAward?AWD_ID=1928315

https://github.com
https://figshare.com
https://hydroshare.org
http://zenodo.com
http://zenodo.com
https://www.doi.org
https://www.doi.org
https://jupyter.org
https://hydroshare.org
https://aws.amazon.com
https://jetstream-cloud.org
https://jetstream-cloud.org
https://www.xsede.org
https://docker.com
https://mybinder.org
https://nsf.gov/awardsearch/showAward?AWD_ID=1722152
https://nsf.gov/awardsearch/showAward?AWD_ID=1639759
https://nsf.gov/awardsearch/showAward?AWD_ID=1928288
https://nsf.gov/awardsearch/showAward?AWD_ID=1928369
https://nsf.gov/awardsearch/showAward?AWD_ID=1928369
https://nsf.gov/awardsearch/showAward?AWD_ID=1928315
https://nsf.gov/awardsearch/showAward?AWD_ID=1928315
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ways in which they ease the reproducibility requirements and 
provide seamless integration with the underlying community 
cyberinfrastructure—such as HydroShare—used by the applica-
tion. Each resulting research object is available via HydroShare 
and its corresponding link is provided. Sufficient documentation 
is provided to enable users to reuse the available sciunits.

The contributions of our work in this chapter are summa-
rized as follows:

(1) We describe six characteristics of geoscience applications 
based on their reproducibility requirements. All appli-
cations focus on one or more aspects of computational
modeling. While some applications may run in a parallel
or distributed mode, we focus on a single-node operation.

(2) We explain five use cases that have motivated changes in
the architecture and functionality of Sciunit. Each func-
tionality is described with the relevant code samples.

(3) We introduce four new functionalities in Sciunit to satisfy
FAIR-based reproducibility requirements for geoscience
computational workflows. These functionalities are import,
export, content-based diff, and provenance-based diff.

The rest of the chapter is organized as follows. We present 
the characteristics of geoscience application in Section 2. Sec-
tion 3 explains the terminologies and concepts from the field 
of computer science used in this chapter. Section 4 provides an 
overview of the Sciunit software. We then present our geoscience 
use cases in Section 5, each of which has influenced the features 
and architecture of Sciunit and resulted in a declarative Sciunit 
command line to create a reusable research object. We conclude 
in Section 6.

2. CHARACTERISTICS OF
GEOSCIENCE WORKFLOWS

We describe the characteristics of geoscience applications 
that focus on computational model development. We consider the 
entire workflow underlying these applications, which consists of 
data preparation, model description, execution, and analysis. We 
describe how these characteristics make it harder to satisfy FAIR-
based reproducibility requirements.

(1) Workflows are often developed in a variety of program-
ming languages. Modelers frequently use additional software to 
prepare inputs for a specific model (pre-processing software) and 
analyze outputs generated by the model (post- processing soft-
ware). Consequently, models are often a combination of smaller 
software modules or components contributed over time by many 
individuals and groups. There is usually no consistent standard 
for the choice of a programming language in developing these 
software modules. However, to reproduce large experiments that 
depend on these modules, it would be preferable to reproduce 
each module in the same transparent manner rather than choosing 
a language-specific method for reproducing each module.

(2) Workflows change environments, data sets, and meth-
ods. A functional reproducibility requirement is the ability to obtain 
consistent results. Such results are usually obtained by testing and 

experimenting with a different implementation of the model, i.e., 
new code but with the same underlying equations or principles. 
A test could evaluate whether the code and solvers implement the 
equations accurately and interpret any differences in results.

(3) Workflows analyze model sensitivity. Modelers often
spend weeks or months building, calibrating, and validating their 
models. Steps in this process are rarely automated, and the meth-
ods for completing these steps generally involve tacit knowledge 
that is difficult to automate. The exact parameters to vary may be 
mentioned in research articles or hard-coded in scripts, but are 
not easily captured in a tool used for reproducible analysis.

(4) Workflows use different interfaces. Model work-
flows that ease the sharing of code and data are increasingly 
being developed in notebooks, which operate in their special-
ized environments, but sharing and reproducing notebooks that 
were developed in other environments is a challenge. A seamless 
notebook sharing environment is essential for developing models 
using notebooks and subsequent collaboration using them.

