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The study of mass and energy transfer across landscapes has recently evolved to comprehensive considerations
acknowledging the role of biota and humans as geomorphic agents, aswell as the importance of small-scale land-
scape features. A contributing and supporting factor to this evolution is the emergence over the last two decades
of technologies able to acquire high resolution topography (HRT) (meter and sub-meter resolution) data. Land-
scape features can nowbe captured at an appropriately fine spatial resolution atwhich surface processes operate;
this has revolutionized the way we study Earth-surface processes. The wealth of information contained in HRT
also presents considerable challenges. For example, selection of the most appropriate type of HRT data for a
given application is not trivial. No definitive approach exists for identifying and filtering erroneous or unwanted
data, yet inappropriate filtering can create artifacts or eliminate/distort critical features. Estimates of errors and
uncertainty are often poorly defined and typically fail to represent the spatial heterogeneity of the dataset,
which may introduce bias or error for many analyses. For ease of use, gridded products are typically preferred
rather than the more information-rich point cloud representations. Thus many users take advantage of only a
fraction of the available data, which has furthermore been subjected to a series of operations often not known
or investigated by the user. Lastly, standard HRT analysis work-flows are yet to be established for many popular
HRT operations, which has contributed to the limited use of point cloud data.
In this review, we identify key research questions relevant to the Earth-surface processes community within the
theme ofmass and energy transfer across landscapes and offer guidance on how to identify themost appropriate
topographic data type for the analysis of interest. We describe the operations commonly performed from raw
data to raster products andwe identify key considerations and suggest appropriatework-flows for each, pointing
to useful resources and available tools. Future research directions should stimulate further development of tools
that take advantage of the wealth of information contained in the HRT data and address the present and upcom-
ing research needs such as the ability to filter out unwanted data, compute spatially variable estimates of uncer-
tainty and perform multi-scale analyses. While we focus primarily on HRT applications for mass and energy
transfer, we envision this review to be relevant beyond the Earth-surface processes community for a much
broader range of applications involving the analysis of HRT.
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1. Introduction

One of the fundamental principles for understanding Earth-surface
processes is conservation (Anderson and Anderson, 2010); the total
rate of change of a quantity, such as mass or energy, within a control
volume equals the rate of change of the quantity stored within the con-
trol volume plus the quantity net outflow across the control surface.
Rates of change depend on sources and sinks of the quantity of interest
and on spatial gradients in transport rates. Many problems of interest to
geomorphologists and hydrologists can be cast in these terms (Kirkby,
1971). Development of a sediment budget of a watershed, for example,
requires the identification of sediment sources and sinks, and the un-
derstanding of how sediment is transformed and transported from
one point of the watershed to another.

The ability to predict water, sediment, and nutrient transfer, map
natural hazards, perform a radiation balance, and understand biophysi-
cal feedbacks that control landscape form and function is of great value
to Earth-surface scientists and natural resources managers. This ability
relies on the understanding of how mass and energy are transferred
through watersheds and landscapes. Contributions on this topic have
populated the geomorphologic and hydrologic literature for over a cen-
tury (Gilbert and Dutton, 1880; Davis, 1892; Gilbert, 1909; Gilbert and
Murphy, 1914; Strahler, 1952; Culling, 1960; Kirkby, 1971; Smith and
Bretherton, 1972; Willgoose et al., 1991a,b,c; Anderson, 1994;
Howard, 1994; Tucker and Slingerland, 1994, 1997; Dietrich et al.,
2003) which also account for the effect of biota and humans on land-
scapes. A large set of field observations and models, in fact, supports
the knowledge that biological productivity directly and indirectly affects
landscape evolution (e.g., Drever, 1994; Butler, 1995; Gabet, 2000;
Lucas, 2001; Sidle et al., 2001; Bond et al., 2002; Yoo et al., 2005;
Meysman et al., 2006; Phillips, 2009; Foufoula-Georgiou et al., 2010).
Humans, long recognized as geomorphic agents (Marsh, 1869, 1882),
have now significantly impacted landscapes and their ecosystems
(Hooke, 1994, 2000; Foley et al., 2005; Ellis et al., 2006; Montgomery,
2007; Syvitski and Saito, 2007; Wilkinson and McElroy, 2007; Ellis,
2011; Sidle and Ziegler, 2012; Tarolli et al., 2014). Roads, for example,
can play an important role in awatershed sediment budget as they con-
stitute a significant source of sediment (Sidle and Ziegler, 2012) and dis-
rupt ecosystem connectivity (Riitters and Wickham, 2003).

The evolution in mass and energy transfer studies is also reflected in
mathematical modeling approaches. From the employment of classic
mass and energy conservation laws (Eagleson, 1986; Lane, 1998;
Trimble, 1999; Dietrich et al., 2003), recent years have also seen the de-
velopment of nonlocal constitutive laws expressing thematerialflux at a
point (e.g., sediment flux) as a function of the conditions in some neigh-
borhood around this point in space and/or in time (e.g., Bradley et al.,
2010; Foufoula-Georgiou et al., 2010; Ganti et al., 2010; Tucker and
Bradley, 2010; Foufoula-Georgiou and Passalacqua, 2013; Furbish and
Roering, 2013). The nonlocal approach allows incorporating the hetero-
geneity and complexity typical of geomorphic systems and the wide
range of spatial and temporal scales that characterizes geomorphic
processes.

Topographic gradients are a key factor in the transport of mass and
energy. Whether computed at the location of interest or over a domain
of influence as in nonlocal approaches, topographic attributes, such as
slope, curvature, and roughness, play a fundamental role in the trans-
port of mass and energy through landscapes. In the past, however, the
representation of the Earth-surface was possible only at coarse spatial
resolutions (i.e., ≥10m). Data collected during the Shuttle Radar Topog-
raphyMission (SRTM data), for example, were a major breakthrough in
the early 2000s, but are quite coarse (30 m resolution) compared to
today's standards. SRTM data do not capture many of the small scale
features and perturbations, both natural and anthropogenic, that com-
bine to exhibit significant control over mass and energy transfer. This
applies also to the U.S. Geological Survey's National Elevation Dataset
that has traditionally only been available at 10 m and 30 m resolutions.

The explosion of availability of high resolution topography (HRT)
over the last two decades is revolutionizing the way we study mass
and energy transfer through landscapes. We define HRT as any topo-
graphic dataset, which in its raw form consists of location (x, y) and el-
evation (z) measurements that collectively compose a point cloud, and
which have average spatial resolutions greater than or equal to one



176 P. Passalacqua et al. / Earth-Science Reviews 148 (2015) 174–193
point per square meter (needed to achieve at least meter scale repre-
sentation of the terrain). Thus, features in the landscape can be accu-
rately characterized and quantified at the fine spatial resolutions at
which many hydrologic, geomorphic, and ecologic processes occur.
HRT data can be obtained remotely from various mobile platforms
(e.g., planes, boats, vehicles) or static platforms (e.g., a tripod on the
ground), using different techniques (e.g., Light Detection and Ranging
(LIDAR), Synthetic Aperture Radar (SAR), Structure from Motion
(SfM), SOund Navigation And Ranging (SONAR)).

While remotely sensed HRT data are not a substitute for other forms
of field observations (Roering et al., 2013), they do markedly enhance
our ability to study Earth-surface processes quantitatively (Tarolli,
2014); an example is the emergence of characteristic scales of geomor-
phic processes (Perron et al., 2009; Gangodagamage et al., 2011, 2014).
In addition to the characterization of landscape structure through fea-
ture detection, identification, and extraction, HRT data allow capturing
kinematic and dynamic changes of the Earth's surface through
differencing of datasets acquired at different times. An example is the
ability to measure surface displacements and rotations due to earth-
quakes (Nissen et al., 2012; Oskin et al., 2012; Glennie et al., 2014).
The variability and complexity of landscapes, particularly at large scales
(Rhoads, 2006) and over time can be fully embracedwithHRT data. Pre-
liminary mapping can be performed over vast areas from a personal
computer and can be used to identify specific locations of interest to
be subsequently field surveyed. The completeness of HRT also offers
the opportunity to advance process-understanding through change
measurement (e.g., vegetation development, sedimentation, bank ero-
sion) and heterogeneity characterization (e.g., vegetation, rockfall size
distribution).

In addition to these substantial advantages, working with HRT data
presents significant challenges. Given that numerous combinations of
platforms and techniques for HRT acquisition exist, users often have lit-
tle basis for determining which platforms are best for their specific ap-
plication (Bangen et al., 2014). For many applications (e.g., fluvial
environments), no single HRT platform or technique paints a complete
topographic picture and instead multiple techniques are combined
(Williams et al., 2014). Raw HRT data post-processing techniques and
related parameters are often not known to the Earth scientist end-
user and frequently not made available from the data provider. What
operations are performed on raw data to create a usable point cloud?
What further operations are needed to create a Digital Terrain Model
(DTM)? Can geomorphic features be extracted automatically and objec-
tively? How does one quantify change over time from point cloud or
rasterized data? Despite the rapidly growing availability of HRT data,
scientific discovery and applications of HRT data analyses to directly in-
form natural resource policy and management have been limited. Tools
for extracting useful information from HRT data have been developed
and newones are under development, but the Earth Sciences communi-
ty lacks guiding principles and standard analysis work-flows as well as
best practices for determining and reporting HRT data quality. These
factors have resulted in a knowledge gap that separates HRT viewers
and HRT analysts.

