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Abstract: Kernel density estimators are useful building blocks for empirical statistical modeling of 
precipitation and other hydroclimatic variables. Data driven estimates of the marginal probability 
density function of these variables (which may have discrete or continuous arguments) provide a 
useful basis for Monte Carlo resampling and are also useful for posing and testing hypotheses (e.g. 
bimodality) as to the frequency distributions of the variable. In this paper, some issues related to 
the selection and design of univariate kernel density estimators are reviewed. Some strategies for 
bandwidth and kernel selection are discussed in an applied context and recommendations for pa- 
rameter selection are offered. This paper complements the nonparametric wet/dry spell resampling 
methodology presented in Lall et al. (1996). 

1 I n t r o d u c t i o n  

In a recent paper (Latl et al. 1995), a nonparametric approach to a stochastic model 
for daily precipitation was presented. The salient features of this model were the con- 
sideration of alternating wet and dry spells and of a daily rainfall structure within the 
wet spell. Kernel density estimates (k.d.e.'s) were espoused as effective methods for 
recovering univariate, multivariate or conditional, discrete and/or  continuous proba- 
bility densities that  were needed directly from the historical record. In the process of 
developing the nonparametr ic  wet/dry spell model in Lall et al. (1996) kernel density 
estimators of continuous and discrete variables were reviewed and tested with various 
data sets. Our aim here is to present some of this experience, specifically with the 
type of data available for modeling daily precipitation as a wet/dry spell model. 

The issues relevant to the implementation of the kernel density estimators reviewed 
here are (a) the specification of the bandwidth of a kernel density estimator for the 
continuous case, (b) the rote of boundary effects in kernel estimation, and (c) the 
selection of the estimator in the discrete case. The intent is to justify our recom- 
mended procedures by example, and to provide a comparison of some of the estima- 
tion schemes available in the literature. 
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Investigations for estimating the probability density function (p.d.f.) of continuous 
random variables (here, it is the precipitation amount for a day or for a wet spell) are 
first presented followed by comparisons of methods for the estimation of the proba- 
bility mass function (p.m.f.) of discrete random variables (here, it is the length of a 
wet spell or dry spell in days). 

2 Kerne l  dens i ty  e s t ima t ion  of a cont inuous  r a n d o m  var iab le  

Kernel density estimation for univariate, continuous random variates was reviewed 
recently by Lall et al. (1993) in the flood frequency estimation context. The presen- 
tation here adds a few recent bandwidth estimation methods, and a discussion of the 
possible utility of boundary kernels with precipitation data. The interested reader 
is referred to Silverman (1986) for a pragmatic treatment of Kernel density estima- 
tioni to Devroye and Gy6rfi (1985) for a rigorous treatment using L1 (absolute value) 
methods; and to Scott (1992) for a recent monograph with an excellent treatment 
of multivariate estimation. Chiu (1996) and Jones et al (1996) provide reviews of 
bandwidth selection methods. Hydrologic applications are reviewed in Lall (1995). 

2.1 Basic ideas 

Given observations Xl, x2,..- , Xn, the kernel density estimator (k.d.e) at any point x 
is fn(x) is defined as: 

~ 1 (x- xi'~ 
: K (1 )  

i : l  ~k hi .it 

where K(.) is a kernet Nnction centered on the observation xi, that is usually taken 
to be a symmetric, positive, probability density function with finite variance; and 
hi is a bandwidth or "scale" parameter of the kernel centered at xl. A fixed kernel 
density estimator uses a constant bandwidth, h, irrespective of the location of x. The 
kernel K(.) is a symmetric function centered on the observation xi, that is positive, 
integrates to unity, has first moment equal to zero and finite variance. An illustration 
of how a kernel density estimate is computed is provided in Figure 1. Examples of 
kernel functions that are often used are provided in Table 1.. In this work, we have 
used the Epanechnikov and the Bisquare kernels. 

Other examples (see Devroye and Gy6rfi 1985; Silverman 1986; Scott 1992) of 
nonparametric density estimators include the k nearest neighbor density estimator, 
Fourier series estimators, adaptive shifted histograms, frequency polygons, penalized 
likelihood estimators, and orthogonal series estimators. All these methods can be 
shown to be equivalent to kernel density estimators with special kernels. 

The goal of nonparametric density estimation is to obtain a good pointwise estimate 
of the underlying p.d.f. Consequently, the performance of the estimator is judged by 
the pointwise error. The choice of the estimator and the bandwidth is motivated 
through an analysis of mean squared error (MSE) in estimating the density at. a 
point x, given as 

MSS(to(x)) = S{[f)(x)- fo(x)] ~} (2) 
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Figure 1. Example of kernel density estimation using 5 equally spaced values (5-13) with Bisquare 
kernel, h=4. 

Table 1. Examples of Continuous Variable Kernel Functions 

Kernels Note t = (x - xi)/h 

Normal K(t) = (27r)-1/2e-t~/2 

Epaneehnikov K(t) = 0.74(1 - t 2) ttl 1 

Bisquare K(t) = 0.9375(1 - t2) 2 It I 1 

Continuous (Left)Boundary Kernels, Univariate (Miiller, 1991) 

Note that q=x/h, 0<q_<l and x is the point at which the density is estimated, and h is the bandwidth. 

for Epanechnikov K ( q , t ) = 6 ( l + t ) ( q - t )  ~ 1  {1+5,1+qy(1-q'2+10 l~-v--q-tO+qP } 
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where E[.] denotes the expectation operator. HKrdle (1991), p. 59 provides the 
asymptotic mean square error of the kernel density estimate (equation 1) for differ- 
entiable f(x), through a Taylor Series expansion of the MSE as: 

MSE(fn(x)) = {0 .5h2f"(x) / t2K(t )d t}2  + (nh) -~f (x) /K2( t )d t  + O(h 2) (3) 

The first term in equation (4) is the bias squared and the second is the variance 
of the estimate at x. Since it is a weighted moving average, the k.d.e, typically 
underestimates the density at the modes, and overestimates it at the antimodes, 
corresponding to the bias term that is proportional to f~(x). The Mean Integrated 
Squared Error (MISE=MSE(fdx)dx) and related measures of performance can be 
developed from equation (3). 