(5) Workflows interact with services. To ease data dis-
covery and access, facilities often make data products available 
through public repositories. Models usually rely on such remote 
data collections, and their scripts typically include web requests 
and queries to fetch data from these collections. However, the 
content of remote repositories may change over time, which 
affects the reproducibility of any analyses that depend on the 
downloaded data.

(6) Workflows perform result validation. Execution of the
model is not the end; it is often necessary to validate whether the 
model used exactly the same sequence of instructions and pro-
duced the same set of output files with the same content.

3. BACKGROUND

In this section, we explain the various terminologies and
concepts from the field of computer science used throughout this 
chapter. Readers familiar with these concepts can move on to the 
following sections. 

API: Application programming interface (API) is a software 
interface that defines the interactions between various 
software applications.

CI: Continuous integration (CI) is a practice in software 
engineering in which frequent, independent changes to 
software code are integrated and tested continuously.

Cloud computing: Cloud computing refers to the on-
demand availability of various computing services over 
the internet, especially processing power and data storage.

Computational environment: A computational environ-
ment includes the configuration files, shell environment, 
software packages, and other program dependencies.

Container: A container is an independent software package 
that contains everything that is required to run an applica-
tion successfully.

Dependency: A dependency for a computer program is a 
piece of code or data that is required to run that program.
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DevOps: DevOps stems from development operations and 
refers to the set of practices and tools that increases an 
organization’s ability to deliver high-quality applications 
and services.

Docker: Docker is a popular tool for packaging software 
into isolated containers. A Docker container can be cre-
ated automatically using a set of instructions in a text 
document called a Dockerfile.

Infrastructure as a service: Infrastructure as a service is 
the most basic category of cloud computing services, 
where enterprises rent or lease servers for compute and 
storage in the cloud.

Notebook: A notebook is an interactive, online environment 
in which users write computer code and perform data 
analysis in a read–evaluate–print–loop (REPL) style.

Package: A software package refers to a collection of com-
puter programs in a portable form that allows them to be 
widely distributed.

Research artifact: A research artifact refers to computa-
tional artifacts such as code, binaries, libraries, scripts, 
data sets, documentation, and other files that have con-
tributed to specific research output.

Research object: A reusable research object is defined as an 
aggregation of research artifacts. A research object must 
adhere to FAIR policies.

Sandbox: A sandbox is an isolated computational environ-
ment that replicates an actual computational environment 
to run code and perform analysis.

Solver: A solver is a piece of code that solves a mathemati-
cal problem.

System call: A system call refers to a request made by the 
software program to the operating system for accessing a 
computer system resource, such as a network, hard disk, 
or other devices.

Virtual environment: A virtual environment is a self-
contained and isolated computational environment 
that enables developers to work on multiple projects 
with different sets of dependencies at the same time 
on a computer.

Virtualization: Virtualization is the process of creating 
independent virtual environments.

4. Sciunit

Sciunit (Pham et al., 2013; Ton That et al., 2017; Yuan et al.,
2018; Ahmad et al., 2020) is a tool that creates research objects 
that are shareable and reusable in other Unix-based computational 
environments. The research object created by Sciunit aggregates 
code, binaries, scripts, libraries, data sets, and environments; the 
research object is containerized and reusable in isolation. Sci-
unit observes a program and captures the trace of its execution 
using system utilities. It stores the program lineage comprising 
the sequence of system calls executed as part of the program, as 
well as the input and output data content used by that program.

Sciunit typically runs in two modes: an audit mode to cre-
ate a container and an execution mode to re-run a container. 
In the audit mode, a container of a user application is created 
as the user executes the application. In the context of auditing, 
such execution is termed a reference execution. We describe 
the audit process assuming that the application is running on a 
Linux machine.

Audit mode: During execution, the Linux strace util-
ity is used to monitor the running application process. strace 
internally attaches itself to the process using the ptrace system 
call to monitor all of the system calls of the running process. 
It intercepts each system call to determine the state of the run-
ning process and the arguments to the system call. For example, 
when a process accesses a file or a library using the system call 
fopen(), the fopen() call is intercepted. The intercepted system 
call is “paused” to examine input arguments and the process 
control block. For instance, in fopen(), the file path parameter 
is extracted. By intercepting all system calls, the auditing deter-
mines the contents of the research object, i.e., all program bina-
ries, libraries, scripts, and environmental variables upon which 
a user program depends. Inclusion of data files is optional, 
which the user may or may not want to package based on the 
size of the data set.

