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[1] To better estimate the radiation energy within and beneath the forest canopy for energy
balance snowmelt models, a two stream radiation transfer model that explicitly accounts for
canopy scattering, absorption and reflection was developed. Upward and downward
radiation streams represented by two differential equations using a single path assumption
were solved analytically to approximate the radiation transmitted through or reflected by the
canopy with multiple scattering. This approximation results in an exponential decrease of
radiation intensity with canopy depth, similar to Beer’s law for a deep canopy. The solution
for a finite canopy is obtained by applying recursive superposition of this two stream single
path deep canopy solution. This solution enhances capability for modeling energy balance
processes of the snowpack in forested environments, which is important when quantifying
the sensitivity of hydrologic response to input changes using physically based modeling.
The radiation model was included in a distributed energy balance snowmelt model and
results compared with observations made in three different vegetation classes (open,
coniferous forest, deciduous forest) at a forest study area in the Rocky Mountains in Utah,
USA. The model was able to capture the sensitivity of beneath canopy net radiation and
snowmelt to vegetation class consistent with observations and achieve satisfactory
predictions of snowmelt from forested areas from parsimonious practically available
information. The model is simple enough to be applied in a spatially distributed way, but
still relatively rigorously and explicitly represent variability in canopy properties in the
simulation of snowmelt over a watershed.
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1. Introduction
[2] Snow accumulation, melt and sublimation processes

are different for open and forest sites. Vegetation and land
cover influences snow processes making it difficult to pre-
dict snowmelt which is responsible for water supply in
much of the world, including the mountainous regions of
the western U.S. where this study was conducted. The proc-
esses of snow accumulation and melt in open areas are
understood for a range of climates and well represented in
numerical models [Anderson, 1976; Bartlett and Lehning,
2002; Jordan, 1991; Lehning et al., 2002; Marks et al.,
1992; Price and Dunne, 1976; Tarboton and Luce, 1996;
Wigmosta et al., 1994]. Prediction of the evolution of snow
packs in forested areas is more complex [Storck et al.,
2002]. The forest canopy intercepts snow fall, attenuates
radiation, and modifies the turbulent exchanges of energy
and water vapor between snow in and under the canopy
and the atmosphere, thereby affecting snow accumulation
and melt. It is important for snowmelt models to be able to
properly represent these processes so as to have correct

sensitivity to canopy properties when they are used to
address questions such as the impacts of climate and land
cover changes on hydrologic response. Yet it is also impor-
tant for models to not be overly complicated and demand-
ing of input data. In this paper we address enhancements to
the representation of canopy processes involved in the
physically based modeling of energy balance processes of
the snowpack.

[3] The purpose of this paper is to present and evaluate a
relatively simple model to estimate beneath canopy radia-
tion that drives the energy balance and snowmelt beneath
the forest canopy. Parsimony in terms of model complexity
and data requirements is a design consideration, striving for
the best possible physical representations given commonly
available data. The forest canopy is modeled as a single
layer with parameters leaf area index and canopy cover
fraction quantifying the radiation attenuation. A two stream
radiation transfer model that explicitly accounts for canopy
scattering, absorption and reflection is used. Upward and
downward radiation streams represented by two differential
equations using a single path assumption were solved ana-
lytically to approximate the radiation transmitted through
or reflected by the canopy with multiple scattering. This
approximation results in an exponential decrease of radia-
tion intensity with canopy depth, similar to Beer’s law for a
deep canopy. In Beer’s law solar radiation is decreased
exponentially along the path through the absorbing medium
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without accounting for scattering [Monteith and Unsworth,
1990]. The solution for a finite canopy is obtained by apply-
ing recursive superposition of this two stream single path
deep canopy solution. The parameters required are the same
parameters that are used in Beer’s law, but the theoretical
foundation of the model has been improved in that multiple
scattering and a finite canopy depth are represented.

[4] Radiation is the main driver of the energy balance
and snowmelt. This paper focuses on how to represent the
penetration of radiation through a forest canopy in an
energy balance snowmelt model. The input of solar radia-
tion to the ground surface whether in the open or beneath
the canopy varies depending on solar angle and azimuth as
well as cloudiness and topography (slope and aspect) [Link
et al., 2004; Stähli et al., 2009]. Net radiation at the snow
surface then depends on reflection from the surface, gov-
erned by the surface albedo as well as scattering and multi-
ple reflections between the snow surface and canopy.
Surface albedo depends on coverage by snow (coverage is
patchy when the snow is shallow and surface rough), snow
surface grain size which is related to age and the presence
of dust or litter on the surface (how fresh and clean is the
snow) [Hardy et al., 2000; Jordan, 1991].

