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Abstract:  

This study compared evapotranspiration (ET) data from the diagnostic, satellite-driven 

OpenET modeling platform with ET from the prognostic U.S. National Water Model (NWM), in 

the Bear River Basin, U.S. ET estimates from each national-scale modeling system were 

compared, and evaluated against water balance ET, derived from gridded precipitation and 

streamflow measurements. This analysis provides an example of how prognostic-diagnostic 

modeling systems can be used synergistically, at basin scale, to evaluate the spatial and temporal 

biases and errors in both systems. Monthly ET simulations from the NWM version 2.1 

retrospective analysis over the Bear River Basin were compared with OpenET data from 2017 to 

2020 at monthly and seasonal timescales, aggregated to match the 1-km NWM grid. OpenET 

provides estimates of ET calculated using six different diagnostic remote sensing models, as well 

as an ensemble average estimate. Results suggest agreement between the NWM and OpenET 

assessments at the 1-km scale, but with notable discrepancies for some land cover types, such as 

agriculture and riparian areas. The NWM showed less spatial variability and tended to predict 

lower ET fluxes compared to OpenET, particularly from June to August. In comparison with water 

balance estimates of ET in four natural sub-watersheds within the Bear River Basin, OpenET 

model estimates were generally biased high in two watersheds dominated by evergreen forest. 

Results from this study provide useful information for both NWM and OpenET developers and 

researchers, demonstrating the power of comparing prognostic and diagnostic modeling systems. 

This study serves as a prototype for broader assessment of both NWM and OpenET via 

intercomparison in other regions, as well as an approach for quantifying uncertainty in both 

prognostic and diagnostic models where observational data are limited. 

Highlights: 
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● Compared with OpenET, the U.S. National Water Model tends to underpredict 

evapotranspiration fluxes in all seasons. 

● OpenET overpredicts evapotranspiration compared to water balance estimates from 

streamflow and precipitation in two forested sub-watersheds. 

● Discrepancies between NWM evapotranspiration and OpenET were observed in irrigated 

lands, riparian areas, and one mis-calibrated watershed. 

Keywords: Evapotranspiration, U.S. National Water Model, WRF-Hydro, water balance, Noah-

MP, OpenET, remote sensing 

1. Introduction 

Various hydrologic forecasting services are currently employed across the U.S., with ongoing 

efforts to enhance their accuracy. The U.S. National Water Model (NWM) is one of these services, 

which implements the community Weather Research and Forecasting Model Hydrological 

modeling system (WRF-Hydro) used by the National Weather Service (NWS) of the National 

Oceanic and Atmospheric Administration (NOAA) for operational hydrologic forecasting 

(Gochis, et al 2020; https://water.noaa.gov/about/nwm). The system provides hourly streamflow 

forecasts for approximately 2.7 million river reaches across the U.S. and generates spatially 

continuous estimates of key hydrologic variables, such as evapotranspiration (ET), soil moisture, 

infiltration variables, snowpack characteristics, and shallow groundwater depth. This is part of 

increasing effort to operationally model hydrology at national and continental scales, providing 

timely, place-specific warnings aimed at saving lives and property. Operational model outputs are 

freely accessible on data servers (https://registry.opendata.aws/nwm-archive/). Multiple studies 

have evaluated the NWM in a wide range of research and applications. These include streamflow 

(Seo et al. 2021; Hansen et al. 2019), water management operations (Viterbo et al. 2020) and 

https://registry.opendata.aws/nwm-archive/
https://paperpile.com/c/bSOqML/CAUH+wuKH
https://paperpile.com/c/bSOqML/CAUH+wuKH
https://paperpile.com/c/bSOqML/tkdN
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snowpack simulation (Garousi‐Nejad and Tarboton 2022). In a recent study conducted by 

Abdelkader et al. (2023) to assess the NWM’s streamflow retrospective version 2.1 dataset for the 

entire CONUS, favorable agreement was found between the NWM and observed streamflow in 

catchments with natural flow. However, in examining snow water equivalent (SWE), Garousi‐

Nejad and Tarboton (2022) found that NWM version 2.0 retrospective (NWM-R2.0) analysis data 

tend to underestimate SWE as measured by the SNOwpack TELemetry Network (SNOTEL) early 

in the season. Later in the season, this underestimation bias further increases due to errors in input 

data, particularly precipitation and air temperature. While the NWM has been investigated in 

different applications, limited studies have been conducted to evaluate its performance in 

estimating ET. 

Comparisons with spatially distributed ET data from remote sensing methods can be an 

effective means to evaluate NWM produced ET estimates. Many studies have been conducted to 

assess the estimates of ET from interpretive or diagnostic remote sensing models, such as those 

that comprise OpenET, as well as predictive, or prognostic models, such as the NWM. Diagnostic 

models typically combine measurements and energy balance principles to interpret what a quantity 

(in this case ET) is in a given situation, while prognostic models use both energy and water balance 

equations, and input or forcing variables to predict the evolution of the quantities involved (here 

temperature, soil moisture and evapotranspiration). For example, Hain et al. (2015) found that ET 

from the Noah Land Surface Model (LSM) (Chen and Dudhia 2001; Chen et al. 1996; Ek et al. 

2003) had positive and negative biases across the contiguous United States (CONUS) when 

compared with the Atmosphere Land Exchange Inverse (ALEXI) remote sensing model (Anderson 

et al. 1997; Mecikalski et al. 1999) due to neglect of soil water sources and consideration of the 

impact of soil water sinks. Another study by Yilmaz et al. (2014) compared three different 

https://paperpile.com/c/qgVdAs/nleK
https://paperpile.com/c/8OB7Ig/WTreL
https://paperpile.com/c/qgVdAs/nleK
https://paperpile.com/c/qgVdAs/nleK
https://paperpile.com/c/bSOqML/iqiw
https://paperpile.com/c/bSOqML/iqiw
https://paperpile.com/c/bSOqML/iqiw
https://paperpile.com/c/8OB7Ig/JXn0+a6eL+pEyt
https://paperpile.com/c/8OB7Ig/JXn0+a6eL+pEyt
https://paperpile.com/c/8OB7Ig/sKOj+SRPi
https://paperpile.com/c/8OB7Ig/sKOj+SRPi
https://paperpile.com/c/bSOqML/kLVX
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approaches, including ALEXI, Noah LSM, and the Moderate Resolution Imaging 

Spectroradiometer (MODIS) (Mu et al. 2007) to compute ET fluxes. Their results showed that 

ALEXI performed better in areas where ET was not directly linked to local rainfall, such as 

irrigated lands or regions affected by shallow groundwater. Furthermore, Lin et al. (2018) 

conducted an evaluation of WRF-Hydro simulated ET compared to MODIS and FLUXNET ET 

data (Baldocchi et al. 2001; Pastorello et al. 2017) and found that ET predictions were more 

accurate in wet years compared to dry years due to bias in the baseflow. Abolafia-Rosenzweig et 

al. (2023) found that WRF (Skamarock et al. 2008) coupled with Noah LSM with 

multiparameterization options (Noah-MP) (Niu et al. 2011) simulations generally overestimated 

the ET compared with MODIS over the western U.S. from 2001-2020. The comparison between 

prognostic and diagnostic model estimates of ET has proven beneficial, identifying missing 

physical processes and persistent biases in the prognostic system. However, many of these studies 

have been limited in scope by using individual diagnostic models or data sources for comparison. 