Epanechnikov (1969) showed that the MSE optimal kernel (among the class of 
kernels that are positive everywhere and have first moment and second moment fi- 
nite), for density estimation is the quadratic kernel bearing his name given in Table 
1. He also showed that the asymptotic relative MSE efficiency (MSE(f~(x)) using 
kernel/MSE(f~(x)) using optimal kernel) of any other admissible kernel function (even 
the rectangular kernel) was always close to one. The reason for this is that differ- 
ent kernels can be made equivalent in this sense through appropriate choices of the 
bandwidth (Scott, 1992). Consequently it is generally believed that the choice of a 
kernel function is not very important for density estimation as far as the asymptotic 
MSE is concerned. However, there are other factors that are important for choosing a 
kernel function. The differentiabitity of the kernel function is inherited by the result- 
ing density estimate. The Epanechnikov kernel is not differentiable at the ends of its 
support. The Bisquare kernel (Table 1) is to be preferred in this regard. Where the 
random variable is bounded (e.g., precipitation is defined only over [0,]), a kernel with 
bounded support is to be preferred (e.g. Epanechnikov or Bisquare) over one with 
infinite support (e.g. Normal) to minimize boundary effects (which will be discussed 
in section 2.2). 

Typically the bandwidth and the kernel are selected by minimizing the estimated 
average mean integrated square error (AMISE=E[MSE(~dx)dx)]). Methods for band- 
width selection are described in section 2.3 and are summarized in Table 2. 

Since kernel density estimation is a local averaging process, estimates in the tail 
(especially for data from long tailed distributions) can be rough (have high variance 
of estimate) because there will be fewer and fewer data points to average for a fixed 
bandWidth. A natural way to deal with with such situations is to use a larger h in 
regions of low density (e.g., tails) and smaller h in regions of high density (e.g., near 
the modes). Variable bandwidths can reduce the problem of oversmoothing of the 
modes. 

Estimation of a variable bandwidth hi is more difficult than the estimation of the 
global bandwidth h. A practical approach is a procedure suggested by Silverman 
(1986) based on recommendations by Abramson (i982), who showed that choosing 
hi proportional to  fn(Xi) -1/2 could improve the MSE rate of convergence of fn(x) from 
O(n -4/s) to O(n-8/9). Here O(.) refers to "terms of the order of", and for comparison 
the optimal convergence rate for a parametric density estimate is usually O(n -1). The 
strategy is to perturb an appropriate fixed or global bandwidth h into a sequence of 
bandwidths h~ at each observation x~ as: 
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hi = h(fn(xi ) ) /g)  -1/2 (4) 

where g is the geometric mean of f~(xi). One can iteratively re-estimate f~ixi) and 
hence hs using the latest kernel density estimate. Two to three such iterations were 
found to be su~cient to achieve pointwise convergence to a fractional tolerance of 
0.001 in the resulting density estimate. 

2.2 Boundary effects and their treatment 

An annoying aspect of kernel estimators of probability densities (both continuous and 
discrete) is the increased bias within one bandwidth of the boundary (e.g., 0) of the 
sample space. The bias is a consequence of the increasingly asymmetric distribution of 
the random variable as one approaches the boundary. Modifications to kernel density 
estimate are necessitated within a bandwidth of the boundary (e.g. 0 for data from 
exponential distribution) of the sample space. Two problems are faced for estimation 
in the boundary region. 

The first is that a kernel can extend past the boundary if the bandwidth is larger 
than the observation at which a kernel function is centered. This leads to a leakage 
of probability mass, and the resulting fn(x) will not integrate to 1 over the sampling 
domain. Clearly this problem is aggravated if a kernel with infinite support is used 
(such as the Gaussian kernel, see Table 1). The boundary problem is illustrated in 
Figure 2. Consider the continuous univariate random variable x E[0,], and a fixed 
bandwidth (h=0.1). For the point of estimation in the Figure 2 (i.e. x=0.01), which is 
within one bandwidth of the boundary, the interior Epanechnikov kernel is truncated 
of at the boundary (x=0.0) resulting in the leakage of probability mass. Boundary 
kernels developed by Mfiller (1992) alleviate this problem. 

The second problem is increased bias that results from the asymmetric distribution 
of observations around the point of estimate. Let us say that the smallest sample 
value is xl, and that xt is greater than h. Now if a kernel estimate of fr,(x) is needed 
for x<h, i.e., in the boundary region, all the sample values are to the right of x, 
leading to an increased bias in the estimate fn(x). Attempts to overcome this bias 
typically lead to an increased variance due to the relatively few points caught in a 
bandwidth of the kernel. 

A number of methods for dealing with the boundary problems mentioned above 
have been proposed. We investigated four methods for boundary modification of the 
kernel estimator. 

The first method is "cut and normalize". One computes the area of each kernel that 
lies within the sample space, and normalizes the truncated kernel to have unit area, 
by dividing the kernel function by this area. Bias reduction issues are not addressed. 

The second method, reflection, augments the data set by reflection of the real data 
across the boundary. The assumption is that f(x)=0. There is no basis for this 
assumption and it is unlikely that it holds for the precipitation data sets. 

The third method which is more general, considers the development of special 
boundary kernels (see Mfiller, 1988, 1992, and Table 1), that are asymmetric, un- 
biased, and minimum variance but are not non-negative. These kernels are modified 
versions of the kernels used in the interior of the sample space, and are derived from 
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Figure 2. Conceptual figure of the boundary problem in kernel density estimation. 
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variational conditions (see M/iller, 1992 for details). We have investigated such kernels 
in the univariate case with reasonably good results. Bias of the density estimate 
is reduced in the boundary region, typically with some increase in the variance of 
estimate, For the type of data we were dealing with (precipitation or spell length), 
the density is high near the origin (i.e. 0.01 and 1 respectively), and the possible 
negative values of the boundary kernel function near the origin do not translate into 
negative density estimates. For the discrete case, Dong and Simonoff (1994) have 
developed boundary kernels for the Epanechnikov and Bisquare kernels, (See Table 1 
for boundary kernels for Epanechnikov kernel). 