With this review, we wish to reduce this knowledge gap. In the ma-
terial that follows, we offer an overview of available data types and
guidance on how to choose the most appropriate HRT data platform
for the application at hand. We identify sources of error and work-
flows to account for uncertainty. We discuss the operations that are
commonly, or should be, performed in converting raw data to point
clouds to raster products and how the analysis of mass and energy
transfer through landscapes has changed with HRT data. It is not our
goal to provide a comprehensive review of HRT acquisition and HRT-
based research, which have been recently provided by Glennie et al.
(2013b), Roering et al. (2013), and Tarolli (2014). We also narrow our
focus to the analysis of mass and energy transfer across landscapes,
butmany of the ideas and tools presented in this reviewwill be relevant
to other facets of the Earth-surface processes community and beyond.
The paper is organized in four main sections. The ‘Ask’ section
(Section 2) covers HRT data sources, how to choose the most appropri-
ate data type, critical questions to ask when acquiring a new HRT
dataset or attempting to determine the quality of an existing HRT
dataset, and key considerations to account for uncertainty. The ‘Do’ sec-
tion (Section 3) is focused on the operations performed from raw data
to point clouds to raster products, work-flows for feature and change
detection, and broad considerations on mass and energy transfer stud-
ieswithHRT. The ‘Next’ section (Section 4) explores the next generation
of HRT data, opportunities for development of appropriate analysis
tools, and needs to further our understanding ofmass and energy trans-
fer through landscapes. Finally, we offer guiding principles for HRT anal-
ysis in Section 5.
2. ASK: considerations for planningHRT acquisition orworkingwith
previously collected HRT data

The use of HRT data poses challenges for the Earth science commu-
nity; however, these can be mitigated with a fuller understanding of
data characteristics, formats, provenance, and by identification of prop-
er tools to measure data quality, manipulate and analyze data and ad-
dress the scientific question of interest. In this section, we address
important factors to consider when acquiring new data, including
what should be standard requirements for newdata acquisition,wheth-
er you are acquiring the HRT data yourself or requesting from a com-
mercial vendor, as well as what information is needed to assess the
quality of data previously collected by someone else. We offer an over-
view of the types of available HRT, their characteristics, and guidance on
how to choose themost appropriate HRT for the application at hand.We
then discuss sources of uncertainty and present strategies for uncertain-
ty assessment of data and data processing. The main steps to obtain de-
rived products (workable point clouds and rasters) from raw data will
be presented in Section 3.
2.1. How to identify the proper data to address scientific questions

When acquiring newHRTdata, the selection of themost appropriate
HRT platforms and methods is best driven by the science application.
Often in the Earth Sciences, leveraging of HRT data has been more op-
portunistic based onwhat already exists (Erwin et al., 2012), particular-
ly due to cost considerations, but this frequently results in significant
effort and attention explaining fixes to overcome inadequate data reso-
lution, incomplete coverage, datum offsets and inconsistent control net-
works. Ideally, deliberate and pragmatic decisions should be made
about the HRT platform and methods to use that are best suited to the
science application. What spatial resolution, extent and accuracy are
needed will largely be determined by the scope of the analysis and the
characteristics of the system being studied (Bowen and Waltermire,
2002; Lane and Chandler, 2003; Bangen et al., 2014). There are 4 main
factors that control the identification of the most appropriate HRT plat-
form andmethod: (i) spatial extent of the area to be acquired; (ii) point
density needed to accurately represent the surface in analysis (and thus,
horizontal and vertical measurement accuracy with respect to typical
spatial or temporal gradients to be captured); (iii) need for detailed rep-
resentation versus elimination of vegetation and other above-ground
features; (iv) capability to penetrate water and acquire bathymetry.
The characteristics of common HRT data with respect to these factors
are summarized in Fig. 1 and Table 1. When existing data are available
for the area in analysis, these factors can guide the assessment ofwheth-
er or not the existing data are appropriate for the analysis being
planned. Additional factors that contribute to the choice of HRTplatform
are cost and flexibility. While these are not scientific factors per se, they
do affect the decision process, particularly in the case of analyses requir-
ing repeated surveys.
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2.2. Available platforms and system components

Lidar sensors have been deployed from both airborne (typically
called Airborne Laser Scanning, ALS) and ground-based platforms (typ-
ically called ground based lidar or Terrestrial Laser Scanning, TLS). ALS is
the only technique that can effectively penetrate the canopy to obtain
information on the ground, which is the main advantage of ALS with
respect to other platforms. Conventional lidar systems (airborne and
terrestrial) operate in the near infrared (NIR) part of the light spectrum,
which is rapidly attenuated or reflected bywater and therefore provides
limited information in wet areas.

Airborne acquisition allows the ability to cover large areas (Fig. 1,
Table 1, Fig. 2(a)) in small amounts of time (hours). Tripod base (TLS)
is instead used when a higher resolution and more flexibility in the
scanning angle are needed (Fig. 2(b)). The spatial extent of TLS is
much smaller than ALS (Table 1, Fig. 1) and the feasible extents vary
by instrument (long-range versus short-range) and geometry of the
area of interest.
Table 1
HRT types and relative information.

HRT Spatial extent
[km2]

Typical point density
[pts/m2]

Best georefer
accuracy (ver

ALS 10–100s 1–30 0.05/0.2–0.2/
MLS 1–100 100–10,000 0.05
VHR Stereo satellite imagery 100–15,000 0.1–1 0.5/0.5 with G

N3–5 withou
SFM/MVS Aerial imagery 0.1–100 1–1000 0.02–0.2b

Georef set by
TLS 0.1–10 1000–100,000 0.002–0.01

Georef set by
rtkGPS
Theodolite

0.1–10 1–10 0.002–0.01
Georef set by

a For VHR imagery.
b Vertical accuracy is of the order 1:1000 the viewing distance (James and Robson, 2012).
Vegetation can be very difficult to remove fromALS and TLS data and
may in fact be the largest source of uncertainty in locationswithmoder-
ate to high vegetation density. Not many comparable alternatives pro-
vide the spatial extent and point density that can be attained with ALS
data (Table 1, Fig. 1), so imperfect removal of vegetation (when needed)
may be an acceptable cost for obtaining the HRT data of interest. On rel-
atively small spatial scales, however, conventional rtkGPS or theodolite
surveys may provide a more accurate representation of the ground sur-
face compared with TLS.

Recently developed mobile lidar systems (MLS) include sensors
mounted on mobile vehicles (including boats) (Alho et al., 2009; Vaaja
et al., 2011; Williams et al., 2013, 2014), compact systems portable in
backpacks (Brooks et al., 2013; Glennie et al., 2013a), and mounted on
Unpiloted Aerial Vehicles (UAV), kites, and blimps. Such systems
blend someof the greatest benefits of ALS and TLS. Themain advantages
of these units are the capability of responding much faster to geomor-
phic and hydrologic events and accessing steep or challenging areas
where tripod-based surveying may not be possible.
enced or measurement
t/horiz) [m]

Smallest
footprint [m]

Vegetation
penetration

Shallow
bathymetry

0.6 0.2 Yes Yes (green only)
0.003–0.01 Yes No

CPa

t GCP
0.5 No Indirect (multispectral)

GCP
0.05 No Indirect (multispectral)

GCP
0.003–0.01 Yes if FW No

GCP
0.003–0.01 Yes Yes



Fig. 2. Comparison of raw data acquisition from ALS (a), TLS (b), and SfM (c).
Figure reproduced from Johnson et al. (2014).

178 P. Passalacqua et al. / Earth-Science Reviews 148 (2015) 174–193
Bathymetric lidar (green Airborne Laser Scanning, gALS) uses the
green–blue portion of the light spectrum which can penetrate water.
However, even within the green–blue portion of the spectrum, the ca-
pability of detecting channel bed topography varies with water depth
and turbidity (Glennie et al., 2013b). A good rule of thumb is that data
will be acquired down to approximately the depth that can be visually
seen, although recently developed systems are expected to reach
twice the visible depth.

Given that channels are often the most dynamic 1% of the landscape
and play critical roles in mass and energy transfer in landscapes, it may
be desirable to utilize sonar instruments to capture bathymetry and
subsequently stitch those data into HRT data covering the terrestrial
surface. Single-beam SONAR (SBS) and multibeam bathymetric
SONAR (MBS) are mounted on boats or on small floating devices (pre-
ferred when navigation is limited by shallow water and/or presence of
vegetation). The primary advantages of SBS are cost, relatively low (eas-
ily manageable) data density and ease of operation in shallow water.
SBS surveys tend to be adequate formonitoring relatively large geomor-
phic change and coarse bathymetric surveys for 1D hydrologic model-
ing. MBS provides a much higher data density and captures many
more of the fine-scale features (e.g., ripples, dunes, boulders), which
may or may not be necessary depending on the question at hand. Be-
cause of the sparser data density, SBS surveys often require interpola-
tion between survey lines, which can introduce error into the
bathymetric dataset. Another emergent bathymetric technology is in-
terferometric sonar, which has the benefits of much wider swath
width, lower sensitivity to vessel roll and wave action, and lower cost,
compared to MBS.

Synthetic Aperture Radar (SAR) is a class of side-looking radar sys-
tems that are deployed from airborne platforms, typically mounted on
an aircraft or spacecraft (Doerry and Dickey, 2004; Oliver and Quegan,
2004). SAR systems can create HRT data (with m to cm precision)
using advanced echo timing techniques (Doppler processing). Interfer-
ometric SAR (IfSAR or InSAR) uses the parallax (phase shift) in two dif-
ferent SAR images collected at different radar antenna elevation angles
to generate a 3D surface with vertical resolution typically less than 1 m.
Advantages of SAR include the ability to collect data during the day or
night and penetrate weather and dust that might limit other remote
sensing techniques.

The latest generation of Very High Resolution (VHR) satellite imag-
ery (b1 m pixel resolution; e.g., WorldView-2, Pleiades, Geoeye-1) can
also be used to reconstruct digital surface models (DSM) down to a
1 m spatial resolution and vertical accuracy as good as 0.5 m in the
best conditions (Table 1). The current limitations in using SAR and
VHR come from the relatively high level of expertise needed to process
the imagery into a high quality surface model.

Recent photogrammetric techniques, such as Structure fromMotion
(SfM) (James and Robson, 2012) and Multi-view Stereo (MVS), can be
mounted on UAVs and represent a low-cost option for acquiring HRT
(Fig. 2(c)). Such approaches require relatively little training and are ex-
tremely inexpensive, and thus potentially represent a methodological
leap in ad hoc HRT data collection (Fonstad et al., 2013). Point cloud
densities with vertical and horizontal errors on the order of cm can be
achieved, although the resulting datasets may be subject to large errors
due to incorrect flight plans or lens calibration (James and Robson,
2014).

Comprehensive reviews on each platform can be found in the lit-
erature, such as Mallet and Bretar (2009), Petrie and Toth (2009c),
and Glennie et al. (2013b) (ALS including full waveform), James and
Robson (2012) and Westoby et al. (2012) (SfM), Heritage and
Hetherington (2007), Petrie and Toth (2009a,b), Day et al. (2013a,b)
(TLS), Brooks et al. (2013), Glennie et al. (2013a), and Williams
et al. (2014) (MLS), Hobi and Ginzler (2012) and Stumpf et al.
(2014) (VHR), Bangen et al. (2014) (SBS, MBS), and Wasklewicz
et al. (2013) for an overview on ALS, TLS, photogrammetry, and
SAR.

2.3. Sources of uncertainty, error modeling and error propagation

Regardless of the HRT platform, uncertainty assessments of rawHRT
data and subsequent post-processing into point clouds, terrain and sur-
face models should be completed and reported with any scientific
study. For both the investigator and the audience, the most important
question to address is whether or not the uncertainty is significant to
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the question or purposes for which the HRT is being used (Wheaton
et al., 2008). The type of assessment and the extent to which one ex-
plores uncertainty should be driven by the research question(s) that
one is answering. A comprehensive uncertainty analysis or full error
budget can be challenging (Joerg et al., 2012) and is not always neces-
sary.We advocate focusing the uncertainty analysis onwhether the sig-
nal sought fromHRT data and analyses is larger than the noise inherent
in the HRT data (i.e., signal to noise ratio; see the following sections).