In this research we compare the NWM ET (which is built on the Noah-MP LSM) with OpenET, 

a satellite-driven diagnostic ET modeling and data access framework that provides high resolution 

ET data from multiple approaches, primarily using Landsat remotely sensed inputs. OpenET 

computes ET using six physically-based ET models at 30-m spatial resolution and at daily, 

monthly and annual time steps (Melton et al. 2022). OpenET also provides an ensemble value that 

averages non-outlier estimates as described below. There are multiple benefits of using diagnostic 

OpenET data in this analysis of NWM. First, the ensemble ET value has been demonstrated to 

have generally higher accuracy than any individual model in the ensemble, although this is not 

always the case over all locations or land cover types (Volk et al., 2024a; Melton et al. 2022).  The 

inter-model agreement across the satellite-driven model ensemble provides additional insights into 

https://paperpile.com/c/8OB7Ig/JeHp
https://paperpile.com/c/8OB7Ig/JeHp
https://paperpile.com/c/8OB7Ig/JeHp
https://paperpile.com/c/bSOqML/Ps3h
https://paperpile.com/c/8OB7Ig/K9RT+0nv8
https://paperpile.com/c/8OB7Ig/dvv8
https://paperpile.com/c/8OB7Ig/0s9S
https://paperpile.com/c/8OB7Ig/08nd
https://paperpile.com/c/8OB7Ig/Hy28b
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the reliability of the diagnostic estimate. Finally, the relatively high resolution of the OpenET data 

enables us to investigate spatial variability in moisture fluxes at the sub-NWM-pixel scale, 

enabling improved interpretation with respect to physical features on the ground. While OpenET 

benefits from an ensemble approach, the NWM does not currently include ensembles. This may 

change in the future, as the development of the Next Generation Water Resources Modeling 

Framework (NextGEN) is expected to facilitate the incorporation of multiple models (https://noaa-

owp.github.io/ngen/). However, for this study, we are limited to publicly available retrospective 

results from the NWM team.  

The goal of this research was to gain a deeper understanding of how the NWM model ET 

behaves across different land surfaces, and to identify opportunities for improvement. In turn, the 

comparison provides useful evaluation of the OpenET models (many based on the energy balance 

approach) provided by the water balance constraints inherent in NWM, and by water balance 

estimates constrained by measured streamflow. While focus here is on the Bear River Basin, this 

study serves as an example of prognostic-diagnostic comparison can be used to model performance 

in other significant regions and for addressing uncertainties in alternative modeling systems, 

especially in situations where observational data are scarce. 

Section 2 of this paper provides a description of the study domain. Following that, Section 3 

presents the models and data utilized. The results and discussion in Section 4 and 5, respectively 

focus on the temporal and spatial comparison between NWM ET and various OpenET approaches. 

Additionally, we assess geographic variables associated with model differences and evaluate 

differences using the water balance approach. The last section presents conclusions derived from 

this study. 

2. Study Domain 

https://noaa-owp.github.io/ngen/
https://noaa-owp.github.io/ngen/
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The model comparison was conducted over the Bear River Basin (BRB) between 2017 and 

2020. BRB is located on the border of three U.S. states, Utah, Idaho and Wyoming, with an area 

of 19,425 km2 (Figure 1). The basin is characterized by a complex network of streams and rivers 

that flow through a variety of landscapes, including mountains, plateaus, and valleys. The Bear 

River is the largest river in the watershed, originating in Utah then flowing 500 miles through parts 

of Idaho, Wyoming, and back into Utah where it enters the Great Salt Lake (GSL). BRB was 

chosen for this study because of interest in better understanding the water balance and water use 

in the GSL basin as part of efforts to inform management to reduce declines in the level of the 

GSL. It is a watershed that is representative of other watersheds that drain to the GSL in terms of 

its spatial variability in elevation and landscape composition, with both agricultural and natural 

land covers, but is more manageable in scale, in comparison to the entire GSL (Wurtsbaugh & 

Sima, 2022; Utah Division of Water Resources, 2004). Beyond the GSL basin, the BRB is also 

representative of many other Western U.S. mountain watersheds, with snowmelt-driven 

streamflow being used for irrigated agriculture. Shrubland is the most prominent land cover type, 

covering approximately 50% of the total area, followed by evergreen needleleaf (~14%), irrigated 

cropland and pasture (~11%), dryland cropland and pasture (~8%) and deciduous broadleaf forest 

(~8%). Other land cover types account for less than 10% of the total area of the watershed. 

Evergreen needleleaf dominates the higher elevation, while grasses and irrigated crops/pasture 

dominate the lower elevations. Urban areas, mainly located in valleys, occupy less than 1% of the 

watershed.  

The climate of the basin is dry and cold with elevation varying between 1280 m and 3870 

m. Precipitation falls mainly as snow during the winter months. The average annual precipitation 

varies spatially, ranging from as low as 250 mm in the lower valleys to approximately 1650 mm 

https://paperpile.com/c/8OB7Ig/BpJR
https://paperpile.com/c/8OB7Ig/BpJR
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in the high elevations (Utah Division of Water Resources, 2004). On average, the basin receives 

about 940 mm of precipitation annually. The average amount of water the basin loses to the 

atmosphere due to ET is approximately 850 mm annually (Utah Division of Water Resources, 

2004). During the study period, the basin experienced varying levels of drought severity according 

to a time-series of drought index values obtained from the U.S. Drought Monitor (USDM) (Figure 

2). According to the USDM, the BRB experienced abnormally dry (D0), moderate drought (D1), 

and severe drought (D2) conditions during the study period (2017 – 2020).  

As shown in Figure 1c, we identified four sub-watersheds within BRB dominated by 

natural vegetation to evaluate the ET obtained from NWM and OpenET with the water balance ET 

(ETwb) estimated from precipitation and streamflow at the water year time scale where storage 

changes are small (ETwb=P-Q). These natural sub-watersheds have been selected based on several 

attributes, including: (1) land use/land cover primarily consist of forests, grasslands, shrubs, or 

other forms of natural vegetation; (2) the basin is not impacted by significant irrigation water 

withdrawals, and (3) the availability of USGS streamflow data that covers the study period (2017-

2020). 
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(a) (b) (c) 

 

Figure 1. (a) Study area location within the U.S. at the junction of Utah, Wyoming, and Idaho. (b) Land cover from the NWM domain dataset 

and (c) Elevation.  Also noted on b and c are sub-watersheds within the basin (black outline) and USGS streamflow gages (blue triangles) used 

in the water balance assessment. 
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Figure 2. Time-series of U.S. Drought Monitor (USDM) drought class areal coverage over the 

Bear River Basin from 2017 to 2020. 

 

Table 1. Natural sub-watersheds within the BRB used to calculate the water balance ET for 

comparison with NWM ET and OpenET estimates. 

Sub-watershed 

Name 

USGS Gage 

ID. 

Area (km2) Elevation Range 

(m) 

Mean Annual 

Precipitation* 

(mm/year) 

Smith Fork Near 

Border, WY 

10032000 424 2046 - 3268 785 

Logan River Above 

State Dam, Near 

Logan, UT 

10109000 555 1425 - 3040 919 

Bear River Near UT-

WY State Line 

10011500 455 2393 - 3870 833 

Big Creek Near 

Randolph, UT 

10023000 131 1961 - 2709 617 

*GridMET 30-year mean (1990-2020). 
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3. Model Descriptions and Experimental Design 

This study relies on data obtained from two different platforms that calculate ET; namely, 

NWM V2.1 and OpenET. The methods of ET calculation and the primary input datasets used in 

these platforms are different, yet complementary. The NWM V2.1 uses the prognostic Noah-MP 

LSM forced by meteorological data including precipitation rates. All processes represented by the 

model are explicitly modeled and contained within the equation set, and need to be identified 

accurately, both spatially and temporally across the landscape. This can be a challenge in some 

cases, requiring a priori knowledge of management practices (e.g., irrigation, tile drainage) and 

accurate representation of sub-surface water storage.   