A fourth method relevant for data concentrated near the boundary (e.g exponential, 
log normal) is a logarithmic transform of the data prior to density estimation. Such a 
transformation can also provide an automatic degree of adaptability of the bandwidth 
(in real space), thus alleviating the need to choose variable bandwidths with heavily 
skewed data, and also alleviates problems that the kernel density estimator has with 
p.d.f, estimates near the boundary (e.g., the origin) of the sample space. The resulting 
k.d.e, can be written as: 

I £ 1 ( log (x )~ log(x i ) )  
fn(X) ~-~ 7 i=1 h~x Z hx ] (5) 

where h, is the bandwidth of the log transformed data. The above estimator worked 
well for data concentrated near the origin (e.g. exponential type) and hence is rec- 
ommended. 

2.3 Bandwidth selection schemes 

In this section we review some choices of bandwidth selection for kernel density es- 
timation for continuous variables. Comparisons of these alternatives with synthetic 
data are presented next. Rather than reproducing a variety of statistical results, we 
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shall focus on getting the basic ideas across through a brief review of the univariate, 
continuous random variable case. 

Four methods for selecting the optimaI globaI bandwidth were considered. 

(1) Parametric reference (PR) procedure. 
The optimal bandwidth hopt and kernel are selected by first minimizing the Mean 

Integrated Squared Error (MISE), equation (3) integrated with respect to h. The 
result is the optimal bandwidth hopt and then solving for the optimal kernel (see 
Silverman, 1986, p.38-42). 

The MISE of the fixed, univariate, continuous, k.d.e, and the corresponding optimal 
global bandwidth hopt are given by Silverman (1986), sec. 3.3 as: 

MISE(f~(p)) ~ (nh)-lR(K) + 0.25h4cr~R(f '') (6) 

hop< : (7)  

where a(g)=fg2(x)d× and c ,2 = fx~g(x)dx. The terms R(i<)and ~ depend only 
on the known kernel K(.). Consequently, the unknown term in equations 8 and 9 
is R(f'), which depends on the unknown density f(x). Now one could fit the <'best" 
parametric model for precipitation, e.g., the exponential, and then "knowing" f(x) 
compute R(f') and thereby evaluate hopt. Silverman (1986), p. 47, provides hopt 
using the normal distribution as a reference. We investigated such schemes, and 
found that bandwidths selected in this manner can be quite sensitive to the choice of 
the reference distribution. For example, for a Gaussian kernel, the hopt for a Normal 
parent p.d.f, is 1.33 times the hopt for an Exponential parent. The need to refer to 
a parametric model detra,;ts from the utility of this method, but the method is tess 
sensitive to boundary effects white selecting hopt. 

From equation (7) observe that knowing the optimal bandwidth hN for the Normal 
kernel, the optimal bandwidth hK for a kernel different from the Normal kernel can 
be readily evaluated as: 

where "N" identifies the Normal kernel, and "K" the kernel of interest. Different 
kernels can thus be made equivalent. 

(2) Least Squares Cross Validation (LSCV, see Silverman (1986), section 3.4.). The 
optimal bandwidth is solved by the minimization of 

LSCV(h) = / f 2 -  2n-i ~ f-~(xi) (9) 
i= I  

where f-i represents a k.d.e, constructed by dropping the i th observation. 
LSCV is prone to undersmoothing where the data exhibits fine structure, and also 

suffers from a high degree of sampling variability, leading to rather poor MISE con- 
vergence rates (O(n -1/1°) (see, Hall and Marron (1987)). The computational burden 
and poor convergence rate of this method are discouraging. However, its broad ap- 
plicability to a wide class of situations renders it popular. 
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(3) Maximum Likelihood Cross Validation (MLCV, see Silverman (1986), section 3.4). 
The optimal bandwidth is solved by the maximization of a pseudo-likelihood criteria 

given as: 

MLCV(h) : n -~ f i  log(f_l(xi)) (10) 
i=1 

MLCV leads to degenerate solutions if the data is long tai]ed, and also suffers 
from the same low convergence rate that characterizes LSCV. The degeneracy can 
be corrected (Schuster 1985) by excluding a fraction of the right tail data from the 
MLCV score (not from the density estimate). The subjectivity of the choice of such 
a cutoff point and the computational burden of the scheme detract from its usage. 

(4) Direct minimization of estimated MSE/MISE. 
"Plug in" or recursive estimators are methods that use data driven kernel estimates 

of f(x) and R(f") (or equivalent measures in the discrete case). Such methods were 
originally proposed by Woodroofe (1970), and pursued by Scott et al (1977), Scott and 
Factor (1981) and Sheather (1983, 1986). Improvements by Park and Marron (1990), 
and Sheather and Jones (1991) (hereafter, S J) among others have lent stability to 
these methods and have led to a MISE convergence rate of hopt of the order of n -s/14, 
as well as a reduction in the size of the constants associated with this rate. 

A summary of the SJ procedure for the continuous, univariate k.d.e, follows. They 
developed a kernel estimate s(a) for R(f") as: 

It n 
-1  -5  S(a) = {n(n- i)} cz E E  Ki~((x] - xi)/a) (11) 

i : 1  ]=I 

c~(h) = 1.357{S(a)/T(b)}1/rh s/7 (12) 

n i1 

T(b) = -{n(n - 1 ) } - l b  - 7  E ~ a a  KiV((x i  - -  x j ) / b )  ( 13 )  

i=1 j= l  

a=0.92tn -1/r and b=0.912),n -1/9 

where c~ is a bandwidth (not equal to h), and Kiv(.) is a special kernel for esti- 
mating fourth derivative of the density, Kiv(.) is a special kernel for estimating the 
sixth derivative of the density, and ), is the sample interquartile range (x0.r~ - x0.~5), 
T(b) is an estimate of R(f") and a, b are bandwidths that are evaluated with reference 
to a Normal distribution for the derivative kernels considered. 