Data inventory and exploration are the first steps to an uncertainty
assessment. For example, in addition to the point cloud information,
are there independent ancillary data such as Ground Control Points
(GCPs) of elevation and vegetation heights available? Visual analysis
of the data, either in 2D or 3D (with an immersive environment) and
ideally with ancillary data such as topographic or vegetation informa-
tion, may reveal both obvious (e.g., data corduroy) and subtle errors in
the data (e.g., power lines confused with tree tops). In addition,
assessing the topographic complexity and the distribution and species
of vegetation across the site will provide information about the poten-
tial spatial distribution and magnitude of uncertainty in the point
cloud and/or raster data (Hodgson et al., 2005; Hopkinson et al., 2005;
Spaete et al., 2011). This assessment may include parameters such as
slope, surface roughness (bare earth and vegetation), and/or vegetation
height and cover derived from the point cloud and/or raster data.

2.3.1. Scope of uncertainties
The scope of uncertainties with respect to HRT can be overwhelming

and a full accounting is beyond the scope of this paper. However, we can
usefully identify three primary types of uncertainties specific to HRT data
that span the full scope (Table 2): (i) positional uncertainties, (ii) classi-
fication uncertainties, and (iii) surface representation uncertainties.

HRT positional uncertainties describe the uncertainty in both the
horizontal and the vertical location of individual topographic points in
a point cloud. The sources of positional uncertainties are the sensor's
precision and accuracy, the geometry of acquisition (e.g., range and
Table 2
Schematic of error sources and recommendations for ALS/mobile and TLS error budget.

Error sources Best case error magnitude (1σ)

Horizontala

Short Range: 2 mm

Long Range: > 10 mm
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Global
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surface at normal incidence) to
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Georeferencing: GPS

Bare earth extraction

Made complex by vegetation,
steep slope, roughness, 

and artifacts 

Resolution +

interpolation method

Made complex by vegetation,
water, 3D elements, and steep

slopes  

A
LS

/m
o

b
il

e
 c

a
se

T
LS

 c
a

se
P

o
in

t 
cl

o
u

d
D

E
M

P
o

si
ti

o
n

a
l 

u
n

ce
rt

a
in

ty
C

la
ss

if
ic

a
ti

o
n

 u
n

ce
rt

a
in

ty
 

S
u

rf
a

ce
 r

e
p

re
se

n
ta

ti
o

n

u
n

ce
rt

a
in

ty
 

Verticala

a: Glennie (2007); b: Lichti and Skaloud (2010); c: Brodu and Lague (2012); d: Lague et al. (20
angle of incidence), and the position of the sensor (Lichti and Skaloud,
2010). Mobile and airborne systems require a combination of GPS and
inertial measurement unit (IMU) systems to position and orient the
sensor and yield directly globally georeferenced point clouds. Ground-
based surveys from a static position (e.g., TLS or TS) can be kept in a
local coordinate systemwith high accuracy (e.g., usingfixed targets) be-
fore being globally georeferenced (e.g., by knowing the GPS position of
the targets). Beyond the actual precision of the sensors, this difference
in georeferencing translates into a position accuracy that is an order of
magnitude better for TLS (sub-cm) compared to ALS (≈5–10 cm).
Quite importantly, the georeferencing error is unlikely to be spatially
uniform due to variations in the quality of the GPS/IMU positioning dur-
ing a survey (Lichti and Skaloud, 2010) and actual distribution and
number of targets in a static TLS survey (e.g., Bae and Lichti, 2008).
Data delivered by commercial providers rarely provide the means to
propagate the georeferencing errors into a spatially variable uncertainty
such that a uniform georeferencing error is systematically used.

Beyond the georeferencing error, error inherent to the instrument
(in particular the angular accuracy and range accuracy/precision) and
error introduced during calibration (e.g., boresight), it is important to
understand that the position uncertainty of any given point obtained
by a lidar system (fixed or mobile) will depend on the scanning geom-
etry, that is the range to the ground and the incidence angle (e.g., Schaer
et al., 2007; Soudarissanane et al., 2011). In the absence of a simple
model to account for these effects, most studies assume a uniform posi-
tion uncertainty related to instrument error and scanning geometry. For
high accuracy requirements it is however possible to filter out points of
high incidence angle to only keep the best measurements in the subse-
quent point cloud analysis (e.g., Schaer et al., 2007). To our knowledge,
there is no way at present to directly derive a spatially explicit error
model for SfM-derived point clouds. Estimates of the accuracy of SfM
point clouds have been based on a comparison with higher quality
data (numerous GCPs or lidar) and have shown that the position
uncertainty is on the order of 1/1000 the camera distance (e.g., James
Spatial error model Recommendations

Filter out points that are less

accurate (e.g., high incidence 

angle)

Attempt direct error propagation

for high accuracy cases 

Filter point clouds by range and

incidence angle to keep the best

points  

Select registration method

depending on required level of

change detection

Use full waveform and external

information to improve classifica-

tion (e.g., intensity, imagery)

Avoid using DEM in complex

environment for high accuracy

applications

Complex. Requires direct propagation

of georeferencing errors and scanning

geometry effects (e.g., incidence angle)a

Simple for range error. Complex for

incidence angleb 

Generally taken as spatially uniform,

but depends on target and survey

organization. Complex to evaluateb

Inference from surface type and

classification qualityc (e.g., point

density, roughnessd,f). Use external

information (imagery)    

Statistical error models and/or fuzzy

inference from sub-pixel

characteristicse,f (e.g., point density,

roughness, locally detrended standard

deviation) and external information

(imagery)     

13); e: Wheaton et al. (2010) and f: Brasington et al. (2012).
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and Robson, 2012). Recent work has shown that incorrect survey orga-
nization can introduce large scale deformation of the surface (James and
Robson, 2014).

HRT classification uncertainties depend on the quality of the detec-
tion of bare earth andmethod of classification (see Section 3.2). For sim-
ple scenes without vegetation, without objects obstructing the view of
the surface (e.g., tripods and people), and flat ground, no uncertainty
is introduced at this stage. However, for more typical cases of interest
to Earth scientists, with different types of vegetation (e.g., trees and
grass), significant roughness (e.g., debris, pebbles) and complex topog-
raphy (e.g., steep slopes, vertical surfaces such as channel banks), the
detection and classification of the point cloud into ground and non-
ground elements can be difficult and may require significant manual
validation/correction. The first issue is to know if the ground has actual-
ly been sampled by the sensor, or if vegetation or other objects were ob-
scuring the measurement of the ground. In that case, characterizing
uncertainty in ground detection requires an estimate of vegetation
height. A second issue is that many algorithms for bare earth detection
have been developed for 2.5D geometry typical of ALS surveys
(e.g., Sithole and Vosselman, 2004; Tinkham et al., 2011) and can fail
when applied in steep landscapes, or cannot be applied on vertical sur-
faces documented by TLS (e.g., cliffs, overhangs, and undercut river
banks) where only 3D methods can be used (Brodu and Lague, 2012).
Another issue specific to change detection is the fact that rough surfaces
will never be sampled identically by a scanning instrument, which
means that a change will always be measured even if the surface was
not modified. This change is however not significant when compared
to the surface roughness (e.g., Wheaton et al., 2010; Lague et al.,
2013). A local measure of point cloud roughness (such as the detrended
standard deviation (Brasington et al., 2012)) is thus a first order esti-
mate of the uncertainty in the ground position in the context of change
detection. Point density also impacts the quality of bare earth detection
as the denser the point cloud, themore likely that one can correctly clas-
sify vegetation and ground.

HRT surface representation uncertainties are related to the transfor-
mation of the unorganized point cloud into a continuous elevation
surface. The most commonly used representation is a raster digital ele-
vationmodel (DEM), but TINs, 2.5Dmeshes, and fully 3Dmeshing algo-
rithms are being used with increasing prevalence. For simple (smooth)
2D environments without vegetation and that have been densely sam-
pled, this operation introduces very little uncertainty beyond a loss of
horizontal accuracy. In complex scenes with vertical features (channel
banks, cliffs), rough surfaces (debris (Schurch et al., 2011), gravel
(Wheaton et al., 2010)) andwetted zones, DEMcreation introduces sev-
eral uncertainties. First, for TLS, the more complex and rough the sur-
face, the more likely it is that occlusion occurs such that the surface
will be incompletely sampled and inappropriately interpolated during
theDEMcreation. This is also the case for ALS data forwhichwetted sur-
faces cannot be surveyed and typical standard interpolation by triangu-
lation approach can result in severe artifacts (e.g., Williams et al., 2014).
Second, DEM creation increases horizontal uncertainty (up to the pixel
size) and vertical uncertainty for sharp features, which results in a loss
of accuracy for horizontal measures (e.g., channel width), horizontal
change detection (e.g., channel bank erosion), and vertical change de-
tection in steep slopes (e.g., hillslope erosion). Surface representation
uncertainty can be avoided by working directly on point clouds, espe-
cially in the context of accurate change detection on complex geome-
tries (Lague et al., 2013).

2.3.2. Accounting for uncertainty: simple to complex
The most basic approach to HRT uncertainty accounting for Earth

science applications is to start simple and conservative and add com-
plexity and sophistication in the error analysis only as warranted by
the question of interest. For example, if HRT is to be used for geomor-
phic change detection of a very large magnitude signal (e.g., massive
lateral retreat of a cliff face), a simple and conservative error model
may suffice because the signal will be much greater than the estimated
noise. If by contrast, the geomorphic change detection is of a very small
magnitude (e.g., shallow sheets of deposition across a floodplain), a less
conservative and more sophisticated model of error may be warranted
to see if the signal can be detected and if/how the pattern varies
spatially.

A secondprinciple ofHRTuncertainty accounting anderror estimation
is that amore sophisticatedmodel of error cannot reduce the uncertainty,
just more accurately quantify it (Wheaton et al., 2010). That is, it makes
sense to invest time in a more sophisticated model when there is reason
to believe that the data are fundamentally of high enough quality and ac-
curacy to reveal the HRT-derived signal of interest. This is not necessarily
known a priori, but the general rules of thumb as highlighted in the best
case errormagnitudes of Table 2 can give some lower plausible bounds on
what is possible depending on the survey technique. However, amore ac-
curate estimate of HRT errors may simply highlight locations where the
signal is indistinguishable from noise. This in itself may be helpful for
identifying primary sources of errorworth attempting to constrain or rec-
tify in future HRT data acquisition or post-processing, but for any existing
HRTdataset or derivative it cannot convert poor quality data to goodqual-
ity data. For example, if the signal is obscured by noise, considering the
classification uncertainty or positional uncertainty in more detail may
help identify if fundamental problems exist in the raw data (e.g., GPS po-
sitioning was inaccurate) or in what was surveyed (e.g., are there any
ground shots in the TLS survey?) that cannot be rectified, or if there
may be other problems thatmore sophisticated post-processingmay rec-
tify (e.g., flight line misalignment or incorrect vegetation versus ground
classification).