The OpenET platform provides ET obtained from six fully automated satellite-based 

models, where evaporative fluxes are calculated using remote sensing inputs of land-surface 

temperature and vegetation cover, as well as gridded meteorological data and land surface datasets 

(Melton et al., 2022). OpenET calculates a single ensemble ET value for each pixel and timestep 

as the mean of all models after flagging and removing up to two outliers from the ensemble using 

the median absolute deviation approach (Volk et al., 2024a; Melton et al., 2022). Individual 

OpenET modeling approaches are described in Section 3.2. An advantage of this approach is that 

the remote sensing inputs may diagnostically capture patterns of water management and ancillary 

moisture sources that are not known a priori, either through the impact to the land-surface 

temperature or to vegetation indices via locally enhanced biomass production. OpenET is also at 

a higher spatial resolution (30 m) than the NWM (1 km). 

 

https://paperpile.com/c/8OB7Ig/08nd
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3.1 NWM Background 

In August 2016, the NWM was made operational (https://water.noaa.gov/about/nwm) by 

providing real-time spatially distributed hydrologic forecasts over the entire CONUS. The NWM 

uses the community WRF-Hydro model framework (Viterbo et al. 2020) for simulating different 

complex hydro-climatic processes such as ET, snowmelt, infiltration, runoff, and others that vary 

significantly due to changes in elevation, soils, and vegetation types as well as meteorological 

forcing conditions. The WRF-Hydro model includes the Noah-MP LSM (Yang et al. 2011; He et 

al., 2023) at 1-km spatial resolution as well as an overland routing scheme at 250 m. The use of 

Noah-MP in WRF-Hydro allows users to select among multiple physics options. Further details 

about Noah-MP can be found in the technical description (He et al., 2023). In this study we used 

the retrospective simulation from NWM V2.1 obtained from the Amazon Web Services (AWS) 

portal (https://noaa-nwm-retrospective-2-1-pds.s3.amazonaws.com/index.html). More details 

about the NWM V2.1 general configurations and its retrospective run are given in Appendix A. 

The NWM has tunable parameters that were used for calibration and can be categorized into two 

types, as listed in Appendix A: (1) constants, which are held fixed across the calibration region (as 

indicated by ‘type constant’ in Appendix A), or (2) multiplier adjusted, which are adjusted from 

spatially variable a-priori values using a scalar multiplier that serves as a calibration parameter. A-

priori values were obtained from soil and other physical properties as described by Lahmers et al., 

(2021) and Gochis et al. (2020). The use of multipliers and constants avoids the challenges of high 

dimensionality in the calibration of distributed models, while still taking advantage of spatially 

distributed information from datasets such as STATSGO 

(https://sdmdataaccess.sc.egov.usda.gov). Parameters over watersheds upstream of stream gages 

used in calibration are adjusted separately to match the streamflow at that gage, a process that can 

https://water/
https://paperpile.com/c/qgVdAs/7GwO
https://paperpile.com/c/qgVdAs/y18m
https://noaa-nwm-retrospective-2-1-pds.s3.amazonaws.com/index.html
https://sdmdataaccess.sc.egov.usda.gov/?referrer=Citation.htm-SSURGOLink
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result in watershed scale spatial differences in parameter patterns that may manifest in watershed 

scale process differences, an effect we observed in some of our results. Here we did not attempt to 

change any of the NWM parameters or calibration procedures; however, we mention this because 

the parameters calibrated by the NWM team that underpin the retrospective results used in this 

study do impact our comparisons. 

 

3.2 OpenET 

The OpenET project is a broad collaborative effort to provide spatially continuous ET data 

for the western U.S. (Melton et al., 2022). The project provides daily, monthly and annual ET at 

30-m spatial resolution. The ET models included in OpenET are summarized in Table 2. The 

platform primarily utilizes Landsat satellite data, along with grid-based weather data, including 

solar radiation, air temperature, humidity, and wind speed. Some models in the OpenET 

framework also integrate data from GOES, Suomi NPP, and Terra and Aqua satellites. 

Four of the models (ALEXI/DisALEXI, eeMETRIC, SSEBop, and geeSEBAL) are based 

on principles of surface energy balance and use the Landsat surface temperature product as a key 

remote sensing input, along with vegetation indices and surface albedo. PT-JPL is based on a 

Priestley-Taylor formulation for ET and is most sensitive to optical vegetation index remote 

sensing inputs, but also integrates land surface temperature (LST) in constraining net radiation 

(Fisher et al., 2008). The SIMS model uses a reflectance-based approach, principally driven by 

Landsat NDVI along with a crop coefficient computed from vegetation density and condition, 

reference ET data, and soil evaporation coefficients computed from a gridded soil water balance 

model (Pereira et al., 2020; Melton et al., 2012).  Since SIMS applies primarily to agricultural 
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areas that are a small part of the basin, it was excluded from our model-specific comparisons, 

although it does factor into the ensemble ET value for agricultural areas.   

 

Table 2. OpenET models used and their inputs 

Model acronym Full name Satellite and ancillary 

inputs 

Meteorological inputs 

ALEXI/DisALEXI 

(Anderson et al., 

2018; Anderson et al., 

1997) 

Atmosphere-Land 

Exchange Inverse/ 

ALEXI 

disaggregation (ver. 

0.0.27) 

Primary: Thermal 

data from GOES 

(ALEXI) and Landsat 

(DisALEXI); surface 

reflectance from 

MODIS and Landsat 

TM/ETM+/OLI 

Secondary: NLCD 

land cover data 

Insolation, near-

surface wind, air 

temperature, vapor 

pressure and 

atmospheric pressure 

from the Climate 

Forecast System 

Reanalysis (CFSR); 

ALEXI additionally 

uses CFSR 

atmospheric 

temperature profile 

data 

eeMETRIC 

(Allen et al., 2011; 

Allen et al., 2005) 

Mapping 

Evapotranspiration at 

High Resolution with 

Primary: Surface 

reflectance and 

thermal radiation 

Insolation, near-

surface wind speed, 

air temperature, and 

https://paperpile.com/c/8OB7Ig/sKOj+Yf1t
https://paperpile.com/c/8OB7Ig/sKOj+Yf1t
https://paperpile.com/c/8OB7Ig/sKOj+Yf1t
https://paperpile.com/c/8OB7Ig/QpdW+4UsQ
https://paperpile.com/c/8OB7Ig/QpdW+4UsQ
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Internalized 

Calibration (ver. 

0.20.15) 

from Landsat 

TM/ETM+/OLI 

Secondary: NLCD 

land cover data (for 

USA) and GlobCover 

for the globe, SRTM 

DEM, SSURGO 

(USA) and FAO 

Harmonized World 

Soil Database v 1.2 

(globe) 

vapor pressure from 

CIMIS and North 

American Land Data 

Assimilation System 

(NLDAS) for the 

USA, and from 

Climate Forecast 

System Ver. 2 

(CFSV2) for the 

globe; Precipitation 

from gridMET 

geeSEBAL 

(Bastiaanssen et al., 

1998; Laipelt et al., 

2021) 

Surface Energy 

Balance Algorithm 

for Land using 

Google Earth Engine 

(ver. 0.2.1) 

Primary: Surface 

reflectance and 

thermal radiation 

from Landsat 

TM/ETM+/OLI 

Secondary: Elevation 

from SRTM; 

Cropland data layers 

from USDA NASS 

Daily shortwave 

incident radiation 

from GRIDMET; 

Hourly near-surface 

wind speed, air 

temperature, specific 

humidity and 

atmospheric pressure 

from NLDAS 

https://paperpile.com/c/8OB7Ig/tTOW+cuZQ
https://paperpile.com/c/8OB7Ig/tTOW+cuZQ
https://paperpile.com/c/8OB7Ig/tTOW+cuZQ
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PT-JPL 

(Fisher et al., 2008) 

Priestley-Taylor Jet 

Propulsion 

Laboratory (ver. 