[5] A number of techniques have been used to model
radiation beneath forest canopies. Ellis and Pomeroy
[2007], Essery et al. [2003], Koivusalo [2002] and Link and
Marks [1999] used Beer’s law to attenuate the solar radia-
tion penetrating a canopy. Depending on the density of the
canopy, multiple scattering may increase the irradiance
reaching the surface as compared to Beer’s law, by up to
100% [Nijssen and Lettenmaier, 1999]. Efforts to develop
simplified approaches to model radiation beneath the can-
opy accounting for multiple scattering of radiation include
Nijssen and Lettenmaier [1999], Tribbeck et al. [2004], and
Yang et al. [2001]. Nijssen and Lettenmaier’s [1999] model
provides a solution for infinitely deep canopy while
Tribbeck et al.’s [2004] model assumes radiation scattered
by the canopy is reflected equally in upward and downward
directions and does not account for within canopy scatter-
ing. Yang et al. [2001] present a simplified two stream
approach, but their model requires vegetation geometry in-
formation. The two path multiscattering approach we have
taken accounts for multiscattering in a finite canopy more
rigorously than these approaches, while not being more
demanding of input data.

[6] Dickinson [1983] and Sellers [1985] developed a two
stream approximation for radiation transfer through the
atmosphere or a vegetation canopy which includes multiple
scattering [Dickinson, 1983; Sellers, 1985]. In this two
stream approximation, upward and downward diffuse solar
is expressed using two differential equations quantifying
the change in downward and upward radiation due to inter-
ception, absorption and scattering in a semi-infinite canopy.
This approach applies to integrated quantities as opposed to
angular-dependent intensities [Meador and Weaver, 1980]
and neglects anisotropy that may result due to angular
effects in scattering. Roujean [1996] also developed a trac-
table physical model of shortwave radiation interception by
vegetative canopies. This accounted for direct transmit-
tance, single and multiple scattering in a semi-infinite can-
opy. The approach we have developed here is closely based
on the concepts from these papers but extended from a

semi-infinite (deep) canopy to a finite canopy using recur-
sive superposition. We have also integrated our approach
into a snowmelt model so as to enhance the physically
based modeling of energy balance processes of the snow-
pack in forested environments.

[7] A more detailed approach was taken by Li et al.
[1995] and Ni et al. [1997] in the Geometric-optical and
radiative transfer (GORT) model which accounts for the
three dimensional geometry of the forest canopy and
includes multiple scattering within and beneath the canopy.
The GORT model is computationally expensive and also
requires parameters such as crown geometry and foliage
area volume density that are difficult to measure in the field
[Hardy et al., 2004]. There are also a number of other
single or multiple-layer models in the literature [e.g.,
Flerchinger and Yu, 2007; Flerchinger et al., 2009;
Norman, 1979; Zhao and Qualls, 2005; 2006] that represent
radiation transfer based on more detailed canopy information
(e.g., leaf density, inclination, orientation, crown diameter
and depth, etc.). Our approach has been developed to avoid
dependence on this practically hard to obtain information.

[8] There is also work that has examined the heterogene-
ity of forested surfaces and brought in information on can-
opy fraction and tree shape to compute canopy radiation
transmissivity [Essery et al., 2008; Hu et al., 2010; Niu
and Yang, 2004]. In some cases hemispherical photographs
have been used to determine the parameters involved
[Essery et al., 2008; Hardy et al., 2004; Hu et al., 2010].
While this is a promising line of investigation we have cho-
sen to, at this point in time, evaluate a parsimonious param-
eterization of vegetation that does not require this detailed
information.

[9] The new radiation component developed fills the
need for a parsimonious, yet rigorous physically based
capability for modeling radiation transfer through forested
canopies as it drives the energy balance and melt of a
snowpack. It has been designed to avoid over-parameter-
ization that leads to problems with parameter estimation
and validation in more complex models. There are very
few models that can be used when input data are limited,
and are transportable and applicable at different places
with little calibration.