During the pause, the identified dependencies are used in 
two ways: first, to create a “sandbox” application container 
that includes all identified dependencies, and second, to cre-
ate an interaction log of the reference execution. The sandbox 
container is named with a package hash and placed in a special 
“root path.” It contains all the dependencies that were identi-
fied during the audit of reference execution. These dependen-
cies are placed at the same path within the special root path 
where they were originally identified. The interaction log gen-
erated during the audit phase contains interactions between 
the two processes when they are created through the fork or 
exec system calls, or between processes and files when files 
are opened or closed. The log also stores the logical range of 
the number of times the processes interact with other processes 
or files. The interaction log is topologically sorted to obtain a 
low-fidelity provenance graph.

Execution mode: In the execution mode, the application is 
executed from the container itself by monitoring its processes 
with strace, interrupting application system calls, and then 
extracting their path. Figure 1 illustrates the audit and execution 
phases. Sciunit turns the package (Pkg in the figure) into a self-
contained, lightweight research object. It could be shared across 
different environments with collaborators or members of a publi-
cation review committee to reproduce their research at any time.

Sciunit operates in the user space and tracks programs with 
the help of utilities provided by the underlying operating system. It 
has a simple installation process (https://sciunit.run/install) and pro-
vides an easy-to-use command line interface and a Python API for 
end users. Sciunit is available and easily installed on a Linux system 
using the package manager pip for Python 3 as follows:
pip install–user sciunit2

https://sciunit.run/install


Improving reproducibility with Sciunit 5

Detailed installation instructions for different versions of 
operating systems and the list of dependencies can be found on 
the official Sciunit website (https://sciunit.run).

5. GEOSCIENCE APPLICATIONS

We discuss the reproducibility requirements of geoscience
applications for five use cases from the domain. As we discuss 
each one of these, we will highlight the areas where reproduc-
ibility is an essential requirement. We attempt to address these 
reproducibility requirements by describing the changes made to 
the interface and architecture of Sciunit.

5.1. Geoscience Application 1: Variable Infiltration Capacity

The variable infiltration capacity (VIC) model is a macro-scale 
hydrologic model that applies water and energy balances to simu-
late terrestrial hydrology at a regional level (Liang et al., 1994). It is 
used for several applications, including water management in res-
ervoirs, studying climate change, and simulating streamflow. The 
VIC model has been applied to many river basins around the world.

The input to the VIC model comes from several different 
sources that include hydrometeorological data, soil map, wetland 
features, land cover map, vegetation properties, and digital eleva-
tion model (DEM). The input data are prepared through a com-
plex data pre-processing phase that requires significant time and 
effort. This pre-processing step is composed of several programs 
written in different languages. The output of the VIC model con-
sists of different files that contain information on river discharge 
and the intermediate hydrologic processes. Figure 2 illustrates 
various components of the data pre-processing pipeline.4 Here is 
a high-level overview of its workflow:

(1) Process precipitation and air temperature data sets.
(2) Process the wind speed data set.

Figure 1. Diagram gives an overview 
of reproducibility using Sciunit. During 
the audit phase, Sciunit captures the ex-
ecution of a program on Bob’s computer 
into a container. During the execution 
phase, that container is taken to Alice’s 
computer and repeated exactly.

(3) Process the land surface data sets including topography,
soil, and vegetation data.

(4) Create the final input files for meteorological data sets.

5.1.1. Support for Various Programming Languages
In the absence of Sciunit, a geoscientist would have to enu-

merate all dependencies of VIC, which include code written 
in C, C++, FORTRAN 77, Python, and shell scripts. In total, 
VIC consists of 97 scripts and binaries, 11,481 data files, and 
357 dependency files for a total of 2.3 GB. Also, some of these 
dependencies are not readily available. As an example, one of 
VIC’s FORTRAN dependencies at the time of experimentation 
was installed on a single machine and not widely available over 
the internet. Therefore, executing and reproducing the entire VIC 
pipeline successfully is an arduous and time-consuming task.