0.2.1) 

Primary: Surface 

reflectance and 

thermal radiation 

from Landsat 

TM/ETM+/OLI 

Secondary: MODIS 

maximum fraction of 

absorbed 

photosynthetically 

active radiation 

(fAPAR) 

Insolation, near-

surface wind speed, 

air temperature, and 

vapor pressure from 

CIMIS and North 

American Land Data 

Assimilation System 

(NLDAS) 

SIMS 

(Melton et al., 2012; 

Pereira et al., 2020) 

Satellite Irrigation 

Management Support 

(ver. 0.0.20) 

Primary: Surface 

reflectance from 

Landsat 

TM/ETM+/OLI and 

Sentinel-2A/2B 

Secondary: USDA 

Cropland Data Layer 

and state crop 

mapping data 

products; Surface 

ETo
* data from 

Spatial CIMIS (in 

California); gridMET 

Eto and precipitation 

data for other states 

https://paperpile.com/c/8OB7Ig/qEgn
https://paperpile.com/c/8OB7Ig/o9Dv+NzCf
https://paperpile.com/c/8OB7Ig/o9Dv+NzCf
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reflectance from 

Terra/Aqua MODIS 

and Suomi NPP 

VIIRS can be used 

for gap-filling 

 

SSEBop 

(Senay, 2018; Senay 

et al., 2013) 

Operational 

Simplified Surface 

Energy Balance (ver 

0.1.5) 

Primary: Thermal 

radiation from 

Landsat 

Secondary: NDVI 

from Landsat and 

SRTM DEM 

ETo data from Spatial 

CIMIS (in California) 

and gridMET; 

Daymet Daily 

Maximum Air 

Temperature (long-

term average) 

* ETo is the grass reference evapotranspiration used as a primary scaling flux in multiple OpenET 

models determined from radiation and other weather variables (Melton et al., 2022). 

 

3.3 Model comparison strategy 

Our analysis is based on monthly data from 2017 to 2020, which was the time interval of 

ET information available from OpenET at the time of data download (https://openetdata.org/, 

accessed on October 11, 2022). To facilitate comparison, we aggregated the NWM V2.1 3-hour 

simulated data to monthly intervals. Additionally, for seasonal ET comparisons, both NWM and 

OpenET data were aggregated to 3-month intervals: March-May (MAM), June-August (JJA), 

https://paperpile.com/c/8OB7Ig/cTxg+T3Tm
https://paperpile.com/c/8OB7Ig/cTxg+T3Tm
https://openetdata.org/
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September-November (SON), and December-February (DJF). OpenET datasets (individual 

models and ensemble average) were spatially aggregated (through simple averaging) from 30-m 

resolution to match the 1-km model grid of NWM V2.1. This difference in spatial scale is a 

potential source of uncertainty and is addressed in the interpretation of the results.  

We also evaluated the NWM ET and OpenET approaches against water balance estimates, 

where, at an annual scale, storage changes may be taken to be small, and the difference between 

precipitation (P) and streamflow (Q) approximates evapotranspiration (ET), (ETwb = P - Q).  In 

general, the water balance equation is: 

∆𝑆𝑆 = 𝑃𝑃 − 𝑄𝑄 − 𝐸𝐸𝐸𝐸 (1) 

where ∆𝑆𝑆 is change in storage. This can be expressed as: 

𝐸𝐸𝐸𝐸 + ∆𝑆𝑆 = 𝑃𝑃 − 𝑄𝑄 (2) 

which provides the basis for comparing cumulative P-Q with cumulative ET with an interpretation 

of storage changes. In the snowmelt-driven western U.S., the water year (October to September) 

ends at a time when snow has melted, runoff has occurred, and much of the seasonal soil moisture 

depleted, resulting in watershed water storage being close to its annual low point. While there is 

interannual storage, to a reasonable level of approximation, the water balance ET serves as a check 

on annual ET. This becomes an even better check over multiple years when the effect of storage 

is even less. However, water balance ET is still subject to uncertainties in precipitation and 

streamflow.  

This analysis was conducted over four gaged sub-watersheds within the BRB (see Table 1 

and Figure 1), using streamflow data obtained from the USGS stream gage network. We used 

precipitation data from two sources: the Analysis of Record for Calibration version 1.1 (AORC 

1.1) (https://hydrology.nws.noaa.gov/pub/AORC/V1.1/ ), which serves as the forcing product for 
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NWM V2.1 simulations, and gridMET (Abatzoglou, 2013; 

https://www.climatologylab.org/gridmet.html), employed in some OpenET models. To assess the 

uncertainty in these two gridded precipitation datasets, we compared them with precipitation data 

from PRISM, DayMET, and NCLIM, obtained from the Climate Engine website 

(https://www.climateengine.org/). While the NWM calibrates hydrologic parameters to match 

streamflow observations and maintain water balance closure (as discussed in Section 3.1), it is 

important to note that the AORC precipitation input forcing is not adjusted by calibration. 

 

3.4 Quantitative statistics 

We used well-known quantitative statistics to compare the NWM ET and different OpenET 

models. Computed statistics included the SPAtial EFficiency metric (SPAEF), spatial mean, 

standard deviation (SDEV), and the standard error (SE).  

SPAEF (Koch et al. 2018; Soltani et al. 2021) was used to evaluate the similarity of spatial 

patterns of ET from the NWM and the OpenET models. SPAEF ranges from −∞ to 1, with 1 

representing a perfect pattern match.  

𝑆𝑆𝑃𝑃𝑆𝑆𝐸𝐸𝑆𝑆 = 1 −�(𝛼𝛼 − 1)2 + (𝛽𝛽 − 1)2 + (𝛾𝛾 − 1)2                                                    (3) 

where 𝛼𝛼 is the Pearson correlation coefficient between NWM ET and OpenET evaluated spatially 

across 1 km2 grid cells; 𝛽𝛽 is the fraction of coefficient of variations between NWM ET and 

OpenET, which quantifies the spatial variability; 𝛾𝛾 quantifies the fraction of the histogram 

intersection based on the z-scores of NWM ET and OpenET, with histogram bins determined based 

on the square root of the number of data values (i.e., number of grid cells in the domain). SPAEF 

was evaluated between NWM ET and each OpenET model for each season across the four 

https://www.climatologylab.org/gridmet.html
https://www.climateengine.org/
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comparison years to assess changes in spatial similarity over time. Additionally, SPAEF was 

evaluated for the four-year averages of each season of NWM ET and the OpenET ensemble. 

Spatial mean, �̅�𝑥, and standard deviation, SDEV, were calculated spatially across the entire 

watershed for each model at 1 km grid cell scale.  

�̅�𝑥 = ∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑛𝑛

 (4) 

𝑆𝑆𝑆𝑆𝐸𝐸𝑆𝑆 = �∑ (𝑥𝑥𝑖𝑖−�̅�𝑥)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (5) 

where 𝑥𝑥𝑖𝑖 denotes each pixel ET value, and n denotes the number of pixels for the entire ET map. 

Standard error, SE, is a map computed based on the differences between the members of 

the OpenET ensemble. SE is derived from the standard deviation across the models, divided by 

the square root of the number of models (here 5) at each grid cell. This SE map serves as an 

indicator of OpenET inter-model uncertainty.  