Finally, it is important to remember that the estimation of HRT error
needs to be done independently for each survey. Many HRT analyses
are based entirely off a single survey, at one point in time, with one acqui-
sition/platform/method. It goes without saying that the uncertainty in
subsequent HRT analyses is a function of the errors in that survey. How-
ever, some HRT models may be a hybrid product of multiple types of
HRT surveys, or a composite of HRT surveys from multiple points in
time (e.g., an ALS survey of hillslopes and valley bottom from one point
in time with a more recent MBS survey of the channel bathymetry). Sim-
ilarly, any geomorphic change detection problem involves HRT surveys
from at least two points in time, and the subsequent uncertainty will be
based on independently estimated errors for each HRT survey that are
propagated into each other. Most use simple error propagation methods
(Taylor, 1997) which propagate independently estimated errors for
each survey (in the case of change detection) using the square root of
sum of errors in quadrature (Brasington et al., 2003; Lane et al., 2003).
For example, to estimate the total propagated error in aDEMofDifference
calculation (σDoD), the estimates of errors in the new DEM (σDEMnew) and
the old DEM (σDEMold

) are combined using:

σDoD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

DEMold
þ σ2

DEMnew

q
: ð1Þ

Belowwe highlightfive situations usingHRT data that span from the
simplest error modeling to full error budgeting. The examples primarily
apply to the estimation of vertical errors in a surface model, but the
principles are the same whether describing horizontal or vertical errors
for cells in a surface or individual points in a point cloud.

2.3.2.1. Situations where spatially uniformmay be enough. A spatially uni-
form error estimate assumes that σ is not a function of location and is
constant in space. A spatially uniform error assessment may be suffi-
cientwhere the signal that one aims to obtain is large relative to the un-
certainty. As an example, a study in which an ALS dataset is used to
differentiate target features on the order of meters, a spatially uniform
accounting of the error may be sufficient. In this example, visual exam-
ination of the data for offset betweenflight lines, analyzing independent
GCPs of the data, and analyzing the topographic and vegetation
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complexity may be sufficient to assume the reported error by the ven-
dor (e.g., ±15 cm). Note that spatially uniform error estimates that
are derived from independent check point data that span the whole
range of conditions surveyed are strongly preferred to those just done
in the simplest and easiest conditions (e.g., check points on the airport
runway). If independent check points were not surveyed, but the HRT
survey overlaps a previous survey, which used the same ground control
network and coordinate system, usingfiducial (or reference) surfaces in
areas that have not changed (e.g., bedrock outcrops) can be used as an
alternative (Klapinski et al., 2014).

2.3.2.2. Situations where simple zonal spatially uniform may suffice. There
are a variety of situationswhere using a single spatially uniform value to
estimate vertical surface representation errors will be overly conserva-
tive in some areas and overly liberal in other areas (Wheaton et al.,
2008). A simple improvement can come from defining regions
(i.e., polygons) within which it is reasonable to assume that σ is con-
stant. For example, Lane and Chandler (2003) identified differences in
σ on the basis of whether the surfacewaswet or dry. Others have differ-
entiated ALS DEM errors on the basis of whether the surface was vege-
tated or unvegetated. Klapinski et al. (2014) differentiated regions in
hybrid HRT surveys on the basis of survey methods and roughness
(e.g., TS, MBS — rough, MBS — smooth, ALS).

2.3.2.3. Situations where statistical error models make sense. Statistical
error modeling of both surface representation uncertainty and point
clouds is possiblewhenHRT point clouds are sufficiently dense to calcu-
late meaningful statistics. Such statistics can be calculated for all the
points that fall within a moving window centered on sample points
(i.e., point-cloud based), orwithin a grid cell (i.e., surface representation
uncertainty). For elevation statistics to be meaningful, they should be
calculated only where 4 or more points exist in the sample window or
cell. Typical statistics include zMin, zMax, zMean, zRange and zStdDev.
Such statistics can be heavily skewed by local surface slope. Brasington
et al. (2012) developed amethod tofit amean surface througheach grid
cell and then recalculate detrended statistics. For example on a reason-
ably sloping surface comprising cobbles and/or boulders, the standard
deviation of elevation may be more a reflection of the relief and slope
across that cell, whereas the detrended standard deviation is a proxy
for the surface roughness. In fact Brasington et al. (2012) found a tight
correlation between grain size, surface roughness, and standard devia-
tion. For HRT survey methods like TLS, SfM, and MBS, individual point
accuracy is generally very high and surface roughness is often the dom-
inant driver of surface representation uncertainties and is a reasonable
first cut itself as an error model. Brasington et al. (2012) developed the
ToPCAT (Topographic Point Cloud Analysis Tool) to facilitate these
calculations.

In very dense point clouds, it is not uncommon to have 100s to 1000s
of coincident points (points that have different zs but share the same x
and y coordinates). Hensleigh (2014) used the overlap in MBS boat
passes (analogous to ALS flight lines) to calculate coincident points as
a proxy for measurement uncertainty.

Another approach to statistical estimation of errors is bootstrapping.
Using this approach, an elevation surface is built with some random frac-
tion of the data (e.g., 90% of points) and the remaining points (e.g., 10%)
are used to calculate residual errors between the interpolated surface
and measured points (Wheaton et al., 2008). Those residual error value
points can be interpolated to approximate an error surface. The process
can be repeatedmultiple timeswith different randomsamples to increase
the density of points in the interpolated error surface. Note that the
resulting distribution of residual errors is sometimes used to estimate
spatially uniform errors across an entire surface or within zones.

2.3.2.4. Situations where more complicated spatially variable error models
are warranted. Although the statistical error models described above are
spatially variable, there may be other factors important in determining
the surfaceuncertainties than just simple elevation statistics. For example,
angle of incidence, footprint size, topographic complexity of the surface,
sampling density, positional point quality, and interpolation error may
all trump surface roughness as the primary driver of error in certain local-
ities within an HRT survey. In these cases, spatially variable error models
are warranted.

For these studies, one can expand upon the error analysis above. As-
suming that the point cloud data are available, assessing the spatial re-
lationship between slope, roughness, and vegetation height and cover
may be necessary. This can be completed by developing statistical rela-
tionships between independent GCPs and these parameters, using a
machine learning approach such as RandomForest (Breiman, 2001).
Milan et al. (2011) reviewed some of the approaches available for esti-
mating spatially variable errors. For example, fuzzy inference systems
provide a convenient way of combining multiple lines of evidence and
the outputs can be calibrated to independent statistical models of
error (Wheaton et al., 2010). All of the above methods are supported
in the Wheaton et al. (2010) Geomorphic Change Detection Software
(GCD: http://gcd.joewheaton.org).

2.3.2.5. Situations where full error budgets are warranted. Sometimes, if
none of the cases described above applies, full error budgetsmay bewar-
ranted and additional informationwill be needed. For example, complete
metadata, including SBET (Smoothed Best Estimate of Trajectory) infor-
mation of the data collection, will allow for analysis of error in relation
to flight parameters such as scan angle, and use of intensity data to iden-
tify the relationship between error and ground/vegetation targets
(Glennie, 2007; Streutker et al., 2011). Spatially distributed independent
GCPs should be collected andused to estimate the error in different slopes
and vegetation types. Perhaps one of the most mature examples of full
error budgeting comes from the multi-beam sonar community, where
TPE (total propagated error) is used in the CUBE (Combined Uncertainty
Bathymetric Estimator) tools (Calder andMayer, 2003) to estimateuncer-
tainties and minimize user subjectivity when data are cleaned and fil-
tered. The TPE estimates attempt to quantify all sources of errors
leading to point-based estimates of uncertainty as well as surface-based
estimates of uncertainties. The TPE estimates frequently result in overly
conservative estimates of total error, but they arenonetheless useful in re-
liably defining the spatial pattern of those errors, their relative magni-
tudes and revealing the key sources. The downside of full error
budgeting is that it requires a considerable amount of extra input data
that is often not available (with the notable exception of hydrography
surveys in MBS). These methods are supported in most of the industry-
standard MBS manufacture post-processing software (e.g., HYPACK and
HYSWEEP: http://www.hypack.com/).

In the context of change detection, simple tests should be performed
on various parts of one of the surveys to make sure that the uncertainty
model is consistent with the change detectionmethod used. For instance,
comparing two different decimations of the same point cloud should not
yield a statistically detectable change given the uncertainty estimated lo-
cally as a functionof point density andpoint cloud roughness (Lague et al.,
2013). These methods are supported in the M3C2 algorithm within the
CloudCompare software (http://www.danielgm.net/cc/).

2.4. Summary of common sources of error in HRT analysis and questions
that one should ask

In Table 3 we list several common sources of error in HRT analysis
and provide recommendations for each. As seen from the previous sec-
tions, there are numerous sources of uncertainty that are commonly un-
known to the user. To help in designing the acquisition of newHRT data
or in planning the analysis of existingHRT data, we provide questions in
Boxes 1 and 2 that any user should ask prior to the beginning of the pro-
ject. Information on how to address most of these questions is provided
in the sections that follow. Some of these questions are too specific to
the project at hand to be properly addressed in this review. We

http://gcd.joewheaton.org
http://www.hypack.com/
http://www.danielgm.net/cc/


Table 3
Common sources of error in HRT data analysis and references for further reading and existing solutions. Also see text for additional discussion on each point.

Source of error Further reading and existing solutions

Lack of alignment among coordinate systems, datums, elevation models Require relevant metadata
Unawareness of factors influencing computational efficiency: unnecessary data
precision and density, local versus global calculations and landscape characteristics

Estimate computational cost on a small dataset and proceed with tiling, parallel
computing, or decimation if needed. Work on local coordinates rather than global to
maintain accuracy.

Inappropriate data resampling strategy Consider strengths and weaknesses of each interpolation method including associated
errors (Wheaton et al., 2010).

Coregistration error Legacy ALS data and flight lines (Glennie et al., 2014). Visual checks: flight lines, offset
among datasets (change detection).

Filtering impacts on feature sharpness (isotropic filters and loss of feature localization) Nonlinear and Wiener filtering, breaklines
Classification method Require information on classification method used. Visual checks: vegetation above or

below ground, create TINs to visualize data gaps
Data cleaning and manual alteration of data Employ classification methods and limit manual alteration. If manual intervention is

performed, maintain data versions and collect metadata
Mismatched resolution among analysis, tools, data Know scale that matters for analysis at hand and choose data and tools consistent with

that scale requirement
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recommend users to collect the information needed to address each
question before starting the analysis of data.