Relatively crude estimates (with reference to a known distribution) of the band- 
widths used in estimating R(f") and R(f") suffice given that the dependence of the 
MISE expression equation (6) on these expressions is successively weaker (note the 
exponents). The optimal bandwidth hopt is now evaluated by computing a and b from 
the data, evaluating S(a) and T(b), and substituting the equation (13) into equation 
(12), and equation (12) into equation (11). This leads to a nonlinear expression in 
terms of h, which is solved using the Newton Raphson method. Sheather and Jones 
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specify the normal kernel for K(.) and evaluate the derivative kernels as the appropri- 
ate derivatives of this kernel. While this is the most attractive data based approach 
that we tested, it does not consider the boundary behavior of the kernel estimator. 
In the case where the data is positive and heavily concentrated near the origin, the 
SJ procedure tends to grossly undersmooth relative to the theoretical optimal band- 
width. 

2.4 Comparative results of various bandwidth selection schemes 

The most critical aspect of developing the k.d.e, is the specification of the bandwidth. 
A second factor is the need for specialized treatment near x=0 (i.e., the boundary 
problem). We compare the different methods outlined in sections 2.2 and 2.3 with 
two synthetic data sets. 

First we sample (C1) from a Gaussian mixture(0.5N(-2,1)+0.5N(2,1)), to demon 
strate estimability with location mixtures. The second sample (C2), was generated 
from an Exponential distribution with mean 0.15, to demonstrate the boundary ef- 
fect. In each case a sample of size 250 was used. Sample statistics and values of the 
key parameters in each case are summarized in Table 3. The corresponding p.d.f.'s 
estimated by selected methods are shown in Figures 3a to 3e. 

We consider six estimators for density estimation for the above mentioned data sets. 
These are: (1) (PR-N) parametric reference assuming the underlying probability den- 
sity function to be N(0,&2), (2) (PR-M), parametric reference assuming the under- 
lying probability density function to be a Gaussian mixture 0.5N(-2,1)+0.5N(2,1), 
(3) (PR-E) parametric reference assuming the underlying probability density func- 
tion to be Exp(6z), (4) (LSCV) Least squares cross validation, (5) (MLCV) Maximum 
likelihood cross validation, (5) (S J) Sheather and Jones (1991) procedure, and (6) 
(SJL) Sheather and Jones (1991) procedure applied to log transformed data. Ta- 
ble 2 summarizes the bandwidth estimation procedures. In the first three methods 
the term parametric reference means the bandwidth is chosen to be optimal with 
reference to an assumed underlying parametric distribution. The first five methods, 
which consider untransformed real space data also use Silverman's method (discussed 
in section 2.1) to specify a local rather than a fixed global bandwidth. Boundary 
kernels as defined by Mfiller (1991) were used to adjust the density estimates near 
the lower boundary (x_>0), but were not used during bandwidth estimation. The 
SJL procedure, eliminated the boundary problem and provides some local bandwidth 
adaption, so no local bandwidth adjustment and no boundary kernels were used. 

For data set C1 we used methods PR-N, PR-M,LSCV, MLCV, S J, while, for data 
set C2 we used PR-E, LSCV, MLCV, SJ and SJL. 

The following observations are apparent from the figures: 

1. The parametric reference (PR) procedures work very well as expected when the 
assumed p.d.f, matches the underlying p.d.f. However, under mis-specification, 
performance suffers. In case of C 1, the bandwidth from the true reference (PR- 
M) is 1.0, while from using the normal distribution (i.e. mis-specification) as 
the reference (PR-N) the bandwidth is 1.76. This results in gross oversmooth- 
ing of the two modes present in C1 (see Figure 3a). The parametric reference 
bandwidth is the best possible estimate of h provided f(x) is known. Of course, 
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Figure  3. (a) Plot of p.d.f's estimated from PR-M (h=l), PR-N (h=1.76), SJ (h=l.03), 
the true underlying p.d.f, observed data and histogram of observed data, for the data set 
C1. (b) Plot of p.d.f's estimated from LSCV (h=0.48), MLCV (h=0.53), the true underlying 
p.d.f, observed data and histogram of observed data, for the data set C2. (e) Plot of p.d.f's 
estimated from PR-E (h=0.11), SJ (h=0.04), SIL (h=0.77), the true underlying p.d.f, observed 
data and histogram of observed data, for the data set C2. (d) Plot of p.d.f's estimated from 
LSCV (h=0.015), MLCV (h=0.02), the true underlying p.d.f, observed data and histogram 
of observed data, for the data set C2. (e) Plot of p.d.f's estimated from SJ, SJL, and SJ- 
NBK (Bandwidth chosen from SJ procedure but boundary kernels are not used). Along with 
observed data and histogram of observed data, for the data set C2. 
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Table  3. Statistics (Sample siae =250 for each) and Methods for Figure 2 

Data Method 
(corresponding to Appendix 2) 

Global 
Bandwidth 

C1 (Gaussian mixture) PR-M 
(x=0.00, s=2.26) PP~-N 

LSCV 
MLCV 
SJ 

C2 (Exponential) PR-E 
(.~=0.16, s=0.18) LSCV 

MLCV 
SJ 
SJL 

Note: :~ is sample mean and s is sample standard deviation. 

The SJL estimator is, (Equation 1) 

fn(P) = ~ ~ ~ K(ln(P)l~ln(pl)) withEpanechnikovkerne]. 
i=1 

1.00 
1.76 
0.48 
0.53 
1.03 

0.11 
0.015 
0.02 
0.04 
0.77 (in log space) 

i K (I~(P>~I"(PO) The Parametric reference, LSCV, MLCV and SJ all use, fn(P) = KN? 
i=1 

with Epanechnikov kernel and Miiller boundary kernels. Local bandwidths hi are given 

by, hi = h(f(pi)/g) -1/2, where h is global bandwidth, f(Pi) is the kernel density 

estimate at Pi using the global bandwidth h and g is the geometric mean of f(Pi)- 

These estimators only differ in the procedure used to obtain global bandwidth. 
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one reason we pursue nonparametric estimates of the p.d.f, is lack of knowledge 
of the underIying model. In this context, PR estimates with the correct f(x) are 
useful as a benchmark to compare the performance of fully data driven methods. 