𝑆𝑆𝐸𝐸 = 𝜎𝜎
√𝑁𝑁

   (6) 

where 𝜎𝜎 is the standard deviation across different OpenET models, N is the number of models 

(here 5) 

4. Results  

4.1 Temporal comparisons 

Figure 3a shows the time-series of seasonal (3-month) ET from the NWM, the OpenET 

ensemble (calculated as the mean of the ensemble after filtering and removing outliers using the 

median absolute deviation approach), and individual OpenET models, each averaged over the 

BRB. Figure 3b illustrates the spatial variability in ET, as quantified by the standard deviation 

(SDEV) across the entire watershed for each model for each 3-month season evaluated across 1 

km2 grid cells with aggregated 3-month ET. Seasonal patterns in ET from both modeling systems 
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(NWM and OpenET) reflect seasonal insolation rates, vegetation leaf growth phenological stages, 

evaporative demand, and rainfall rates. ET values in the BRB peak during the warm season (JJA) 

and are at their lowest during the winter season (DJF) when solar radiation load and surface 

temperature are low. Comparing NWM ET with the suite of OpenET models reveals that NWM 

consistently estimated lower ET (by about 45 mm/season on average) throughout the study period, 

with more significant ET differences observed during the summer season (JJA). In Figure 3b, the 

variability in ET across the basin from NWM is often similar to the OpenET ensemble, except for 

2018, where it was lower by 20-30 mm/season (Figure 3b). Since 2018 was a drought year (Figure 

2), one possible explanation for this reduced variability is that NWM may not adequately account 

for ancillary sources of moisture (e.g., irrigation, shallow groundwater) that could sustain higher 

transpiration rates during drought years in some parts of the watershed. 

The seasonal variability in spatial similarity between OpenET and NWM ET, using the 

SPAEF metric, reveals distinct spatial pattern differences among the various OpenET approaches 

(Figure 3c). The SPAEF values generally peak during JJA, or occasionally SON, indicating the 

highest spatial pattern alignment in summer, with the ensemble and SSEBop approaches generally 

higher.  Conversely, the lowest SPAEF values are observed in DJF, suggesting a decrease in spatial 

pattern match during winter. Spatial pattern differences are compared in more detail using maps 

in Section 4.2 below. 

To explore possible drivers of the ET differences between NWM and OpenET evident at 

the basin scale (Figure 3a), we examined seasonal biases in primary forcing variables from AORC 

(NWM) and gridMET (OpenET) data sources (Figure 4). Evaporative fluxes in NWM are strongly 

forced by precipitation, because it is a prognostic water balance model and ET is limited by model 

water availability, while measured precipitation has only a secondary influence through soil 



22 
 

evaporation in eeMETRIC and SIMS (excluded from basin-scale analyses here). The other 

OpenET models do not use precipitation as an input. Figure 4a shows that precipitation rates from 

AORC compared to gridMET are systematically lower by 13 mm/season on average. If all the 

extra precipitation was converted into ET in NWM, this would account for 29% of the total average 

difference between NWM and OpenET seasonal ET. OpenET models are most sensitive to 

forcings like insolation (primary), temperature, wind speed and vapor pressure deficit. Figure 4b 

indicates a strong agreement between the downwelling shortwave radiation (Rsi) values obtained 

from gridMET and AORC datasets across different seasons. 

ETo is a primary scaling flux for eeMETRIC, SSEBop, and geeSEBAL, combining the 

impacts of insolation, wind, air temperature and vapor pressure on evaporative fluxes. Figure 4c 

compares bias-corrected gridMET ETo that is used by OpenET with ETo which we computed from 

AORC V1.1 data using the ETo reference calculation described in Melton et al. (2022). OpenET 

bias-corrected gridMET ETo uses ETo data from over 800 weather stations in irrigated agriculture 

to correct long-term biases in ETo calculated from gridMET (Volk et al., 2024b). In Figure 4c the 

bias-corrected gridMET ETo is higher than AORC by about 7 mm/season on average, or about 

16% of the NWM-OpenET difference. 

Based on the above observations, biases in input forcing data do not appear to completely 

explain ET differences observed between NWM and OpenET at the basin scale. To gain a deeper 

understanding of these discrepancies, especially regarding where and how they manifest across the 

landscape, we examine the spatial patterns and spatial statistics of ET in greater detail in the 

following section (Section 4.2). 
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(a) 

 

(b) 

 

(c) 

 

Figure 3. (a) Seasonal ET spatial mean, (b) Seasonal ET spatial standard deviation (SDEV) from 

NWM, OpenET ensemble, and individual OpenET models for the BRB and (c) Seasonal spatial 

pattern (SPAEF) between NWM ET and different OpenET members. 
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(a) 

 

(b) 

  

(c) 

 

Figure 4. Time-series plots comparing (a) precipitation, (b) shortwave radiation and (c) ETo 

computed as a spatial watershed-average over seasons spanning (2017 - 2020) from gridMET 

and AORC. 
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4.2 Spatial comparisons 

Spatial maps of seasonal ET, averaged over the 4 years, from both NWM and the OpenET 

ensemble help to explain where the differences apparent in Figure 3a arise within the basin (Figure 

5). Comparisons with individual OpenET models are shown in Appendix B. In general, the 

spatiotemporal patterns from both modeling approaches are broadly similar, with lower ET 

typically observed in the eastern part of the domain, representing shrubland at higher elevations. 

However, notable differences are apparent in the spatial details of flux magnitude (Figure 6a).  

Also shown in Figure 6b are maps of time-averaged inter-model standard error (SE) by season, 

computed between the members of the OpenET ensemble. Small standard error indicates where 

the five basin-covering models agree well and, through convergence of evidence, we have high 

confidence in the ensemble estimate. Low standard error relative to the difference between NWM 

and OpenET estimates indicates disagreement between these different ET quantities. 

NWM-OpenET differences are largest in JJA (Figure 5), but the general spatial 

structure/pattern of the differences is persistent between seasons (Figure 6a). The magnitude of 

NWM-OpenET differences tend to be larger than the standard error (Figure 6b), indicated by the 

difference scale ranging from -300 to 300 mm (Figure 6a) while the standard error scale tops out 

at 50 mm (Figure 6b). This suggests real differences between ET as estimated by OpenET and the 

NWM. Applying the SPAEF metric to assess spatial agreement between seasonal average ET maps 

in Figure 5, we obtain values of 0.08 (DJF), 0.11 (MAM), 0.32 (JJA), and 0.16 (SON), generally 

following the patterns in monthly assessments shown in Figure 3c (-∞ being poor and 1 being good 

for SPAEF). The highest pattern match was observed in JJA, while the lowest SPAEF was obtain 

in DJF, likely due to the fact that many OpenET models are not specifically designed to handle 

snow-covered conditions. 
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NWM-OpenET differences during JJA when ET is highest are examined in greater detail 

in Figure 7, which also shows a Google Earth image of the basin to facilitate interpretation in 

relation to landcover and surface features. Some of the strongest persistent differences emerge in 

the riparian corridor along the Bear River in the eastern part of the basin. The land cover in this 

region is a mixture of riparian vegetation and irrigated agriculture. This is more apparent during 

summer as exhibited by the large contrast of very dry and very wet regions depicted in the ET 

ensemble. These riparian moisture sources and their impact on vegetation growth are captured by 

the remote sensing inputs to OpenET, primarily through higher vegetation indices (NDVI and/or 

LAI) and lower LST. These features do not appear to be depicted in the NWM JJA ET (Figure 5). 

Similarly, in the wetland areas in the southwest of the watershed near its outlet to the Great Salt 

Lake, OpenET is significantly higher than NWM. Patches of irrigated agriculture elsewhere in the 

basin are also associated with higher rates of ET from OpenET in comparison with NWM.  These 

differences indicate limitations in the NWM representation of ET in riparian and irrigated 

agriculture areas, noting limitations in the representation of agricultural water management in the 

NWM. 