2.5. Metadata and reproducibility of scientific results

New data acquisition should follow the basic criteria for data storing
and sharing. Specifications on the instrument used for acquisition, point
Box 1
Questions to consider before acquiring HRT

1) Specification Document: Should a specification document be written
following questions?

2) HRT Method: What HRT acquisition method(s) would allow collectio
3) Who Acquires HRT: Will a vendor be employed, will you be responsi
4) Acquisition Timing:When should acquisition be scheduled tomaxim

include: season, antecedent moisture or flow levels (rivers), vegetativ
5) Hybrid Data: Will the HRT dataset need to bemeshed with other topo

continuity among datasets be ensured?
6) Acquisition Perspective: Howwill scans (e.g., flight lines, TLS scans, ph
7) Overlapping Coverage: Howmuch overlap is needed between scans to
8) Accuracy Assessment:What independent data (e.g., check points, check

area or should be collected concurrently for verification and accuracy a
9) Accuracy and Precision Specifications:What point cloud density or ve

terest?
10) Cost-Benefit: Are there inflections in the cost/data characteristic relation

project budget?
11) Features of Interest: What are the features of interest where the best

vegetation needed?
12) Breaklines: How and where will breaklines be used to ensure that criti
13) Coordinate Systems and Control Network: Do data need to be referenc

equate existing control network in place to facilitate this or does one ne
surveyor to establish and improve the network?

12) Repeat Survey Planned or Plausible: Will the data be compared to futu
dundant to facilitate future repeat occupation of the control network?

13) Uncertainty: What factors contribute to spatially variable uncertainty o
14) Output Formats: What are the required end product deliverable forma

earth point cloud, TIN, raster)?
15) Reporting and Data Sharing: What level of metadata documentation a

poses and to other potential end-users? Do deliverable outputs need to
16) Post-Processing: What post-processing steps will be needed for the dat

vendor or user complete those steps? If performed by the vendor, wha
validate/verify them?
density, horizontal and vertical accuracy must be stored with the data
as well as information on how the data were further processed
(e.g., point cloud decimation and classification).While some vendors pre-
fer to keep this informationproprietary and inaccessible, it is fundamental
to allow reproducibility of scientific results. Helpful reviews on this topic
with specific rules to follow for storing and sharing data have been recent-
ly provided byWhite et al. (2013) andGoodman et al. (2014) and include
to define minimum requirements, deliverables, and answers to the

n of the data?
ble for data collection, or will the responsibility be shared?
ize likelihood of successful and useful data collection? Considerations
e cover (e.g., leaf on vs. leaf off)
graphic data to paint a complete picture of the study area? Howwill

oto orientation, boat paths) be oriented relative to features of interest?
obtain the needed point cloud density?
surfaces, othermethods of acquisition, air photos) are available in the

ssessment?
rtical and horizontal accuracy are needed to answer the question of in-

ships that wouldmake additional data collection feasible with current

quality information is needed? Is penetration through water or dense

cal features/boundaries are well defined?
ed to a local or global coordinate system (i.e. georeferenced)? Is an ad-
ed to be established or modified? Is it necessary to hire a professional

re surveys? Even if not planned, is the control network sufficiently re-

f the dataset (e.g., shadows, angle of incidence)?
t(s) for the post-processed HRT data (e.g., classified point cloud, bare

nd reporting will be necessary to make the data useful for current pur-
be shared with others and how will this be achieved?
a to be useful for your purposes (e.g., filtering, interpolation)?Will the
t information will be provided about the specific steps taken? How to



Box 2
Questions to consider before analyzing new or existing HRT

1) Metadata Report: Does a metadata report exist that documents answers to the following questions?
2) Acquisition Timing: When were the data collected?
3) Coordinate Systems: If comparing to other data, are coordinate systems consistent? In which geodetic reference system are the data dis-

tributed? Do the data need to be projected, re-projected, or transformed between coordinate systems? Do elevation values need to be con-
verted (e.g., between ellipsoid and orthometric heights) according to a specific geoidmodel or between geoidmodels? If so, is transforming
the point cloud instead of the derivative surfaces desirable?

4) Hybrid Dataset: Do the data contain multiple HRT types that have been stitched together?
5) Format: What data formats are available (e.g., LAS, raw point cloud, classified point cloud, TIN, DEM)?
6) Post-Processing: What filters, corrections, and modifications were applied to the data to convert from raw data to the current state?
7) Blunders and Busts: Are there artifacts in the dataset? How to deal with them? Are there portions of the dataset that are of especially high

or low quality?
8) Validation/Verification: Are validation/verification data available? Is information available for constraining vertical and horizontal error? Is

the collection of additional verification data needed to determine whether the quality of the data is sufficient to answer the question of in-
terest?

9) Analysis Methods: What are the most appropriate methods and protocols for processing and analyzing the data? Is the implementation of
these methods and associated computational costs within reach relative to your skills and resources?
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(i) sharing data; (ii) providing metadata; (iii) providing an unprocessed
form of the data; (iv) using standard format and (v) performing basic
quality control.

3. DO: working effectively with HRT data, from raw point clouds to
usable data and derivative products

In this sectionwediscuss researchquestions of interest to the under-
standing of how mass and energy are transferred through landscapes
and how their analysis has changed with the availability of HRT data.
We also discuss important considerations in data processing, including
segmentation and filtering, and present general work-flows for feature
detection and change detection, which are among the most recurrent
operations performed on HRT data. While we refrain from listing avail-
able software for each operation (as software is in constant evolution),
we refer the reader to the OpenTopography Tool Registry where an
updated list of available tools is maintained as well as comments and
feedback from the tool users (http://www.opentopography.org/).

3.1. Science with HRT data

Viewing HRT as simply a higher resolution version of its coarser pre-
decessors (e.g., 30 m SRTM data) greatly understates the value of these
data for two primary reasons. First, HRT is typically collected at a resolu-
tion that permits identification andmeasurement of the fine-scaled fea-
tures that inform our understanding of the rates and mechanisms of
eco–hydro-geomorphological and earthquake processes. The fact that
fine-scaled features can be resolved, changes our approach for analysis
and calls for a suite of new techniques and tools for data analysis. Second-
ly, most HRT datasets contain valuable information beyond the bare earth
surface elevations (e.g., above ground vegetation density, variability
in surface reflectance). Such information can be immensely useful for
characterization of the landscape and modeling Earth surface processes.

3.1.1. HRT provides new approaches to answer fundamental questions
In the material that follows, we discuss some high level questions

currently being pursued by the Earth Surface and Critical Zone commu-
nities and discuss how HRT provides opportunities for entirely new ap-
proaches to answer these questions.

3.1.1.1. How are mass and energy transported through landscapes?. This
question encompasses a wide range of studies, from understanding
stress and strain fields in tectonically active environments (Frankel
and Dolan, 2007; Oskin et al., 2012), to using HRT-derived canopy
models to estimate radiative transfer (Lefsky et al., 2002; Vierling
et al., 2008; Morsdorf et al., 2009), to constraining sediment, carbon
and nutrient budgets and predicting fluxes at the reach or watershed
scale (Paola et al., 2006; Belmont et al., 2011; Hudak et al., 2012;
Tarolli et al., 2012). Regardless of the specific application, HRT substan-
tially enhances our capacity to answer this question by offering precise
quantification of critical features distributed throughout a large spatial
domain (e.g., geometry and location of fault scarps, tree canopy, channel
heads, river banks, detention basins, see Pike et al., 2009). Direct
budgeting ofmass redistribution provides constraints on themagnitude
and spatial patterns of geomorphic and ecologic processes. Further, HRT
provides amuchmore detailed and reliable boundary condition for eco–
hydro–morphodynamic models, especially insofar as it allows direct
couplingwith the built environment (Priestnall et al., 2000) and explicit
representation of surface roughness (typically dominated by vegeta-
tion) (McKean and Roering, 2004; Glenn et al., 2006; Cavalli et al.,
2008; McKean et al., 2014), which, for example, has allowed for a vast
improvement in flood inundation prediction (NRC, 2007). Since HRT al-
lows users to derive higher dimensional information about the surface
(e.g., surface cover, roughness), it provides an opportunity to directly
link hydraulics, geomorphology, and ecology. In this way, HRT improves
the accuracy, spatial extent and response time for hazard assessment and
risk mitigation, as well as restoration and conservation planning (Farrell
et al., 2013). In the cases where it is not feasible or desirable to include
all of the detailed information in a model, HRT provides a basis for
upscaling localized measurements and generating sub-grid scale pa-
rameterizations (Casas et al., 2010; Ganti et al., 2012; Helbig and
Lowe, 2012). For many such applications, it is useful to utilize 3D
point cloud data to retain information about the above-ground features.

3.1.1.2.What are the patterns on the Earth's surface that can informour un-
derstanding of ecologic, hydrologic, and geomorphic processes and coupling
thereof?. Understanding how topography and biota are organized at the
micro-, meso-, and macro-scales has been a long standing question in
Earth surface science (e.g., Gilbert and Dutton, 1880; Dietrich and
Perron, 2006; NRC, 2010). Quantifying the organization of landscape fea-
tures brings us one step closer to understanding themechanisms of land-
scape change (Chase, 1992; Hilley andArrowsmith, 2008; Roering, 2008;
Perron et al., 2009; Roering et al., 2010). Certain features can only be rep-
resented andmeasured accurately/precisely at HRT scales. Therefore, we
have only recently acquired the capability to answer this question over
large spatial scales. For example, HRT provides amore detailed represen-
tation ofmicro-climates andmicro-habitats and a bridge between atmo-
spheric boundary layer and highly localized features/characteristics
(e.g., temperature, soil moisture, snow depth) (Molotch et al., 2004;
Galewsky et al., 2008; Galewsky, 2009; Deems et al., 2013). HRT data

http://www.opentopography.org/
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also allow for coupled 3D mapping and modeling of vegetation, hydrol-
ogy, and topography (Ivanov et al., 2008) and in some cases captures
the influence/signature of bioturbation (e.g., plants, gophers) (Yoo
et al., 2011; Reed and Amundson, 2012; Hugenholtz et al., 2013). Lastly,
HRT allows for direct identification and quantification of human imprints
on the landscape, permitting distinction between the effects of natural
and anthropogenic processes (Passalacqua et al., 2012).

3.1.1.3. How do processes in one location influence processes or rates in
another part of the landscape?. One of the most intriguing opportunities
presented by HRT data is the ability to predict non-localized effects of
processes (Anderson et al., 2012). For example, initiation of a landslide
near a ridge crest is likely to cause deposition of a slug of sediment in
the valley bottom. Bank erosion at one or many individual locations
throughout a watershed is likely to influence turbidity and sediment
flux at the mouth of the watershed. Such predictions can only be reli-
able if the critical features can be identified and the transport mecha-
nisms between the points of interest are known. HRT provides a new
mechanism for satisfying the inputs needed for detailed models of
mass and energy transfer and takes us a step closer to robust spatially
distributed modeling over large domains.