2. LSCV and MLCV are prone to undersmoothing especially when the data ex- 
hibits fine structure (e.g multiple modes) and is long tailed (see, Hall and Mar- 
ron (1987)). Also the cross-validation functions (which are minimized for the 
bandwidth estimation) have spurious local optima (corresponding to clustering 
of data at different scales) at small bandwidths, (see Halt and lVlarron (1987)). 
Thus, we expect small bandwidths from LSCV and MLCV which leads to an 
undersmoothed density estimate. This can be seen from Figures 3b and 3d, 
where the estimates from LSCV and MLCV are very rough, suggesting that the 
variance is high. 

3. SJ has been shown to have a better mean integrated square error (MISE) con- 
vergence rate than cross validation methods (see Sheather and Jones (1991)) and 
hence should lead to a better estimate. This is borne out in Figures 3a and 3e, 
and Table 3. Note that the SJ optimal bandwidth for C1 is close to the optimal 
bandwidth based on the Gaussian mixture as reference (PR-M). However for C2 
the SJ optimal bandwidth is much smaller than the optimal bandwidth for the 
exponential distribution. This is due to the fact that the boundary effect is not 
considered while estimating the SJ bandwidth, which is a problem in case C2 
but not in C1. In both cases the SJ bandwidth is superior to those chosen by 
MLCV and LSCV. 

Note that in all these cases, the optimal h is determined without using the 
boundary kernels, and is perhaps smaller than it would be (to reduce the effect 
of leakage across the boundary) if boundary kernels were used during bandwidth 
estimation. This emphasizes the need for proper treatment of the boundary of 
the domain during all phases of k.d.e. We expect to pursue modifications of the 
SJ estimator to account for boundaries during bandwidth selection. 

4. For C2, in Figures 3c and 3d, we use the Mfiller boundary kernels (except when 
using SJL) to reduce the bias at the boundary. Despite this a considerable bias 
can be observed near the origin in these figures, for each of these estimators, 
This is a consequence of the high curvature of the target density near the origin, 
and the "leakage" from the kernels across the boundary at x=0. Figure 3e for 
the case C2 includes a p.d.f estimated without using boundary kernels (SJ-NBK) 
along with those from SJ and SJL. The inclusion of boundary kernels in SJ offers 
only a marginal improvement over SJ in this case, since it still suffers from a 
bias due to the high curvature of f(x) in this area. SJL, on the other hand does 
not suffer as much from this problem and hence, performs better. 

5. For data sets with a heavy concentration of data near the origin, a log transfor- 
mation is an attractive choice. We see from Figure 3e that the SJL procedure 
provides a very competitive k.d.e in this situation. Note that SJL provides local 
bandwidth adaptation in real space. For the wet day precipitation data, that is 
usually modeled using an Exponential, or a Gamma distribution, this may be a 
natural transformation to consider. 

Our recommendation of SJL is motivated largely by a desire to deal with the bound- 
ary effects and local bandwidth adaptation in a natural way given the nature of the 
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precipitation data. Where boundary effects are not of concern (e.g., C1) a direct appli- 
cation of SJ would be preferred. Once a modification of SJ to account for boundary 
effects during bandwidth estimation is successful, SJL need not be the method of 
choice even in this situation. 

3 K e r n e l  d e n s i t y  e s t i m a t i o n  for  d i s c r e t e  r a n d o m  v a r i a b l e s  

Wet spell and dry spell lengths are treated as an integer number of days in our rainfall 
model (Lall et al., 1995), consequently estimators for discrete data are reviewed here. 
The presentation of discrete kernel estimators is new to the hydrologic literature, and 
includes a new estimation method we developed (Rajagoplan and Lall (1995)). For a 
discussion of the methods for discrete data refer to Hand (1982), Bishop et ah (1975) 
and Coomans and Broeckaert (1986). 

3.1 Basic ideas 

The basic concepts of kernel estimation of p.d.f.'s in the continuous case introduced 
earlier hold for the discrete case as well. In the discrete case one can first esti- 
mate the sample relative frequencies. These relative frequencies or multinomial cell 
proportions can then be "smoothed" using a kernel estimator. The problem of non- 
parametric  smoothing of the multinomial cell proportions has not been studied as 
extensively as nonparametric  density estimation, its counterpart in the continuous 
case. Here we have a sample Yl ,Y2, ' " ,Yn  for n multinomial trials with possible 
outcomes 1,2,..L..,Lm~x with probabilities of occurrence f l , f 2 , "  ,fLm~x that  are un 
known. Estimates fn(L) for any cell L may be obtained as sample relative frequencies 
(pL = nb/n),  or by smoothing the 15L. Hall and Titterington (1989) note that  smooth- 
ing can be beneficial when there are many cells with small or zero frequencies, i.e. 
the data are sparse. This is the case with the wet and dry spell length data. 

A kernel est imator fn(L) is given as: 

Lrn~x 

fn(L) = E Ka(L,i ,h))~i  (14) 
i=1 

where h is the bandwidth, Lmax is the maximum observed spell length and Kd(.) is 
a discrete kernel (or weight function). 

A nonparametric  est imator of the discrete probabilities of the wet or dry spell 
lengths (w or d) would be the maximum likelihood estimator that  yields directly 
the relative frequencies (e.g., (number of wi)/nw, for the i th wet spell length wi in 
a sample of size nw). The kernel method is superior to this approach, because (a) 
it allows extrapolation of probabilities to spell lengths that  were unobserved in the 
sample, and (b) it has higher MSE efficiency (Hall and Titterington, 1987). Three 
major estimators identified in literature and a fourth one developed by Rajagopalan 
and Lall (1995) for smoothing probabilities of discrete data, are described. Their 
performance with synthetic data  sets is compared in the following sections. 