One NWM area that stands out in JJA (and to a lesser extent in MAM) in Figures 5, 6a and 

7a is associated with the Blacksmith Fork Watershed located in the southern central part of the 

basin (see identification Figure 7). The NWM ET in this sub-watershed of BRB is distinctly lower 

than its surroundings, with sharp boundaries that are not related to any specific physical features 

in Figure 7. We believe that this is an artifact of watershed-specific model calibration discussed 

further in Section 5.  
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Figure 5. Comparison between maps of seasonal ET from both NWM and OpenET (ensemble). 
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(a) (b) 

  

Figure 6. (a) Seasonal ET differences between NWM and ensemble OpenET; and (b) OpenET 

inter-model standard error (SE) maps among the five satellite-based methods used in this study. 



29 
 

(a) (b) 

 

 

Figure 7. (a) ET differences in JJA between NWM ET and ensemble OpenET approach with 

details to facilitate the interpretation of results in relationship to landcover, and (b) a Google 

Earth image of the BRB. 

 

4.3 Assessment of geographic variables related to model differences. 

Given the relative spatial stability of NWM-OpenET difference patterns, we further 

examine relationships of these differences with geographic variables such as elevation, aspect and 

land use/land cover. Considering that the discrepancies are most significant during JJA when ET 

rates are highest, our primary focus will be on analyzing the factors influencing JJA variations.   

Elevation and aspect, if not appropriately accounted for, can have a significant impact on 

remotely sensed LST and can add false variability to ET retrievals, particularly via the energy 
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balance. eeMETRIC explicitly accounts for topography using the Mountain Model package (Allen 

et al., 2013), and effectively flattens the LST field by an elevation based vertical lapse rate 

correction and by correcting the solar radiation flux inputs for slope and aspect.  Noah-MP in the 

NWM accounts for the impact of topography on ET implicitly through the differences in 

atmospheric forcing (e.g., surface temperature, humidity, downward solar radiation) but with 

topography represented at a 1-km scale. While topographical features are important for surface 

energy balance, they seem to have a minimal influence on the discrepancies observed among the 

OpenET models and NWM ET (Figure 8a, b); however, we acknowledge that some uncertainty in 

the discrepancies maybe attributed to  the upscaling of OpenET data to 1 km. Significant 

differences are observed in lower elevations ranging from 1200 to 1500 m and topographically flat 

regions that are dominated by wetlands, irrigated agricultural areas, and areas near the outlet of 

BRB to the GSL.   

Based on Figure 8c, it appears that the magnitude of differences in JJA ET are similar for 

most land cover types. However, there are high differences obtained from herbaceous wetland and 

wooded wetland, with differences ranging approximately from -400 mm to 200 mm/season, but 

these are a small fraction of total area. However, in cropland and forest areas notable differences 

were also found. Since the NWM does not represent irrigation, ET from irrigated areas is limited 

by the NWM simulated soil moisture, which may be impacted by parameters adjusted during 

calibration. 

 

https://paperpile.com/c/8OB7Ig/As1m
https://paperpile.com/c/8OB7Ig/As1m
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(a) 

 

(b) 

 

(c) 

 

Figure 8. (a) Differences between JJA ET from NWM and different OpenET approaches based 

on elevation, (b) aspect, and (c) landuse/landcover classes. Note that in (b), flat includes grid 

cells characterized as flat by the ArcGIS evaluation of slope and aspect from NWM 1 km grid 

scale elevation. 

4.4 Assessment of differences by water balance 
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The water balance calculation was done for four upstream sub-watersheds with minimal 

irrigation diversions or human impacts, that we designated as natural. These were: the Bear River 

Near UT-WY State Line; Logan River Above State Dam, Near Logan, UT; Smiths Forks Near 

Border, WY; and Big Creek Near Randolph, UT. First, we compared the NWM V2.1 streamflow 

estimates at daily timesteps with observations obtained from USGS gages (Figure 9). Overall, the 

results indicated a good agreement between the NWM V2.1 streamflow estimates and natural flow 

observations, although there is room for improvement in reducing the NWM overestimation of 

peak flow in one watershed.  

We also compared sub-watershed precipitation (P) from AORC, which is used to force the 

NWM retrospective analysis dataset, with multiple gridded P datasets to help evaluate the 

uncertainty in the P data and to illustrate its potential effect on NWM ET. This analysis involved 

estimating ET by subtracting simulated streamflow (Q) from the different P datasets. 

Figure 10 illustrates the monthly accumulated P and ET derived from different data 

sources. In Figure 10a, the black line represents the cumulative P from the AORC dataset, while 

in Figure 10b, we used a blue-shaded range constructed from gridMET, AORC, DayMET, PRISM 

and NCLIM precipitation data sources. The variability across these data sources reflects 

uncertainty in precipitation. Accumulated ET values were derived from NWM, OpenET, and the 

water balance calculation of precipitation (P) minus streamflow (Q) for the period of 2017 – 2020 

for these sub-watersheds. Note that while accumulated ET is strictly increasing, cumulative P-Q 

includes the effects of snow and terrestrial water storage and thus increases more steeply from 

October (the beginning of the water year) until April/May and then declines as spring snowmelt 

results in high streamflow and reductions in snow storage.  
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AORC P was the input to the NWM, so in general, apart from storage effects, the red 

(cumulative NWM ET) and brown (cumulative P (AORC) – Q (NWM)) lines are consistent across 

different sub-watersheds as expected (Figure 10a). Accumulated storage within the watershed 

occurs when the brown line is above the red line, while there is accumulated deficit when the 

brown line is below the red line. The fact that the brown and red lines end each water year (and 

the full 3-year period) very close to each other reflects that, in the NWM, storage and deficit 

essentially balance out over the 3 years. This outcome is expected and is a result of the NWM's 

design/construction as a water balance prognostic model. The green line in Figure 10a used Q 

(observed) in the water balance ET calculation instead of Q (NWM). The differences between P 

(AORC) – Q (observed) (Green line) and NWM ET (Red line) reflect errors between model and 

observed NWM Q. This is particularly evident in the Bear and Smith rivers, where the NWM 

underestimates cumulative Q, suggesting that the NWM ET is relatively higher than ET evaluated 

from water balance, P (AORC) – Q (observed). However, even though relatively higher, NWM 

ET does not get as high as most OpenET estimates (Figure 10a). In the case of Logan River, Q 

(NWM) has better agreement with Q (observed) but is slightly higher, which suggests that NWM 

ET is relatively low, and thus being less than OpenET is not inconsistent.  

In Figure 10b, we assessed the uncertainty associated with precipitation using different datasets. 

When comparing the four watersheds, we observed a higher amount of precipitation received in 

Logan River watershed than Smith, Bear and Big Creek watersheds. The annual precipitation rate 

in the Logan River watershed is approximately 900 mm, whereas in the Smith, Bear and Big Creek 

watersheds annual precipitation decreases to around 700 mm. Considering the different 

precipitation datasets, the variation between these sources was about 150 mm/year. This variance 

may contribute to differences between water balance ET, NWM ET and OpenET approaches. The 
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orange-shaded area represents the calculated range of water balance ET, which is derived from 

minimum and maximum values obtained when calculated as the difference between P (obtained 

from different datasets) and Q (observed). This range should be consistent and balanced by 

cumulative ET as watersheds do not generally accumulate or lose storage over the long term 

(multiple years). Comparing the four watersheds, we see that OpenET, and the ensemble ET value 

in particular, closely aligns with the water balance ET in the Logan River and Big Creek 

watersheds, falling within the uncertainty range denoted by the orange shading in Figure 10b. 