Improved algorithms to quantify landscape topology and conduct
ensemble feature mensuration enable analysis of spatial relationships,
from simple metrics such as distance, height, and volume to more com-
plex evaluations of feature proximity and transport pathways (Huang
et al., 2011; May et al., 2013; Tomer et al., 2013). Such analyses require
the ability to recognize discrete objects whose scalemay range between
slightly larger than the data resolution and something smaller than the
extent of the entire dataset.

3.1.2. Fully utilizing HRT requires new approaches, tools, and techniques
The fact that in HRT we can resolve many of the fine-scale features

that are critical for eco–hydro-geomorphic processes changes our analyt-
ical approach and demands a new set of tools and techniques. HRT con-
tains an immense amount of information, much of which is not easily
extracted with conventional tools. The analysis challenges shift from rel-
atively simple operations performed either on individual pixels or the en-
tire dataset, to the realm of image processing, where the richness of the
image can be deconstructed into more meaningful components and ma-
nipulated accordingly. For example, coarse topographic datasets that
have been prevalent for the past few decades were limited to evaluating
macro-scale features, such as basin hypsometry, slope and relief, using
pixel-based approaches. Watershed and channel network delineation
could only be automated using algorithms that mapped pixel-to-pixel
paths of steepest descent, and channel heads would be somewhat arbi-
trarily located at some average/uniform value of upstream contributing
area. Small order channels were not identifiable and the boundaries of
large channels were poorly resolved. The presence of fine-scaled features
in the HRT landscape does not entirely circumvent the need for such ap-
proaches, but does open the door to entirely new approaches that are
able to take advantage of the wealth of information provided by HRT.

For example, preservation of sharp landscape features, those which
are characterized as abrupt changes in topography (e.g., streambanks or
fresh fault scarps), requires the use of anisotropic filters (such as nonlin-
ear filters) for cleaning and analysis of HRT. Conventional topographic fil-
ters (e.g., Gaussian) have a tendency to diffuse or altogether eliminate
such features (Passalacqua et al., 2010b). Another important shift in
tools and techniques between conventional topography data and HRT
is the use of object-based image analysis (Bian, 2007; Blaschke, 2010).
Object-based techniques have been used extensively since the 1980s
and 1990s in the industrial and medical fields, but have only recently
emerged as useful tools for Earth surface science, as the resolution of sat-
ellite imagery and topographic datasets has come to exceed the scale of
many of the objects, or features, of interest. While it is not the goal of
this paper to comprehensively review all of these emerging approaches,
it is important to acknowledge their growing use.
Some commonobject based techniques include segmentation, edge-
detection, and feature extraction (Alharthy and Bethel, 2002; Suárez
et al., 2005; Brennan andWebster, 2006). Segmentation involves iden-
tification of distinct objects by one ormore homogeneous criteria in one
or more dimensions of feature space. Clearly, objects exist across a vari-
ety of scales in HRT, and so segmentation often requires a multi-scale
analysis (Hay et al., 2001, 2003; Burnett and Blaschke, 2003; Schmidt
and Andrew, 2005; Brodu and Lague, 2012). Other techniques, such as
artificial neural networks (Priestnall et al., 2000; Nguyen et al., 2005),
fuzzy set methods (Schmidt and Hewitt, 2004; Cao et al., 2011;
Hofmann et al., 2011; Hamedianfar et al., 2014), genetic algorithms (Li
et al., 2013; Garcia-Gutierrez et al., 2014), machine learning (Zhao
et al., 2008, 2011; Gleason and Im, 2012a,b), and support vector ma-
chines (Mountrakis et al., 2011; Zhao et al., 2011; Brodu and Lague,
2012) also show great promise to represent discrete features within
complex and heterogeneous environments, but applications of such ap-
proaches for HRT analysis have been relatively few. Such approaches
can greatly expand our capacity to extract useful information from
HRT and we thus expect them to become more prevalent in the near
future.

3.2. Getting the data right: from raw to derivative products

Currently, the vast majority of HRT users begin their analysis work-
flows with a gridded product (i.e., DEM) that has previously been sub-
jected to extensive cleaning and filtering and perhaps manual editing
(Fisher, 1997). In some cases this is an appropriate starting point for
the task at hand, although users should be aware of the operations pre-
viously performed on the data and associated potential for bias/error, as
discussed above. In other cases users may start from this point because
upstream versions of the data (raw, classified, or filtered point cloud)
are notmade available from the data provider, a situation that is becom-
ing less common as vendors and users recognize the value of such data.
In yet other cases, many users simply start with the gridded dataset be-
cause the common software packages are ill-equipped to deal with
point cloud data, or are perceived to require an unwarranted invest-
ment of time and effort to utilize. However, tools for cleaning and ana-
lyzing point clouds have been improved considerably and, for a
variety of applications, the general HRT analysis community has much
to gain by beginning their analysis workflow farther upstream.

In the material that follows, we cover the operations that are com-
monly performed from raw data to the creation of derivative products
(such as usable point cloud and DEM). Users should require specifics
on these operations from thedata providers. If newHRT data are collect-
ed, this information should be compiled and released with the data to
facilitate data reuse and reproducibility of scientific results and allow
for problems to be rectified in the future as tools for data cleaning and
interpolation are improved.

3.2.1. Georeferencing
During the georeferencing operation, raw data are converted from a

local coordinate frame to a geodetic coordinate frame using direct and
indirect methods.

Direct methods imply that geodetic coordinates have been collected
and assigned to positions on the ground at the time of data acquisition.
A terrestrial example is ground-based rtkGPS surveying where topo-
graphic points are assigned x, y, and z coordinates in real time. Accuracy
of such surveys is greatly enhancedwhen users post-process the data to
obtain differentially corrected static GPS measurements. This can be
achieved using, for example, the Online Positioning User Service
(OPUS) to tie GPS positions collected using an antenna and local base
station to the U.S. National Spatial Reference System from nearby Con-
tinuously Operating Reference Stations (http://www.ngs.noaa.gov/
OPUS/). Similar post-processing tools are freely available from a variety
of other sources on the web.

http://www.ngs.noaa.gov/OPUS/
http://www.ngs.noaa.gov/OPUS/
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Aerial andmobile directmethods are based on the exterior orientation
of the sensor relative to the Earth, which can be obtained using GPS and
an Internal Navigation System (INS) (Legat, 2006). Geodetic coordinates
of positions in the scene are extrapolated from sensor x–y positions and
altitudes. This method is most common for ALS andmobile mapping sys-
tems as well as stereo-photogrammetry flown by a manned aircraft.

Sensors, such as cameras or lasers, fixed to UAVs typically do not
have onboard navigation systems sufficient for accurate geodetic posi-
tioning. Therefore, indirect georeferencing methods that rely on GCPs
are common. GCPs are on-the-ground features (natural or artificial)
with known coordinates that are identifiable in the collected point
cloud or imagery. Typically, the positions of GCPs are surveyed close
to the time of data acquisition using GPS. Georeferencing occurs after
data acquisition and can be performed easily in common spatial data
programs. Both error and distortion need to be considered when apply-
ing spline and polynomial georeferencing transformations.

The georeferencing operation for SfM is discussed in the next section
as part of thework-flow from rawdata to PC generation. For a discussion
on the uncertainty associated with georeferencing see Section 2.3.1. We
refer the reader to Shan and Toth (2009), Vosselmann andMaas (2010),
and Renslow (2012) for further reading on georeferencing.

3.2.2. Processing raw data to create a usable point cloud
In some cases it may be required to combine multiple point clouds

into a single point cloud, for example in HRT surveys with point clouds
obtained from multiple positions on a landscape. This requires bringing
multiple point clouds into the same coordinate system, which may be
global or local. These point clouds may be from the same HRT platform
or from some combination of ALS acquisition, multiple TLS scans, sonar
and/or cameras. Merging these point clouds into a unified dataset is
achieved through a registration operation performed by either relying
on points common tomultiple clouds (minimum3points shared) or set-
ting up targets during the acquisition that can then be used as reference
points during the registration operation (some targets can reoccupy ex-
actly the same position during subsequent surveys for high accuracy
local georeferencing (Lague et al., 2013)). In natural scenes, the latter ap-
proach is preferred as it can be difficult to identify common points in
multiple clouds, and surfaces are generally rough which reduces the ac-
curacy of cloud matching techniques (e.g., Schurch et al., 2011; Lague
et al., 2013) (unlike engineering applications where features such as
structure corners can be used). A lack of common targets can significant-
ly diminish the quality of the data acquired.

In the case of SfM, camera pose and scene geometry are reconstructed
simultaneously using the automatic identification of recurrent features in
multiple images that have been taken from different angles (Snavely,
2008;Westoby et al., 2012). Although only 3 images per recurrent feature
are needed, it is usually recommended to take as many photographs as
possible. The point cloud is created in a relative ‘image-space’ coordinate
system. GCPs or physical targets are commonly employed to align the
‘image-space’ to an ‘object-space’ coordinate system. The georefencing
operation consists of a Helmert Transformation (7 parameters: 1 scale pa-
rameter, 3 translation parameters, and 3 rotation parameters) (Turner
et al., 2012). Example applications can be found in James and Robson
(2012), Westoby et al. (2012), Javernick et al. (2014), and Johnson et al.
(2014).

3.2.3. Point cloud processing, filtering, and classification
Once the point cloudhas been created, several processing operations

may be needed before analysis of the point cloud or creation of raster
products can be performed. These operations are performed to reduce
the size of the point cloud, distinguish ground points from off-ground
points, and classify the point cloud into homogeneous portions.

No matter what the data source is, the generated point cloud can be
extremely dense. In these cases the number of points often needs to be
reduced in order to analyze the point cloud. This operation is called
decimation. Procedures for decimation include point removal, refine-
ment, and cloud segmentation approaches (Wasklewicz et al., 2013).

Filtering and classification are needed to distinguish ground and off-
ground points and further classify the off-ground points. There are 4
main categories of filtering approaches (Sithole and Vosselman, 2004;
Pfeifer andMandlburger, 2009) and they are different in the assumption
they make about the structure of the ground points: (i) morphological
filters (often slope-based), (ii) progressive densification filters starting
from seeds (e.g., lowest points), (iii) surface-based filters (progressive
removal of points that do not fit the surface model) and (iv) segmenta-
tion and clustering (operates within homogeneous segments rather
than individual points). Many of these filters operate directly on the
point cloud, but others require gridding to take full advantage of image
processing techniques (e.g., segmentation). Sithole and Vosselman
(2004) report results for a filter comparison on 12 different landscapes
and concluded that while all filters are successful in landscapes with
low complexity level, the presence of urban structures or steepness influ-
enced the performance of the filters resulting in surface-based filters (fil-
ters that rely on a parameterization of the local surface and an above
buffer within which ground points are expected to be found) being
more successful than others. As noted by Pfeifer and Mandlburger
(2009), when this analysis was performed segmentation strategies had
not been fully developed yet,while theyhavebeen foundparticularly suc-
cessful in landscapes modified by humans. Further work by Meng et al.
(2010) identified three types of terrain for which filtering algorithms do
not work optimally: (i) rough terrains or landscapes with discontinuous
slopes, (ii) areas with dense vegetation where the laser cannot penetrate
sufficiently, and (iii) areas with short vegetation.