2.2 Choice of discrete kernel estimators 

The estimators considered are (1) The Geometric kernel estimator developed by Wang 
and Van Ryzin (1981), hereafter WV; (2) Maximum Penalized Likelihood Estimator 
(MPLE) developed by Simonoff (198:3) and the estimator by Hall and Titterington 
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(1987), hereafter HT; and (4) the Discrete Kernel (hereafter DK) estimator developed 
by Rajagopalan and Lall (1995). These are summarized in Table 4. 

(1) Wang and Van Ryzin (1981) estimator (WV) 
The kernel estimator of the probability mass function (p.m.f) of a discrete variable 

L, (here the length of wet or dry spell with n sample values) given by Wang and Van 
Ryzin (1981) uses equation (14) with the geometric kernel given as: 

Ka(L,i,h) = 0.5(t - h ) h  IL-iI if IL- il > 1 h e [0, 1] 

= ( l - h )  if L :=i  
(15) 

The bandwidth h can be global or local. 
Wang and Van Ryzin (1981) derived optimal global and local bandwidths to min- 

imize the MSE (Mean Square Error = E[(f(L)-f,(L))2]). They estimate the local 
bandwidths h(i) by minimizing the approximate MSE of fn(i), while truncating the 
geometric kernel at i+2. The resulting expressions are in terms of the unknown 
true probabilities f(i). They show that substitution of the relative fl'equencies of i, 
estimated from the sample as Pi(pi = nl/n) in the expressions leads to a strongly 
consistent procedure. An optimal global bandwidth is obtained by minimizing the 
average MSE (i.e., 1/niMSE(i)) over the data. Expressions for the optimal global and 
local bandwidths are given in Table 4. 

Note that for small values of h, the estimator is close to the naive maximum like- 
lihood estimator (MLE) (i.e. I?i), and tbr Pi small, h is larger, leading to a higher 
smoothing, or larger "smearing" of the relative frequencies. An improved extrapola- 
tion in the tail of the density can result through the use of the local bandwidths. 

(2) Maximum Penalized Likelihood Estimator (MPLE) 
The MPLE was first introduced by Good and Gaskins (1971) for continuous vari- 

ables, and was later extended to the density estimation for discrete variables by 
Simonoff (1983). Simonoff (1983) proposes a solution for the "category" probabilities 
fi that maximizes a penalty function given by, 

(16) LFN = Log likelihood - roughness penalty 

The idea is to balance the goodness-of-fit of the estimate (i.e., likelihood) with its 
smoothness (i.e., roughness penalty). The smoothest estimate is obtained if all ceil 
probabilities are equal over the range of Cells considered. With this in mind, the 
penalized likelihood function is defined as: 

Lra~x Lraax 

ni log(fi) -/~ ~ { log ( f i / f i + , }  2 (17) 
i=l i=l 

LFN = 

Lmax 

where E ~ = 1,  (18) 
i=1 
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Tab le  4. Examples of Discrete Kernel Estimators 

Wang and VanRvzin (1981) (WV) Geometric Kernel estimator 

Geometric kernel K(x) = 
0.5(1 - h)h I . . . .  I if I x -  xil l 

(1  - h )  i f  x = xi 

Global bandwidth h = /3 :{3 /2  + B: - B2 + (n - I)/3:o}-: 

Local bandwidth 
where, 

h e [0, 1] 

: El + Fi - Oi(n- l)ei}-: h(i) : d: {Pl + : 

Lm~x Lm~ 

:=i i=l i=l 

Lm~x 
: B0 

i=l 

G: = ~i(151_u + p:+2), Fi = lPi(~i-: + ]Pi+l), Ei = (15i-: + Pi+:), 

: F:, di -: ~i(1 - Pi) + : 

Lm~x 
ei = ( P i -  21- Ei)  2 , Bo = E (p i -1  q'- p i + l )  2 

i=l 

where, Pi(pi = n i /n )  are the sample relative frequencies 

Mazirnurn Penalized Likelihood Estimator (MPLE) of Simonoff (1983) 

L ..... L _ {  
LFN = E ni log(f 0 - / 3  E log /fi+l 

i=1 i=1 

where ~ fi = 1, /3 > 0,is a smootng parameter,  and Lmax is the largest cell (eg.  longest spell 
i=1 

length) considered 
The smoothing parameter  fl controls tile relative weight assigned to smoothness and consequently 

has the same role as the bandwidth used in kernel estimators. The LFN function is minimized to solve 
for each fis (the required cell probability estimates) 

Hail and Tiiterington (1987) HT estimator 

W(t) = K( t ) /  k 
j = - c ~  

K(j/h) K(t) is a continuous r,v. kernel, j is integer 

: /h  ~ [o, 1] 

Discrete (Left) Boundary Kernels, Univariate (Dong and Simonoff, I994) 

Note that  q=(x-1) /h ,  0<q<_l and x is the point at which the density is estimated 
for Epaneehnikov K(q, t) = ~ - 6  t 2 + 3(q=+l)(:+q). 



Table 4 (continued) 

DK estimator 

Note t=(L- j ) /h ,  and L is point at which density is estimated 

Interior region (i.e. L > h + l )  

Quadratic kernel K(t) = at 2 + h for It] < 1 

- -3h  3h 
a = (1_4h2) and b = (1-4h~) 

Left Boundary (i.e. l < L < h + l )  

for Quadratic kernel K(t) = at 2 + b for [tl <_ 1 

_ -D 1 and b = 1 [1 - ac 
CD h&-L) 

where, C=h(h-1)(2h-1)+(L-2)(i-1)(2L-3);  D=-h(h-1)+  (L-2)(L-1); E=-(h(h-1))2+((L-2)(L-1))  2 

Left Boundary (i.e. L = I )  

for Quadratic kernel K(t) = at  2 + bforlt I < 1 

- = [ 1 -  a = ~ - ~ x ~ ~  cD and b 

where, C = h ( b l ) ( 2 h - 1 ) ;  D=-h(h-1);  E=-(h(h-1))  2 

539 
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fl _>0, is a smoothing parameter ,  and Lmax is the largest cell considered (or the longest 
spell length considered). 