For VIC, we create a Sciunit project as follows:
sciunit create vic

The four workflow steps of VIC were run from a single 
script. To use Sciunit, the user ran the script on the bash shell 
terminal using the Exec command:
sciunit exec VICscript

Sciunit captures the complete trace of the execution of VIC-
script and creates a research object that includes all input data, 
binaries, dependencies, scripts, and output files that were part of 
the execution. The execution of this script is stored in the Sciunit 
database and assigned a label of the form en, where n is a mono-
tonically increasing positive integer. The List command shows 
the list of all programs executed in the VIC project:
> sciunit list
e1 May 9 2021 12:00 VICscript

Details for each execution can be viewed using the 
Show command:
> sciunit show e1
id: e1
sciunit: vic
command: VICscript
size: 2.3 GB
started: May 9 2021 12:00

4Complete code for the VIC pre-processing workflow and its sciunit is described 
here: https://www.hydroshare.org/resource/c7619f345a364b8bb27e87c0b9213a75.

https://sciunit.run
https://www.hydroshare.org/resource/c7619f345a364b8bb27e87c0b9213a75
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To share this Sciunit project and repeat its executions on 
another machine, the Copy command is used. It stores the project 
temporarily on a remote server and assigns it a unique token:
> sciunit copy
#k87A9a2e

The token #k87A9a2e generated above is temporary and in 
this demonstration is used on another machine to recreate the Sci-
unit project and all its executions there:

> sciunit open #k87A9a2e
opened sciunit project at ~/sciunit/vic

The user can again list the executions in this project using 
the List command. The same execution is now repeated using the 
Repeat command:
> sciunit repeat e1

This instruction reuses the research object and repeats the
execution of VICscript. It uses the same input files and follows 
the same sequence of instructions. Since VIC is a deterministic 
program, it generates the same outputs.

5.2. Geoscience Application 2: MODFLOW

MODFLOW (McDonald and Harbaugh, 1988) is the U.S. 
Geological Survey’s (USGS) three-dimensional, finite- difference 
flow model for solving the groundwater flow equation that is used 
by hydrogeologists to simulate the flow of groundwater through 
aquifers. The model is open source and primarily written in FOR-
TRAN programming language. USGS has released multiple ver-
sions of MODFLOW, but MODFLOW-2005 (Harbaugh, 2005) is 
the most widely used. MODFLOW-NWT (Niswonger et al., 2011) 
is a version of MODFLOW-2005 that uses a Newton-Raphson for-
mulation to improve the solution of unconfined groundwater-flow 
problems. MODFLOW-NWT is a stand-alone program for solv-
ing problems involving drying and rewetting nonlinearities of the 
unconfined groundwater flow equations.

We consider a use case where MODFLOW is used to model 
the shallow groundwater flow in the James River watershed 
upstream of Richmond, Virginia, USA (Essawy et al., 2018). 

Figure 2. Various steps in the data pre-processing workflow for the variable infiltration capacity (VIC) model are shown; adapted from Billah et 
al. (2016). NCAR/NCEP—National Centers for Environmental Prediction/National Center for Atmospheric Research; LDAS—Land Data As-
similation Systems; PRISM—Pliocene Research, Interpretation and Synoptic Mapping; NCDC—National Climatic Data Center.
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The model includes recharge to the water table, subsurface flow 
through the saturated zone, and baseflow discharge to surface 
water bodies including the James, Rivanna, and Hardware Riv-
ers, as well as several smaller-order streams. The model is created 
using FloPy: a Python library for implementing various steps in 
MODFLOW model development, execution, and analysis (Bak-
ker et al., 2016). A high-level overview of the code5 follows:

(1) Download raw input data from HydroShare.
(2) Define and prepare input files for the model.
(3) Specify model output format.
(4) Define the various model attributes and properties for the

use case.
(5) Run the model simulations.

5.2.1. Workflows Have Different Versions
Sciunit allows users to execute programs that span multiple 

programming and scripting languages. For the above use case, 
the individual components are written in Python, and the entire 
model workflow is then packaged into a shell script. Sciunit exe-
cutes the model simulations and generates the output files. For 
different versions of MODFLOW, a user can execute their work-
flows individually using Sciunit as follows:
sciunit create modflow
sciunit exec modflow_2005.sh
sciunit exec modflow_nwt.sh
...