The classification of the point cloud, including vegetation classifica-
tion, can be one of the most critical operations, particularly in natural
and complex landscapes due to the multi-scale nature of the features
present. The method proposed by Brodu and Lague (2012) exploits
this aspect by probing the surface with spheres of varying diameters,
achieving accuracy N98% in distinguishing, for example, vegetation
from ground points and classifying amountain stream in several classes
(vegetation, rock, gravel, water surface). Other vegetation classification
approaches have been proposed by Streutker and Glenn (2006), specif-
ically for arid landscapes, and by Evans and Hudak (2007) (the multi-
scale curvature algorithm MCC designed for high biomass areas). The
two latter methods were compared by Tinkham et al. (2011) in a
semiarid landscape. The authors found bothmethods accurate and sug-
gested specific applications for each.

Information on which decimation, filtering, and classification opera-
tions were performed on the point cloud should always be required
from the data provider and reported when distributing the collected
data.

The operations needed to create a raster, and derived raster products
are covered in the next section. Before presenting this material, we note
that many HRT analyses can (and should) be performed directly on the
point cloud. Gridded data are often perceived as the more ‘convenient’
or easy option to users. Point clouds are more difficult to analyze and
are seen as less intuitive than gridded data. These suppositions are fur-
ther supported by the limitations of commonly used geospatial soft-
ware, such as ArcGIS, which are so far limited when it comes to point
cloud analysis tools. There are, however, many advantages in working
directly with the point cloud and it should not be discarded too early.
The farther into awork-flow the point cloud is carried leads to preserva-
tion of the 3D point uncertainty, greater control on 2D products and
multidimensional analysis, and a congruent representation of field
data collection. Point clouds offer opportunities for the exploration
and extraction of more detailed information (e.g., vegetation classifica-
tion Brodu and Lague, 2012) and higher level modeling (segmentation,
textures, machine learning), while also achieving accurate estimates of
geometric properties of the 3Denvironment, particularly relevant to the
estimation of 3D change and 3D oriented deformation measurements
(e.g., Teza et al., 2007; Nissen et al., 2012; Lague et al., 2013). Gridding
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data involves interpolation which reduces the information originally
contained in the point cloud.
3.2.4. Raster generation and derived raster products
Interpolation algorithms are applied to estimate unknown elevation

from elevation data at known locations. This operation may be needed
to obtain a gridded surface or interpolate over regions that present
shadows or data voids to limit their effect on the final gridded surface. It
may also be necessary to change the resolution of the raster for the appli-
cation at hand.

The commonly used interpolation approaches can be distinguished
into three categories (Wasklewicz et al., 2013): (i) local neighborhood
(e.g., nearest neighbors, inverse distance, creation of Triangular Irregular
Network (TIN)), (ii) geostatisticalmethods (rely on the spatial correlation
structure; kriging), and (iii) spline methods (e.g., thin plate spline). Each
method has its strengths andweaknesses and an appropriate range of ap-
plicability (Chaplot et al., 2006; Erdogan, 2009; Heritage and Large, 2009),
although differences among interpolation approaches are reduced with
increasing point density. Interpolation and estimation errors are associat-
ed with each approach (Wheaton et al., 2010).

Raster users need to carefully consider the sources of uncertainty
mentioned in Section 2.3 as they affect DEMs (Fisher and Tate, 2006)
and derived topographic attributes (Sofia et al., 2013).
3.2.5. Filtering rasters to remove small scale variability and enhance
features of interest

No matter what the specific analysis entails, operations involving
derivatives should be performed after small scale variability (e.g., due
to local terrain roughness or to vegetation removal operations) has
been removed and the features of interest enhanced (Passalacqua
et al., 2010a,b). Several filters have been proposed in the literature,
most of which have been developed within the image processing
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Fig. 3. Comparison of the performance of Gaussian (linear) and Perona–Malik (nonlinear) filte
(ridge) than the surrounding landscape. (a) Original noisy image; (b) noise reduction achieved
aries localization; (c) noise reduction achieved by Perona–Malik filtering (number of iteration
boundaries; (d) further noise reduction with Gaussian filtering (14m) results in complete blur
tion without affecting the feature and its localization.
Figure reproduced from Passalacqua et al. (2010a).
community. The most common options include Gaussian filtering, non-
linear Perona–Malik filtering, and Wiener filtering.

Gaussian filtering is most often used to smooth noise from data with
the aid of a spatially uniform smoothing operation. The scale of the fea-
tures removed depends on the size of the kernel employed for smooth-
ing. The wider the standard deviation of the kernel, the coarser the
filtered landscape will be. Considering as an example a high resolution
DEMh0(x, y) : R2→ R, thefiltered landscape h(x, y, t) is obtained through
a convolution operation with a Gaussian filter G(x, y; t) of standard de-
viation t:

h x; y; tð Þ ¼ h0 x; yð Þ � G x; y; tð Þ ð2Þ

where the Gaussian kernel of standard deviation t is defined as:

Gx;y;t u; vð Þ ¼ 1
2πt

exp −
u−xð Þ2 þ v−yð Þ2

2t

" #
: ð3Þ

The employment of Gaussian filtering is at the core of the channel
network extraction method proposed by Lashermes et al. (2007)
which uses the convolution with the first and second derivatives of
the Gaussian to calculate landscape slope and curvature on regularized
gridded data.

A feature of Gaussian filtering that may be problematic is the lack of
feature localization; thefilter is spatially uniform resulting in landscapes
uniformly diffused in all directions. This can be problematic in land-
scapes containing sharp features (e.g., fault scarps, stream banks and
roads) as illustrated by Passalacqua et al. (2010a) (see Fig. 3) and
Passalacqua et al. (2010b), who proposed the use of a nonlinear (aniso-
tropic) filter (Perona andMalik, 1990; Catté et al., 1992) able to achieve
preferential smoothing of the landscape:

∂th x; y; tð Þ ¼ ∇ � p ∇hj jð Þ∇h½ � ð4Þ
60 70 80 90 100
]

10 20 30 40 50 60 70 80 90 100
y [m]
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(e)

ring on an idealized landscape with added noise. The white portion is at higher elevation
by Gaussian filtering (standard deviation of the kernel 7 m) at the expense of the bound-
s t = 50). The filter is able to preserve feature localization by avoiding diffusion across its
ring of the ridge; (e) Further Perona–Malik filtering (t= 200) results inmore noise reduc-
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where the edge-stopping function p(⋅) allows preferential smoothing of
small scale variability and enhancement of features of interest. In the
application of Passalacqua et al. (2010a), the edge-stopping function
has the form:

p ∇hj jð Þ ¼ 1

1þ ∇hj j=λð Þ2
: ð5Þ

Locations with gradients smaller than λ are smoothed out, while
locations with gradients above λ are enhanced. The parameter λ is
computed as the 90th quantile of the probability density function
(pdf) of the elevation gradients (Passalacqua et al., 2010a). Themain ad-
vantage of the Perona–Malik filter is the capability of enhancing the fea-
tures of interest, while preserving feature localization and removing
small scale variability.

The Wiener filter (Wiener, 1949) distinguishes small scale noise
from other image features based on the analysis of a radially averaged
power spectrum. Its use was recently proposed by Pelletier (2013) to
smooth small scale variability in elevation data. The filter operates in
the frequency domain through a transfer function defined as:

Φ νð Þ ¼ H νð Þj j2
H νð Þj j2 þ N νð Þj j2

ð6Þ

where |H(ν)|2 represents the spectrum of the signal and |N(ν)|2 the
spectrum of noise, determined by fitting the radially averaged power
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spectrum of the landscape for lower and higher frequencies. At low fre-
quencies, where |H(ν)|2 N |N(ν)|2, the transfer functionΦ(ν) is approx-
imately equal to 1 andnomodification ismade to the data,while at high
frequencies, where |H(ν)|2 ≪ |N(ν)|2, the amplitude of the noise is re-
duced in a measure proportional to the noise to signal amplitude ratio.
The main advantage of the Wiener filter is that if the spectrum is fitted
correctly, the appropriate smoothing threshold emerges from the data
itself.

3.3. HRT analysis work-flows

We focus on two operations commonly performed on HRT data: fea-
ture extraction (the identification of geomorphic features from a dataset
acquired at a certain time), and change detection (the quantification of
differences between datasets acquired at different times). These are
two of the most common and mature analyses attempted with HRT
and are presented as examples for similar work-flows that might be de-
veloped to standardize other HRT analysis practices.

3.3.1. Feature extraction work-flow
HRT offers a valuable view of the near surface environment. However,

the dense 3D point clouds simply sample the entire exposed surface,
while all science and engineering applications require the extraction or
identification of specific features represented by a subset of points within
these data. The feature identification work-flow (Fig. 4) begins with the
point cloud and the question of interest (e.g., identification of channel
Near surface model:
Ensemble of features

Empirical  or 
biogeochemical/physics 

based interpretation

Select, generalize, idealize:
Metrics

Derived products

ultitemporal
ture change

gmented point cloud by identifying continuous fields or discrete objects. The ensemble of
ering application. Changes in thenear surfacemodelmay further indicate process. See text
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elements or canopy characteristics, or feature changes overmultiplemea-
surement epochs). A usual first step is to select or segment points in the
relevant time and/or space window. Points can be selected based on
some attribution from the initial measurement process (e.g., return num-
ber, intensity) or frompost-processing (e.g., classification). This operation
may produce a continuous representation of a surface or field, irregularly
sampled or gridded (e.g., classified point cloud, DTM, DSM, canopy char-
acteristics, relief, feature probability), or vectorize and delineate discrete
objects (e.g., channel elements including heads, geomorphic units, boul-
ders, vegetation, structures). Further iterative operations may be needed
on fields or objects if the extraction method used is not fully automatic.
Other data such as additional remote sensing (e.g., infrared imagery) or
field observations (e.g., from sensors or mapping-derived) can be inte-
grated to refine the identified features. The ensemble of identified fea-
tures forms a near surface model which is the basis for an empirical or
biogeochemical/physics-based interpretation. The near surface model
may be further generalized, extrapolated, or idealized and represented
by visualizations or derived products (e.g., statistical characterization of
the extracted features and relevant metrics). Feature changes over time
can be identified by comparing near surface models (or relevant metrics)
computed over multiple epochs of interest.