The smoothing parameter  fl controls the relative weight assigned to smoothness 
and consequently has the same role as the bandwidth used in kernel estimation. 
Here a data dependent fl is used through the following procedure which minimizes 
asymptot ic  mean square error. 

1. An initiM fl is chosen as 0.009N(L~)°'~(log(Lm~x))°'4), where N is the sample 
size. 

2. Given this/3, the penalized likelihood (Equation 15) is maximized with respect 
to { i , i  = 1 , - . . ,  Lm~x using the method of Lagrange multipliers. 

3. An optimal/3 is now estimated by minimizing an asymptotic  MSE, defined as an 
asymptot ic  approximation to V " L ~  (~, - z_~i=l ~ rq) 2, where rci is the unknown probabil- 
ity of cell i. Simonoff (1983) develops this asymptotic  MSE expression in terms 
of the sample relative frequencies 151(f5i = ni/n), /9 and the unknown probability 
rq. For 7ri he uses the estimates fi from step 2. 

4. Steps 2 and 3 are repeated till convergence is achieved. 

Simonoff (1983) argues that  although a formal proof for the convergence of this 
procedure is not available, extensive computations have indicated that  the scheme 
does converge. The need to specify Lm~x (in excess of the longest observed spell) 
detracts from the use of this method. We would prefer a natural extension of the tail 
of the p.m.f, by the method used, rather than a prior specification of its extent. 

(3) Hall and Tit ter ington (1987) est imator (HT) 
The HT estimator developed by Hall and Titterington (1987) uses a discrete kernel 

function formed from a continuous kernel as: 

K a ( L , j , h ) -  K ( ( L - j ) / h )  (19) 
s(h) 

where h > I  and sgh ~--V'j=L+5 , , - -~ i=L-h  K(j/h).  K(.) is any suitable continuous univariate 
kernel function, with compact support,  positive, integrating to one and symmetric. 
The bandwidth h is selected as a minimizer of a Least Squares Cross Validation 
(LSCV) function suggested in Hall and Titterington (1987), over a suitable range for 
h given as 

Lmax Lmax 

LSCV(h) = 2 - 2 K-J0) J (20) 
j=l j=l 

where, {.,_j(j) is the estimate of the p.m.f of spell length j, by dropping all the spells 
of length j from the data. This method has been shown by Hall and Titterington 
(1987) to automatically adapt  the estimator to an extreme range of sparseness types. 

Note that  this est imator has the same convolution structure as the kernel density 
estimator in the continuous case. The HT estimator, uses a standard continuous 
variate kernel function rescaIed by the sum of the weights applied to an integer set 
of points. This est imator is defined over the set of integers. However wet and dry 
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spell lengths are counting numbers (integers greater than 1). To avoid the problem 
of the estimator assigning probability to integers less than 0 (the boundary problem), 
Dong and Simonoff (1994) developed boundary kernels for Epanechnikov and Bisquare 
kernels which are given in Table 4. By HT we refer to the HT estimator with the 
boundary modification of Dong and Simonoff (1994). 

For finite samples, some disquieting aspects of the HT estimator become apparent. 
The non-integer bandwidth leads to an effective kernel that also varies with h in a 
manner quite different from that prescribed by equation (19). The effective integer 
support of Kd(L,j,h) in equation (19) is [(L - h*), (L + h*)], where h ~ is the closest 
integer greater than or equal to h. HT kernels are defined as quadratics or other 
polynomials over [L-h,L+h]. Since this is not the effective integer support of the 
kernel the effective kernel over the space of integers is not the quadratic defined. 

Alternatively, it is possible to develop a kernel that recognizes the data to be in 
integer space, has an integer bandwidth and satisfies all the required conditions in the 
integer space. This also obviates the need for normalization of the kernel weights as 
done in HT. We explored this line of thought and, sought a direct, discrete analog of 
the continuous kernel density estimator, which lead to the development of the discrete 
kernel (DK) estimator (Rajagopalan and Lall, t995). 

(4) Discrete Kernel Estimator (DK) 
Our estimator fn(L) uses equation (14) with discrete Quadratic Kernel (QK)is given 

as: 

Kd(L, i, h) = + b (21) 

where ti = ~-d.. Epanechnikov (1969} showed that the MSE optimal kernel of second 
order, is the quadratic kernel (QKI, also known as the Epanechnikov kernel. Here 
we need to specify the constants a and b for the interior ( i>h+l)  and the boundary 
region (l_<i_<h+l). The constants a and b are solved to satisfy: (a) the kernel function 
goes to zero for li-jl _>h, i.e. K(tj) = 0 for Itjl _> 1, (b) sum of the weights is unity, 

j= l+h  

i.e. 2 K ( ~ ) = t  and (c) the first moment of the kernel function is zero, i.e. 
j= i -h  

j= l+h  

2 K ( ~ ) t j = 0 .  One could choose higher order Beta kernels and derive results 
j= i -h  
similar to these that follow for DQ. 

The resulting kernels for the interior and the boundary are given in Table 4. Deriva- 
tions of these kernels are presented in Rajagopalan and Lall (1995). 

Note that the kernel and hence, the estimator {n(L) is expressed strictly in terms of 
the bandwidth h. An optimal choice of h then completes the definition of the estimator 
The bandwidth is selected by minimizing the Least Squared Cross Validation function 
given as, 

Lm~x Lm~x 

LSCV(h) = {o_j(j) j (22) 
j=l j=l 

where, f,_j (j) is same as defined in earlier Hall and Titterington (1987) also show that 
cross- validation automatically adapts the estimator to an extreme range of sparseness 
types. If the multinomial is only slightly sparse, cross-validation, cross-validation will 
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produce an estimator which is virtually the same as the cell-proportion estimator. 
As sparseness increases, cross- validation will automatically supply more and more 
smoothing, to a degree which is asymptotically optimal. 