However, in the Bear and Smith watersheds, OpenET tends to overestimate cumulative ET by 

around 60-100% across OpenET models over the 4-year period when compared to the water 

balance ET derived from multiple precipitation sources.  

 

Figure 9. Hydrograph comparison between simulated NWM V2.1 streamflow and observed 

USGS streamflow gage.  
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(a) (b) 

  

 

 

 
Figure 10. Accumulated P and ET curves based on NWM, OpenET models evaluated, and water 

balance P-Q which is comparable to ET when accounting for storage. (a) NWM water balance 
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components compared with OpenET models; (b) Variability due to precipitation uncertainty in 

water balance compared with OpenET models. 

5. Discussion 

The results above show that relative to OpenET the NWM estimates of ET are consistently 

lower in the study domain (Figure 3). In upstream sub-watersheds, the NWM estimated similar or 

slightly higher ET than water balance ET estimates. Discrepancies between OpenET and the NWM 

ET estimates are more apparent when viewing their spatial distribution and seasonal variations as 

opposed to long-term basin-wide totals, particularly in regions of irrigated agriculture, riparian 

corridors, and wetlands during the summer. This leads to questions as to the sources of these 

differences.  Broadly there may be errors in the NWM, errors in OpenET, and errors in the inputs 

to each. We found that uncertainty in the forcing data to the NWM, namely precipitation, 

shortwave radiation and reference ET, are not likely sources of major uncertainties in NWM ET 

estimates. Precipitation is the largest source of uncertainty. We found (Figure 10) about a 150 

mm/year typical difference across different precipitation data sources.  The AORC precipitation 

input used in the NWM was at the low end of the gridded precipitation datasets used and a higher 

precipitation input to the NWM would result in higher NWM ET. While there was no direct 

adjustment of precipitation in the model calibration, it is possible that calibration adjusted other 

parameters to compensate for precipitation errors. However, the precipitation uncertainty, up to 

around 150 mm/year or 40 mm per season does not by itself appear big enough to explain ET 

differences. We base this on the observation in Figure 10b that even with the upper bound of P, 

the water balance estimate of ET is substantially less than OpenET for two of the four natural 

watersheds examined. This leads us to infer that a significant part of the difference between 

OpenET and NWM ET is overestimation by OpenET. 
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Comparing OpenET and NWM ET estimates by water balance estimation of ET as 

precipitation minus streamflow allows us to further investigate model discrepancies and causes. 

However, analysis was limited to four upstream natural watersheds not significantly impacted by 

diversions or riparian areas where river source water could supply ET. They are also 

geographically situated in locations unlikely to be impacted by regional groundwater inflows, 

noting that other researchers have resorted to consideration of regional groundwater in efforts to 

close watershed water balances (Soltani et al. 2021).  For two of the four watersheds the cumulative 

observed P-Q range, accounting for gridded P data source differences, is below the range of 

cumulative OpenET values, from all methods, and from the ensemble. These two sub-watersheds, 

Bear (10011500) and Smith (10032000) are located in areas dominated by evergreen forest, a small 

component of the land cover characteristic of the full basin (Figure 1). A large-scale model 

intercomparison and evaluation study conducted by Volk et al. (2024a) using close to 150 

Ameriflux towers identified evergreen forest as the land cover class with highest systematic bias 

in OpenET, with a mean bias error of approximately 25% for the ensemble ET value at water year 

scales. In addition, the mountainous terrain in these sub-watersheds presents an additional 

challenge to remote sensing models based on surface energy balance. By contrast, for the Logan 

River and Big Creek, OpenET and the water balance ET compare relatively well.  These are drier 

sub-watersheds with less evergreen forest cover, and smaller runoff ratios.  In the case of Big 

Creek, the runoff ratio is very small with essentially all precipitation being translated into ET, a 

process represented well by OpenET and the NWM.  These findings suggest caution regarding the 

use of OpenET for analyses related to the water balance of evergreen forested mountain 

watersheds, which are where much streamflow originates in the intermountain western U.S. 

Alternatively, due to its strong agreement with water-balance ET estimates and streamflow, the 

https://paperpile.com/c/8OB7Ig/N5DV
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NWM showed strong results in partitioning discharge in forested upstream basins, suggesting that 

it may be a useful tool in assessing OpenET or other remote sensing ET products in similar basins. 

A broader evaluation of water balance sampling across other land cover types and topography 

present in the basin will be required to draw inferences regarding basin-scale biases between NWM 

and OpenET. 

Looking at the differences between NWM ET and OpenET at the scale of the entire 

watershed, not limited to the four natural sub-watersheds, we found other important sources of 

differences and areas for further investigation and improvement in the NWM. During the peak ET 

months of the summer, we found two important patterns. First, where there is irrigation along river 

corridors, riparian areas and wetlands, OpenET systematically predicts higher ET than the NWM.  

This suggests additional water sources in these areas may be available for ET but are not 

partitioned as such in the NWM. Similarly, in low elevation, flat, and wetland areas NWM ET is 

systematically lower than OpenET. Further analyses of the NWM should evaluate these regions 

and the local processes related to ET partitioning for opportunities for improvement. Secondly, the 

outline of the Blacksmith Fork watershed stands out in the OpenET NWM ET difference map. 

This can be traced to a discontinuity in NWM ET at this watershed boundary. There is no physical 

reason for a discontinuity in ET associated with a watershed boundary, and we believe this is due 

to a difference in NWM parameters associated with calibration for specific basins.  Calibrated 

parameters relate to soil properties, and thus affect the modeling of ET. This also provides an 

opportunity for considering independent ET datasets, such as from OpenET in the regional 

calibration of NWM parameters to move it towards better physical parameterization of the 

processes involved with ET that are important for water balance partitioning. 
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Another consideration is spatial variability. Notwithstanding the bias in mean between 

NWM ET and OpenET, the variability across the BRB represented by OpenET resampled to the 

NWM 1 km grid cell resolution (Figure 3b) is reasonably well captured by the NWM. The NWM 

spatial standard deviation is, for most seasons, within the range of OpenET spatial standard 

deviation, and close to the OpenET ensemble spatial standard deviation. This speaks to the utility 

of an ensemble quantity where multiple models are available. It also shows that even with omission 

of some physical ET processes from NWM, the spatial variability of NWM ET is consistent with 

OpenET, which incorporates satellite observations of land surface conditions to capture spatial 

patterns in ET. For one year, 2018, the most extreme drought year in our study period, the spatial 

standard deviation of NWM ET is less than that of OpenET. We surmise that possibly fewer wetter 

grid cells modeling higher ET values in the drought year, perhaps those with irrigation, and that 

acted to suppress the spatial standard deviation. Here the 30-m resolution OpenET data were 

aggregated to the 1-km resolution of the NWM, and part of these differences may be due to this 

aggregation. Another potential source of systematic bias in NWM simulated ET in the BRB may 

be caused by misrepresentation of hydrologic processes that can result in increased soil and 

shallow groundwater available for ET such as hillslope scale lateral flow, regional flow, and 

groundwater-vadose interactions. Simulation of lateral redistribution of water at hillslope scales 

(~1 m – 1 km) in land surface models can result in more accurate water balance estimates from 

land surface models and can result in increased soil moisture and ET and reduced dry bias (Fan et 

al., 2019; Yang et al., 2021; Ji et al., 2017). WRF-Hydro implements lateral connectivity between 

250-m grid cells; it uses a shallow diffusive wave solution for overland lateral flow and a 

Boussinesq approximation for shallow subsurface lateral flow (within the 2-m soil column). The 

lateral fluxes are aggregated and disaggregated back to the 1 km Noah-MP grid. This scale 
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mismatch may result in spatial bias in the estimated lateral water subsidies that occur at hillslope 

scales. Also, in the NWM soil drainage is routed directly to a stream network and does not have 

the chance to resurface or be available for valley floor ET. In the study area, mountain block 

recharge is the major source of groundwater (Meixner et al., 2016) that is discharged through 

phreatophyte shrubland ET in valleys (Meyers et al., 2021; Beamer et al., 2013; Nichols 1993) and 

direct evaporation in the GSL. The model assumption of groundwater discharge to be only 

contributing to streamflow may be reasonable in some upstream sub-watersheds, however, at the 

basin-wide scale, a lack of representation of these larger scale processes may be responsible for 

some of the low seasonal ET biases in NWM results (relative to OpenET) that we see in the 

lowland areas of the BRB and near the GSL.   