The workflows of different MODFLOW versions are exe-
cuted separately as part of the same project in Sciunit, which will 
distinguish the versions but store them compactly in its dedu-
plication engine. The deduplication engine only stores the data 

Figure 3. An illustration of the Structure for 
Unifying Multiple Modeling Alternatives 
(SUMMA) framework is used to describe 
the application of multiple process param-
eterizations with conservation equations 
and a numerical solver (Clark et al., 2015a, 
p. 2505; used with permission of the Ameri-
can Geophysical Union).

blocks that are unique across the files of all program executions 
in a project. This reduces the disk space required to store the 
project executions. All executions in the MODFLOW project are 
listed using the List command:
> sciunit list
e1 May 9 2021 12:00 modflow_2005.sh
e2 May 9 2021 13:00 modflow_nwt.sh
...

5.3. Geoscience Application 3: SUMMA

Structure for Unifying Multiple Modeling Alternatives 
(SUMMA) is a hydrologic model that enables the systematic 
and controlled evaluation of multiple model representations and 
provides insight into the advanced unified modeling framework 
(Clark et al., 2015a). It gives users the flexibility to evaluate the 
interplay between the model and process parameters and provides 
the capabilities to experiment with different numerical solvers. 
Figure 3 illustrates the construction of the SUMMA model. It 
consists of a solver with outer branches and produces a numeri-
cal solution with a conservation equation from water and energy.

We use a case study of Clark et al. (2015b), which describes 
a set of modeling experiments that explores various hydrologic 
modeling scenarios using SUMMA. We run the code in a Jupyter 
notebook inside the Anaconda virtual environment.6 A high-level 
overview of the code follows:

(1) Download SUMMA model instance from HydroShare.
(2) Configure various settings of the SUMMA model

execution.

6The referenced PySUMMA notebooks are available from here: https://www 
.hydroshare.org/resource/28e3bb9c42ec4fca9b841afbfa660764.The notebooks 
generate the corresponding sciunits as described in this usecase.

5The MODFLOW-NWT sciunit is accessible as a Hydroshare resource from here: 
https://www.hydroshare.org/resource/06fe2d66751b4c6e86838ecebb8c552d.

https://www.hydroshare.org/resource/28e3bb9c42ec4fca9b841afbfa660764
https://www.hydroshare.org/resource/28e3bb9c42ec4fca9b841afbfa660764
https://www.hydroshare.org/resource/06fe2d66751b4c6e86838ecebb8c552d
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(3) Execute SUMMA for different stomatal resistance
methods.

(4) Calculate total evapotranspiration (ET).
(5) Visualize total ET against different times of the day.
A cross-section of the code for step 3 above is shown in Fig-

ure 4. It explores the impact of three different stomatal resistance 
parameterizations on total evapotranspiration: the simple soil 
resistance method, the Ball Berry method, and the Jarvis method.

5.3.1. Changing Data Set and Methods
Scientists running this experiment run their code multiple 

times with different stomatal resistance methods for each one. 
It allows them to reuse their code and analyze the differences 
across executions. The code snippet shown in Figure 4 runs the 
SUMMA simulation (Choi et al., 2021) using its Python API, 
PySUMMA, and writes the configuration and output files on the 
disk. The user provides the stomatal resistance method stom-
Resist as a command line argument. We run this program with 
Sciunit in the following manner with a simple resistance method:
sciunit exec pysumma_example.py  
simpleResistance

This executes pysumma_example.py, which runs the 
SUMMA simulation with the simpleResistance method. After 
successful execution, Sciunit stores it in its database and labels it 
e1. This is viewed by running the List command, which displays 
the output as below:
> sciunit list
e1 Jan 29 2021 12:01 pysumma_example.py
simpleResistance

We now run the same program with a different stomatal 
resistance method using the Given command as follows:
sciunit given BallBerry repeat e1

The original execution e1 now runs in the same manner, 
except that it uses the BallBerry method instead of simpleResis-
tance. This repeated execution of the program using the Given 
command is not automatically saved to the database since it is a 
repetition of the execution e1 but with a changed input parameter. 
To store it as a separate execution, we manually save it using the 
Commit command:
sciunit commit

The above statement commits the most recent unsaved execution 
to the Sciunit database.