A variety of features can be extracted from HRT, including channel
networks and channel heads (Lashermes et al., 2007; Passalacqua et al.,
2010a,b; Sofia et al., 2011; Pelletier, 2013), channel morphology
(Passalacqua et al., 2012; Fisher et al., 2013), fluvial terraces (Stout and
Belmont, 2014), landslides (Booth et al., 2009; Roering et al., 2009;
Tarolli et al., 2012), river bed and floodplain morphology (Marcus and
Fonstad, 2010; Belmont, 2011), geomorphic process domains (Staley et
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Fig. 5. Schematic ofwork-flows for changedetection. Solid gray arrows indicate operations forwh
least one commercial software; blue boxes show examples of products obtainable with each wo
terpolated resulting in potential accuracy and resolution loss.
al., 2014), alluvial fan hazard zones (Staley et al., 2006), and vegetation
characteristics (Lefsky et al., 2002; Brandtberg, 2007; Breidenbach
et al., 2010; Gleason and Im, 2012a,b).
3.3.2. Change detection work-flow
The change detection work-flow starts with a distinction of the type

of geometric change of interest (Fig. 5). As discussed above, the two
datasetsmust be similarly georeferenced and uncertainty in each dataset
must be quantified to develop an error model that would be used to re-
port the most probable real change. In the case of ground movements
displacing topographic features (e.g., landsliding, earthquakes), change
can be captured as a 2D–3D displacement field, while when interested
in geomorphic processes changing topographic features (e.g., bank ero-
sion, patterns of erosion and deposition), change can be quantified in
terms of distance and volume. In all the cases, the analysis starts with
point cloud data acquired at different epochs that capture the change
of interest (e.g., before and after an event). After removal of vegetation
and other erroneous points, a 2D–3D displacement field can be obtained
directly with a 3D piecewise Iterative Closest Point (ICP) operation (Besl
and McKay, 1992; Teza et al., 2007; Nissen et al., 2012), point cloud
cross-correlation (Borsa andMinster, 2012), or with 2D correlation tech-
niques (PIV) applied to a 2.5D DTM (Aryal et al., 2012; Mukoyama,
2012). Distance and volume can be quantified directly with a 3D cloud
to cloud distance calculation (Lague et al., 2013), or with cloud to mesh
comparisons (Rosser et al., 2005; Day et al., 2013a), or vertical subtrac-
tion of gridded data (Lane and Chandler, 2003; Wheaton et al., 2010,
2013; Schurch et al., 2011; Pelletier and Orem, 2014; Staley et al., 2014).
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For change detection completed on regularized (gridded) data, one
additional requirement is to ensure that the two grids have the same
resolution and are concurrent and orthogonal. This means that each
pixel being differenced shares the same center point. Operations
based on meshed or gridded data are simple to run, but can result in a
reduction of accuracy and resolution that should be evaluated with re-
spect to the amplitude and spatial characteristics of the topographic sig-
nal to be detected (see Section 2.3). In general, for high accuracy
application in complex environments, point cloud based methods are
more suitable. However, these methods are still in their infancy and
key building blocks are still missing (e.g., simple volume computation
directly on 3D point clouds).

As HRT is increasingly collected, standards and best practices have im-
proved. Legacy data, or the dataset collected first in time, have likely been
collected under different standards and using different practices. These
data may contain errors and subsequently produce systematic errors, es-
pecially in a differencing analysis. Glennie et al. (2014) describe legacy
data issues and a near-field earthquake displacement example for
which they used original GPS/IMU and laser measurement data to recali-
brate.When those data are not available, others have tried tomatch some
kind of surface or infrastructure in overlapping areas to calculate the
alignment (Bretar et al., 2004; Alka, 2010). Another technique used local
slope and local elevation difference between adjacent points in the over-
lap area to more accurately realign flightlines (Streutker et al., 2011).
Others have corrected the final product (a differential DEM in both
cases) using a fast Fourier transform filter (Goodwell, 2014).

4. NEXT: Learning from the present and directions of further
development

This is an important time for HRT research; technology supporting
HRT acquisition has seen major developments in the last two decades
resulting in the current availability of significant amounts of data. Nu-
merous papers based on the analysis of HRT data have been published
up to date, corresponding to an increased understanding of mass and
energy transfer through landscapes and of Earth-surface processes in
general. From the identification of landscape characteristic scales, to
earthquake assessment, to landslide dynamics, the availability of HRT
has advanced scientific understanding of Earth-surface processes in
terms of both static and dynamic processes. Notably, these scientific ad-
vancements have been accompanied by the development and release of
broadly applicable open source tools. Sharing open source software re-
quires the commitment of the scientist to overcome several challenges
(Easterbrook, 2014) to benefit the community at large.

Too often, however, data analysis tools are not integrated in the
same platforms used for visualization, favoring a net separation
between a large number of HRT viewers, and a much smaller number
of HRT analysts that actively manipulate and query the data in more so-
phisticated and quantitative ways and develop new open source analy-
sis tools. Development of a framework that supports visualizationwhile
facilitating higher level filtering, segmentation, and analysis is needed.
Given the immense amount of multi-scale information contained in
HRT and the challenges involved in manipulating such large datasets,
the HRT community has much to gain by implementing practices and
standardized work-flows that have been developed by the image pro-
cessing and Big Data analytics communities, among others.

HRT data represent the common ground among a variety of disci-
plines; the atmospheric, surface, biological, anthropogenic, and subsur-
face processes communities all rely on these data (Paola et al., 2006;
Reinhardt et al., 2010).We can thus think of HRT as an interdisciplinary
means for achieving a deeper understanding of Earth-surface processes
and as a platform to facilitate collaboration across disciplines (Bond
et al., 2007). Training of students, researchers, and practitioners has to
continue and further develop along this direction to make sure that
the computational, technological, scientific, and engineering aspects of
HRT analysis are taught across disciplines. Research centers such as
theNSF-fundedOpenTopography, National Center for Earth-surface Dy-
namics (NCED), and the network of Water, Sustainability and Climate
(WSC) and Critical Zone Observatories (CZO) have facilitated an inter-
disciplinary approach to research and education, including the collec-
tion and distribution of HRT data, the development of open source
software, and the organization of training workshops and summer
schools for junior scientists.

As we witness the development of newer technologies such as mo-
bile lidar, photon counting, hyperspectral lidar, and bathymetric lidar
(Glennie et al., 2013b), we note that challenges posed by current tech-
nologies still have to be overcome. For example, better acquisition of
multi-temporal data is needed for accurate differential topography
analysis. The El Mayor‐Cucapah 2010 earthquake is an important
event for which pre- and post-event lidar data are available (Oskin
et al., 2012) and pre-event data required re-processing to improve the
estimation of coseismic surface displacement (Glennie et al., 2014).
Nissen et al. (2014) applied topographic differencing on Japanese HRT
to characterize two M6–7 earthquakes in Japan to produce new under-
standing of near-field coseismic deformation. However, the coverage
was limited to just a few km2.

Community standards are still not identified creating considerable
problems for data and tools sharing. While existing groups and re-
sources (e.g., NSF SI2, NSF ISEES, OpenTopography, GitHUB, Figshare,
HydroShare, CSDMS) have worked significantly in this direction, the ef-
fort has to be embraced by the community at large and a broader swath
of researchersmust be trained to use and further develop such tools.We
need to achieve a better understanding of the multi-scale dynamics at
finer spatial and temporal scales with broader extent. At the global
scale, we still rely on coarser resolution data such as SRTM; increased
access to HRT data globally should be promoted.

As the availability of full waveform hyperspectral, bathymetric, pho-
ton counting data becomes common (Glennie et al., 2013b), tools are
needed to take advantage of these datasets and integrate HRT data col-
lected on multiple platforms. The point cloud community has a strong
basis from which to build (e.g., CloudCompare http://www.danielgm.
net/cc/ and http://pointclouds.org/), but more documentation and fur-
ther development are needed.

HRT can also be fundamental for tool and model testing. The devel-
opment of sets of examples and applications would be particularly use-
ful to show the performance of existing and new tools on the same
landscape. As such, we see the need to identify a set of benchmarking
examples to be used for testing models and tools. HRT represents the
perfect source for such benchmarking examples, but specific landscapes
need to be identified for eachmodeling task (e.g., sediment transport at
hillslope scale versus landslide modeling) and collected on the same
platform. The Oregon Coast Range, the Eel River Basin, and Tennessee
Valley, for example, are excellent validation cases for hillslope transport
modeling (e.g., Roering et al., 1999; Foufoula-Georgiou et al., 2010) and
for channel initiation detection (e.g., Montgomery and Dietrich, 1989;
Passalacqua et al., 2010a).

We need to work together as a community towards implementing
software and making computational resources available to analyze full
resolution datasets for entire watersheds. Hubs of HRT related informa-
tion exist (OpenTopography, NCALM, UNAVCO, CSDMS, CUAHSI, CZO,
NCED, NCEAS, NEON), but better coordination and communication are
needed to integrate expertise and content (e.g., centralized tutorials
and training). The HRT community also needs to be more proactive in
developing and borrowing techniques that maintain the integrity of
the data and function on multiple scales, as discussed in Section 3.1.2.

Finally, HRT should be integrated into education at all levels: from
K–12, to undergraduate, graduate, and professionals. We note that
NCALM facilitates HRT-based graduate research through their Seed Pro-
gram. More initiatives in this direction are needed at every level. The
availability of place-based virtual exploration resources (e.g., http://
www.earthscope.org/information/publications/newsletters/2012/
summer/place-based-education) would be particularly useful. The
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availability of HRT data local to where students are would substantially
enhance the integration of HRT and field-based educational resources.

5. Conclusions: guiding principles for HRT analysis

As we look forward to the next decade of HRT technology develop-
ment and HRT-based scientific discoveries, we offer the following guid-
ing principles:

1. Promote an environment conducive to data intensive exploration.
Existing examples are Hubble Space Telescope, EarthScope, and
NEON. This will favor unanticipated and broader uses of the data;

2. Distribute open andwell documented data. This is very important for
data reuse, particularly relevant to enable unanticipated applica-
tions;

3. Develop and distribute open source software coupled with bench-
mark test cases to facilitate reproducible science by the community
at large;

4. Promote better integration of visualization and higher level process-
ing and analysis tools;

5. Support community coordination and optimal overlap among facili-
ties, groups, and funding agencies;

6. Compile data to be most useful (scale, sampling) for conceptual and
physical model and analytical tool testing and enable widespread
data integration (e.g., gage data, material properties, historical, sub-
surface);

7. Incorporate HRT data and related technical skills (programming,
image processing, etc.) in education at all levels (K–12, public, higher
education).
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