3.3 Comparative results of various discrete kernel estimators 

The four methods (WV, MPLE, HT and DK) are compared with two synthetic data 
sets generated from long tailed distributions (e.g. Geometric distribution). First 
we use a sample (D 1) from a geometric distribution with 7r=0.2. The second sam- 
ple (D2), was generated from a mixture of two geometric distributions defined as 
(0.3G(~r=0.9)+0.7G(Tr=0.2)). In each case a sample of size 250 was used. We also 
fitted a geometric distribution (GP) to D1 and D2 using the method of moments. 
Sample statistics and values of the key parameters in each case are summarized in 
Table 5. The corresponding probabilities estimated by each method for D1 and D2 
are shown in Figure 4. 

1. The WV procedure does not smooth the sample proportions (pi) properly. In 
most cases, there is very tittle smoothing. In cases where there is some smooth- 
ing (e.g., Figure 4a, in the range x=4 to 6), the resulting estimate is rather 
unsatisfactory, and is inconsistent with the underlying population. We feel that 
part of this behavior is due to the rapid "drop off" of weight associated with the 
Geometric kernel, and part due to the method used ibr selecting the bandwidth 
h. 

2. On the other hand, since the roughness penalty tries to make the p.m.f, uniform, 
MPLE emphasizes smoothness. Consequently, when the true p.d.f has a high 
second derivative (e.g., near the origin), MPLE has difficulty distinguishing be- 
tween "true" curvature and observed variation. The resulting estimate often has 
a strong downward bias near the origin (Figure 4a). The MPLE is also sensitive 
to the value specified for L~ . . . .  the longest spell length considered. As Lm~× is 
increased, the downward bias at the origin is increased and the entire p.m.f, is 
"flattened". 

3. The GP fit is very good (estimated ~r=0.1956) for D1 where the true distribution 
was geometric. As expected, a large bias is incurred near the origin for D2 (see 
Figures 4b and 4d), where the estimated ~r was 0.2554. 

4. Figures 4b aa~d 4d indicate that HT and DK perform comparably and are the best 
among the estimators considered. As both these estimators are quite similar in 
construction this is expected. The estimated p.m.f is smooth, and it also exhibits 
the least pointwise bias. The HT and DK estimators automatically adapts to a 
large range of density variation, providing optimal smoothness in finite samples. 
Unlike parametric fits, the HT and DK estimates are robust to certain kinds of 
outliers, as shown in Figure 4e. Outliers were added at 45, 50, 75 and 100. 
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Figure  4. (a) Plot of p.m.f's estimated from WV (h = 0.43), MPLE (fl=30.25), the true 
underlying p.m.f and observed proportions, for the data set D1. (b) Plot of p.m.f's estimated 
from HT (h=5), DK (h=6), GP (p=0.1956), the true underlying p.m.f and observed propor- 
tions, for the data set D1. (c) Plot of p.m.f's estimated from WV (h=0.08), MPLE (fi=28.25), 
the true underlying p.m.f and observed proportions, for the data set D2. (d) Plot of p.m.f's 
estimated from HT (h=3), DK (h=2), GP (p=0.2554), the true underlying p.m.f and observed 
proportions, for the data set D2. (e) Plot showing the effect of outliers on fitted Geometric 
distribution (GP), tIT and DK estimate. Outliers at 45,50,75,100 in the data set D1. 
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Table 5. Statistics (Sample Size = 250 for Each) and Methods for Figure 4 

Kernel Method of Bandwidth 
Figure Data Estimator used Selection 

4a Dl(x=5.11, s-=4.19) WV Geometric kernel MSE 
MPLE . . . . . .  

4b D1 ItT Epanechnikov kernel LSCV 
DK Quadratic kernel LSCV 

4c D2(:~=3.92, s=4.02) WV Geometric kernel MSE 
MPLE . . . . . .  

4d D2 ItT Epaneehnikov kernel LSCV 
DK Quadratic kernel LSCV 

Note: :~ is sample mean and s is sample standard deviation. 

Quadratic kernel is the discrete equivalent of the Epanechnikov kernel. 
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These could be generated if the data were contaminated by a few large values 
(e.g. from a Geometric distribution with re=0.01). The fitted Geometric distri- 
bution, i.e. (GP) is very much affected by the outliers and deviates from the 
true distribution, especially near the mode (i.e. 1.). The HT and DK estimators 
still follow the data closely. 

It is apparent from the figures that the HT and DK estimators perform the best. 
Rajagopalan and Lall (1995) found in their Monte Carlo comparisons of HT and 
DK that they gave comparable results with better approximation of the tail and 
the modes by DK. DK was also computationally faster, and had a lower variance of 
optimal bandwidth selection that HT. Consequently it is recommended. 

4 S u m m a r y  and  conclusions  

Issues in estimating parameters for continuous and discrete kernel density estimators 
were discussed and recommended procedures were developed through examples. 

In summary, we recommend using the SJL procedure for estimating the p.d.f, of 
wet day precipitation amount. This entails the use of a Epanechnikov (or Quadratic 
kernel) with log transformed precipitation data with bandwidth chosen in log space 
using the Sheather Jones (1991) recursive procedure. The resulting density estimate 
is then transformed to real space. Generally this may be the method of choice for 
data sets which exhibit a high density near the origin. For discrete data such as 
spell lengths, we recommend the DK procedure with discrete quadratic kernels in the 
interior and boundary regions and bandwidth chosen by least squared cross validation. 

We found that where the parametric procedure was appropriate, the nonparametric 
procedure worked nearly as well. Where the parametric model was inappropriate, the 
nonparametric kernel density estimators were superior. Given that the nonparametric 
procedures are robust and reproduce different parametric alternatives without prior 
assumptions, they offer a very general procedure for uniform application across a 
variety of sites and processes. 

Problems with kernel density estimates are high relative bias and variance in the tail 
of the density if local adaption of the bandwidth is not used. Ability to extrapolate is 
limited to one bandwidth of the maximum observed value. Where a local bandwidth 
is used, the local bandwidth at the extreme point of observation is usually quite large 
and this problem is ameliorated. 

The nonparametric modeling framework provides a promising alternative to para- 
metric approach. The assumption free, data adaptiveness and robust nature of the 
nonparametric estimators makes the model attractive in a broad class of situations. 
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