5.3.2. Notebook Interaction
As mentioned earlier, the PySUMMA code was run in a 

Jupyter notebook in the Anaconda virtual environment. Note-
books make the task of programming more streamlined, inter-
active, and customizable. They combine the code, images, vid-
eos, graphs, and other graphical user interface components in a 
single place. However, they also make it challenging to struc-
ture, test, and version the code. It is also difficult to run a long-
running, asynchronous task on Jupyter. Moreover, sharing and 
reproducing notebooks developed in other environments is also 
a challenge. Thus, in our experience, after initial development 
and experimentation, scientists often need to move their code to 
another computational environment for execution, sharing, and 
reproducibility.

We ran PySUMMA inside the Anaconda virtual environ-
ment that was instantiated in the Jupyter notebook. Virtual 
environments like Anaconda and Virtualenv allow users to 
manage multiple isolated computational environments without 
interfering with each other. Each environment has its own set of 
dependencies and their specific versions. These environments 
are often constructed seamlessly for each project according to 
their requirements.

We believe that if a transition of code becomes necessary, 
the transportation of the computational environment should 
be universal, so that reproducibility is easy and efficient. The 
new environment must contain all of the dependencies of the 
original environment, including when it was using a virtual 
 environment—such as one created by Anaconda or  Virtualenv—
for dependency management.

Sciunit provides two functionalities for interacting with 
notebooks and the virtual environments: import and export. In 
import, scientists import or fetch the dependencies into a com-
putational environment from another environment. This allows 
them to run certain programs within the same environment, 
which did not have their dependency requirements already sat-
isfied. The export functionality creates a new computational 
environment from an existing one. For a given program,  Sciunit 

Figure 4. Cross-section of the code for 
the PySUMMA model, which takes a 
user argument for different stomResist 
methods, is shown.
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tracks all of the  dependencies and the complete trace of its 
instruction sequence, which enables Sciunit to reproduce the pro-
gram as and when required by the user. The export functionality 
allows the user to export these captured dependencies outside of 
Sciunit into another computational environment. The output of 
Export command describes the computational environment that 
was contained within Sciunit, which could then be used to cre-
ate another virtual environment using Anaconda or Virtualenv or 
an isolated computational environment like a Docker image or a 
virtual machine. The Export command is issued from the Sciunit 
interface as shown below:
sciunit export <execution id>

The output of the above command is a requirements.txt file 
that contains all of the dependencies of the given execution. A 
small cross-section of the output file for PySUMMA is shown in 
Figure 5. Each line in the file contains the name of the library file 
and its version used by the execution. Notice that the program has 
a total of 146 Python libraries listed as dependencies that were 
used during its execution. A few notable ones include pysumma, 
sklearn, and numpy.

Figure 5. A cross-section of the output file re-
quirements.txt for the Export command executed 
on the PySUMMA code is shown.

The requirements.txt file generated above is useful in many 
ways. We list a few of them below:

• The user can analyze and inspect the list of requirements
to keep track of all of the dependencies and their versions.
Developers keep making changes in actively used pack-
ages, which can potentially break applications if a specific
package version is not available. Bookkeeping in the form
of a requirements file prevents unexpected changes.

• The requirements file generated for a given program is
also useful for recreating the computational environment
for that program on another machine. For example, we
can use the Python package manager pip as follows:
pip install -r requirements.txt

• The installation of a specific set of requirements is used
to instantiate a fresh computational environment, which
only contains the dependencies for the given program.
This currently is achieved in two different ways:
(1) A new virtual environment is created using environ-

ment managers like Virtualenv, Pipenv, and Anaconda.
(2) A virtual machine or container is created using pro-

grams like Docker. The Export command provides an
option for generating a Dockerfile in addition to the
requirements file. The resultant Docker image is a very 
thin container with just enough resources installed to
run the given program.

5.4. Geoscience Use Case 4: HAND

Height Above the Nearest Drainage (HAND) is a terrain 
model that normalizes topography according to the local heights 
relative to the drainage network (Rennó et al., 2008; Nobre et 
al., 2011). It has been used in the modeling of flood inundation 
and in the computation of reach-scale hydraulic properties for 
flood modeling (Zheng et al., 2018; Garousi-Nejad et al., 2019). 
TauDEM software provides a vertical distance down function 
for the computation of HAND using the D-Infinity flow model 
employed in this use case (Tesfa et al., 2011).