This work focused on one major subbasin draining into the Great Salt Lake and has 

highlighted the challenges associated with the NWM and its overall representation of the water 

balance and ET. It has also shown some of the uncertainties associated with independently 

estimated ET computed from methods such as the ensemble of satellite-driven models used by 

OpenET. While these specific findings are limited to this specific area, this watershed is typical of 

others in the intermountain western U.S. region, and we suspect that the findings will apply in 

other areas too. By comparing with the diagnostic ET estimates of OpenET we identified areas for 

further targeted studies that may lead to improvements in the NWM’s partitioning of ET.  

 

Conclusions 

For our study area, the Bear River Basin centered in northern Utah and southeastern Idaho, 

we found that NWM estimates of ET are consistently lower with respect to OpenET, with biases 

attributed to both modeling systems and likely related to errors in model inputs and calibration, 
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missing processes in the represented in the NWM framework, and biases in OpenET related to 

land cover/topography. 

We found that some NWM uncertainty is due to uncertainty in the input precipitation 

datasets, with the AORC precipitation that was used as input to the NWM being at the low end of 

the range of other gridded precipitation products used in the water balance evaluation. This 

suggests that improving precipitation input to the NWM offers an opportunity to improve NWM 

ET and water balance outputs. 

We found that NWM ET was underestimated in lowland, riparian, wetland, and irrigated 

agriculture areas suggesting that it may not accurately model ancillary water supplies or represent 

processes that lead to increased partitioning of water to ET. There are thus opportunities to improve 

the NWM through better representation of these processes. 

We found that NWM ET has discontinuities along watershed boundaries. These stand out 

when looking at differences between OpenET and NWM ET and appear to be caused by the NWM 

calibration that adjusts parameters or parameter multipliers across watersheds, and some of these 

parameters have an impact on soil moisture which then plays a role in the modeling of ET. There 

is in general no physical reason for these discontinuities and research to improve the calibration 

parameter adjustment approach that avoids these discontinuities would improve the model by 

advancing it closer to a more physical representation of the processes involved.  

A water balance assessment in two evergreen forest dominated natural sub-watersheds 

within the Bear River Basin is consistent with biases reported in an OpenET evaluation study using 

eddy covariance instrumentation, where the OpenET ensemble ET value overpredicted flux tower 

observations in evergreen forest.  These results point to paths towards improvement in OpenET in 

forested systems. 
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More broadly, we found that the comparisons between a diagnostic dataset such as those 

from satellite driven remote sensing ET from the OpenET platform with a prognostic model like 

the NWM is a valuable approach for evaluating the spatial and temporal biases and error in both 

systems. This comparative analysis approach may be useful in addressing model performance in 

other regions and in addressing uncertainties in other modeling systems particularly where 

observational data are limited.  
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Appendix A:  This includes both the NWM v2.1 general configuration as well as the 

calibrated parameters used for the retrospective analysis. 

 

Table A1. NWM v2.1 General Configurations 

Item Description 

Model resolution  1-km land surface grid; 250-m terrain routing 

grid; NHDPlusV2 vector channel routing 

network and conceptual groundwater basins. 

Spin up period Warm started with final states from a 10-year 

simulation, then acclimated by running 
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February 1979 through December 1979 twice 

Driving data Analysis of Record for Calibration (AORC) 

Output frequency CHROUT: Every hour, channel network output 

LAKEOUT: Every hour, reservoir (lake) output 

GWOUT: Every hour, conceptual groundwater 

output. 

LDASOUT: Every 3 hours, land model output 

RTOUT: Every 3 hours, high resolution terrain 

routing output 

Accumulation periods  For the accumulation variables (3 hourly 

UGDNOFF, ACCET, ACSNOM), the 

accumulation takes place between restart dates: 

1. 00Z January 1 - 21Z March 31 

2. 00Z April 1 - 21Z June 30 

3. 00Z July 1 - 21Z September 30 

4. 00Z October 1 - 21Z December 31 

Model time step Forcing data: 3600 seconds 

Land surface model: 3600 seconds 

Channel routing: 300 seconds 

Terrain routing: 10 seconds 
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Table A2. Calibrated parameters of NWM based on (Gochis et al. 2020), including their 

calibration range (Max. and Min.) and type. 

Parameter 

 

Description Min

 

Max. Type Unit 

Soil parameters 

BEXP Pore size distribution index.  0.4 1.9  Multiplier Dimensionless 

SMCMAX Porosity, saturated value of 

soil moisture (volumetric). 

0.8 1.2 Multiplier Volumetric 

fraction 

DKSAT Saturated hydraulic 

conductivity. 

0.2 10 Multiplier 𝑚𝑚−1 

RSURFEXP  Soil evaporation resistance 

t  

1 6 Constant Dimensionless 

Vegetation 

  

     

CWPVT Empirical canopy wind 

parameter. 

0.5 2 Multiplier 𝑚𝑚−1 

VCMX25 Maximum rate of 

carboxylation at 25oC 

0.6 1.4 Multiplier 𝜇𝜇𝑚𝑚𝜇𝜇𝜇𝜇𝑚𝑚−2𝑠𝑠−1 

MP Slope of conductance-to-

photosynthesis relationship 

0.6 1.4 Multiplier Unitless 

Snow parameters 

MFSNO Melt factor for snow depletion 

curve; larger value yields a 

smaller snow cover fraction 

     

0.25 2 Multiplier Dimensionless 
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Runoff parameters 

REFKDT Reference soil infiltration 

parameter (used in runoff 

formulation). It significantly 

impacts surface infiltration 

and hence the partitioning of 

total runoff into surface and 

subsurface runoff. Increasing 

REFKDT decreases surface 

runoff. 

0.1 4 Constant Unitless 

SLOPE Slope index for soil drainage. 0 1 Constant 0–1 

RETDEPRTFAC Surface retention depth. 0.1 20000 Constant Unitless 

LKSATFAC Multiplier on lateral hydraulic 

conductivity (controls 

anisotropy between vertical 

and lateral conductivity). 

10 10000 Constant Unitless 

Groundwater parameters 

ZMAX Maximum groundwater 

bucket depth. 

10 250 Constant mm 

EXPON Exponent controlling rate of 

bucket drainage as a function 

of depth. 

1 3 Constant Dimensionless 
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Appendix B: Comparison between maps of seasonal ET from both NWM and OpenET 

approaches  

 

  

Figure B1. Comparison between maps of seasonal ET from both NWM and OpenET 

(ALEXI/DisALEXI). 
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Figure B2. Comparison between maps of seasonal ET from both NWM and OpenET 

(eeMETRIC). 
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Figure B3. Comparison between maps of seasonal ET from both NWM and OpenET 

(geeSEBAL). 
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Figure B4. Comparison between maps of seasonal ET from both NWM and OpenET (PT-JPL). 
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Figure B5. Comparison between maps of seasonal ET from both NWM and OpenET (SSEBop).  
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