We use a case study that demonstrates the use of the HAND 
model for the Little Bear River near Paradise, Utah, USA. The 
workflow for computing HAND in this example follows:

(1) Hydro-condition the Digital Elevation Model (DEM) by
removing pits (filling internally draining grid cells).

(2) Delineate stream network.
(3) Compute D-Infinity flow direction.
(4) Calculate HAND.

5.4.1. Result Validation
During computation of the drainage network, a minimum 

contributing area threshold is used to identify the channel begin-
ning. With a lower threshold value, the density of the resulting 
drainage network increases. Scientists running this experiment 
are interested in finding out how the threshold makes a difference 
in the execution and result of the HAND model. These differ-
ences could lie in the files being read by the model, configuration 
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and dependency files it uses during its execution, and the output 
files it generates. Finding these differences is often crucial for 
interpreting and analyzing a model.

Figure 6 shows a cross-section of the code from the Tau-
DEM HAND procedure7 given in the steps above. The threshold 
parameter is provided by the user. We run execute the HAND 
model with Sciunit using two different threshold values of 5000 
and 50,000, each with a different Python script. As a result, we 
get two separate executions: namely, e1 and e2. Figure 7 shows 
a simplified cross-section of the result of the Diff command 
on these executions. The files different in e1 and e2 are their 
respective code files having different threshold values. Notice 
that the output files hand.tif, src.tif, and srctemp.tif are present in 
both executions but differ in their content due to the change in 
threshold value. cde.log and provenance.cde-root.1.log are some 
of the internal files utilized by Sciunit for containerizing these 
programs. The ellipses in the output represent parts of the output 
suppressed for readability.

5.4.2. Service Interactions
Before the program for the HAND model in Figure 6 is 

executed, it downloads a resource from HydroShare to run the 
experiment. The resource contains the Little Bear River data set 
to use in this experiment. This behavior is common in modeling 
experiments as they often rely on data and other resources resid-
ing on other hosts. This is shown in the first few lines of our code 
for the HAND model experiment in Figure 8.

The content of remote repositories may change over time, 
affecting the reproducibility of any analyses that depend on the 
downloaded data. In our scenario, let us consider that when the 
program is executed the first time, the network is accessible and 
the data set is downloaded successfully. After downloading the 
data set, the rest of the HAND code is executed. After some time, 
if the user decides to repeat the initial execution, the data set may 

Figure 6. Cross-section of the code for the Height Above the Nearest Drainage (HAND) model, which takes a user argu-
ment for different levels of threshold value, is shown.

not be available, or the network itself may not be accessible. In 
that case, a fresh copy of the data set would not be downloaded. 
However, the code for calculating HAND would continue to use 
the stale data set from the initial execution that still resides on the 
local machine. All of this would occur smoothly for the user run-
ning this program, and no error or warning would be generated.

Sciunit traces the entire execution of a program and stores 
its provenance. Sciunit then performs a provenance-based diff 

Figure 7. The output of the Diff command used in the 
Height Above the Nearest Drainage (HAND) model is 
shown, using different values of thresholds. e1 is the ex-
ecution with threshold 5000, and e2 is the execution with 
threshold 50,000.

7The HAND resource and sciunit is accessible from here: https://www.hydroshare 
.org/resource/ce0f48aff42142b3a12147e8c5113dac/.

https://www.hydroshare.org/resource/ce0f48aff42142b3a12147e8c5113dac/
https://www.hydroshare.org/resource/ce0f48aff42142b3a12147e8c5113dac/
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 operation: it compares the original and the repeat executions 
using the provenance information collected for both. In the exam-
ple described above for downloading the data set, the sequence of 
system calls for the original and repeat executions would differ 
since the data set was not downloaded and stored successfully 
in the repeat execution. Hence, the provenance trace for these 
executions diverges. Sciunit captures this difference and alerts 
the user that the repeat execution of the given program was not 
completely successful.

5.5. Geoscience Use Case 5: RHESSys

Regional Hydro-Ecological Simulation System (RHES-
Sys) is a GIS-based terrestrial hydro-ecological modeling 
framework designed to simulate carbon, water, and nutrient 
fluxes (Tague and Band, 2004). It models the temporal and 
spatial variability of ecosystem processes and interactions at 
the watershed scale. RHESSys combines the physically based 
process models and a methodology for partitioning and param-
etrizing the landscape.

We demonstrate the end-to-end workflow of the RHESSys 
model using PyRHESSys, which is an object-oriented Python 
wrapper for RHESSys. PyRHESSys enables users to create and 
manipulate model input, execute the model, and analyze the 
model outputs. This model workflow demonstrates the applica-
tion of an open and interoperable containerization approach from 
a hydrologic modeler’s perspective. The steps are as follows: 

(1) We create an end-to-end workflow for RHESSys using a
Jupyter notebook.

(2) We encapsulate the workflow and create configurations
that include lists of encapsulated dependencies generated
using Sciunit.

(3) We create two GitHub repositories to share dependency
files for evaluating the reproducibility of the immutable
and interoperable Sciunit container.

(4) We create a HydroShare resource to share the Sciunit
container.

(5) Finally, we evaluate the reproducibility of Sciunit using
the two GitHub repositories in MyBinder.

To model the workflow, we first download raw GIS and 
time-series data. GIS data include data for DEM, landcover, soil, 

Figure 8. The first few lines of code of 
the Height Above the Nearest Drainage 
(HAND) model show the HydroShare 
resource being downloaded from the 
internet.

etc., and time-series data include climate and streamflow obser-
vations, etc. An overview of the code is as follows8:

(1) Download raw GIS and time-series data.
(2) Set up GRASS data set and environment.
(3) Prepare spatial input and time-series model input.
(4) Define RHESSys model input and parameters.
(5) Execute RHESSys model using Sciunit.
(6) Create two GitHub repositories and a HydroShare resource.
(7) Create MyBinder environment.
We successfully run this model using Sciunit, which gen-

erates an execution e1. To create the MyBinder environment in 
step 7, we use the Export command to generate the requirements 
.txt file for all Python dependencies for modeling the end-to-end 
RHESSys workflow:
> sciunit export e1

Exported dependencies of e1 into
requirements.txt

Binder resources are configured through an environment.yml 
file that uses the requirements.txt file generated by Sciunit above.

6. CONCLUSIONS

In this paper, we described the reproducibility requirements
of geoscience applications with a focus on model development and 
analysis. We first outlined the initial design of Sciunit, which has 
the necessary system capabilities to support the encapsulation and 
containerization of geoscience applications. However, it lacked 
the necessary interfaces and components to readily address the 
reproducibility requirements of geoscience applications. We then 
described the relevant changes in the interface and architecture 
of Sciunit to achieve those reproducibility requirements. Though 
a larger user-based survey of these interfaces is still outstanding, 
the immediate response from the community has been positive. 
Scientists have commented on the ease of creating, sharing, and 
repeating containers with Sciunit. Sciunit could be easily installed 
and used in HydroShare compute environments (Consortium of 
Universities for the Advancement of Hydrologic Science, Inc. 

8The RHESSys end-end workflow and sciunit is accessible from here: https://

www.hydroshare.org/resource/d2a469fe56714715bad849a5dfc380bc/.

https://www.hydroshare.org/resource/d2a469fe56714715bad849a5dfc380bc/
https://www.hydroshare.org/resource/d2a469fe56714715bad849a5dfc380bc/
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[CUAHSI] JupyterHub and CyberGIS Jupyter for Water). Like 
other software, it only requires an occasional upgrade for server 
maintenance. Sciunit is generic in its design and has also been 
used in space and solid Earth science applications.

Finally, we would like to emphasize that the resources pro-
vided as part of this paper include both geoscience applications 
and sciunits. Sciunit software guarantees the reproducibility of 
workflows executed by the Sciunits that are included. However, 
the reproducibility of geoscience applications used to create the 
Sciunit containers is dependent on the libraries and configuration 
available on the computing platform being used. While we have 
tested all the applications presented in this paper on the Cyber-
GIS Jupyter for Water platform linked to HydroShare, success-
ful re-execution of parts of the code that were used to create the 
Sciunit containers—linked in this paper for documentation and 
pedagogical purposes—cannot be guaranteed for computational 
environments that differ from CyberGIS Jupyter for Water as it 
was configured at the time of the publication. Indeed, container-
izing dependencies of the computational environment is one of 
the problems Sciunit was developed to solve. While code outside 
of Sciunit may no longer execute correctly, the use cases pre-
sented in this paper demonstrate the reproducibility guaranteed 
by Sciunit through the repeatability of Sciunit containers.
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