[10] The new radiation transfer approach was added to the
Utah Energy Balance (UEB) snowmelt model [Tarboton and
Luce, 1996; Tarboton et al., 1995] to model snow energy
and mass balances within and beneath the canopy driven by
inputs of radiation and weather from above the canopy. The
surface component retains the single layer parameterization
of the original UEB model that focuses on surface mass and
energy exchanges. It avoids the potential overparameteriza-
tion that may result from attempting to represent the com-
plexity of within snow processes using multiple layers. The
added canopy component similarly uses a canopy parameter-
ization that strives for a good physical representation of the
processes involved without requiring hard to quantify infor-
mation on canopy structure and leaf orientation.

2. Study Site
[11] Field measurements were carried out at the TW

Daniel Experimental Forest (TWDEF) (available at http://
danielforest.usu.edu) located about 30 miles North–East of
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Logan, Utah (Figure 1). TWDEF comprises an area of
0.78 km2 at an elevation of approximately 2700 m. It lies at
41.86� North and 111.50� West. The TW Daniel Experi-
mental Forest is on the divide of the watershed that contrib-
utes to the Logan River and Bear Lake. Average annual
precipitation is about 950 mm of which about 80% is snow.
The maximum snow depth can reach 5 m in the area where
snow drifts occur. Vegetation is composed of deciduous
forest (Aspen), coniferous forest (Engelmann spruce and
subalpine fir), open meadows consisting of a mixture of
grasses and forbs, and shrub areas dominated by sagebrush.

[12] Instrumentation was installed starting in 2006 to
monitor weather and snow within four different vegetation
classes: grass, shrubs, coniferous forest, and deciduous for-
est ; and includes twelve weather station towers (three repli-
cates in each vegetation class), one central tower (in shrub
area) with more comprehensive radiation instrumentation
and one SNOTEL station in a clearing within the conifer-
ous forest. The following automated data were collected.

[13] 1. Continuous measurements of snow depth (Judd
Communications depth sensor) at each of the twelve stations.

[14] 2. Continuous measurements of weather: temperature
and humidity (Vaisala HMP50); wind (Met One, 014A); net
radiation, (Kipp & Zonen NR-Lite) at one station in each
vegetation class. These instruments were placed at heights
above the ground of about 2.5 m in conifer, 4.5 m in decidu-
ous and 4 m in shrub sites so as to remain above the deep
snow that accumulates in the deciduous and shrubs areas.

[15] 3. Four separate radiation components: downward
and upward shortwave and long wave (Hukseflux, NR01
four-way radiometer) and snow surface temperature (Apogee
Instrument, IRR-PN) at the centralized weather station.

[16] 4. The standard suite of SNOTEL observations at
the adjacent SNOTEL site, from which we used precipita-
tion. This SNOTEL site was installed in summer 2007, so
its data are first available for the 2007–2008 winter.

[17] Slope and aspect were determined from a 1 m reso-
lution digital elevation model constructed from bare earth
points classified from an airborne LiDAR survey of the
site. Table 1 lists the site information, and in addition to
these parameters includes parameters used with other
aspects of the model that are not the focus of this paper.

[18] Field observations roughly every two weeks for four
winters (2006–2007 to 2009–2010) comprised two snow
pits: one in the shrub area (Pit 1, Figure 1) and the other in
a conifer clearing (Pit 2, Figure 1), and snow depth at mul-
tiple locations in all four vegetation classes. Within each
snow pit samples were taken at 10 cm vertical intervals
over the entire snow pit depth using a 250 cm3 stainless
steel cutter to derive the snow density. The density meas-
ured at the pit in the shrub area was used to represent both

Figure 1. Site map of the TW Daniel Experimental Forest showing weather station towers, vegetation,
survey points, pits and SNOTEL site.

Table 1. Site Variables

Sites/Variables Open Deciduous Conifer

Leaf area index 0.0 1 4.5
Canopy cover fraction 0.0 0.7 0.7
Canopy height (m) 0.0 15.0 15.0
Slope (degrees) 3.6 5.0 2.0
Aspect (degrees clockwise from N) 150 0.0 300
Latitude (degrees) 41.86 41.86 41.86
Branch interception capacity (kg m�2) 0.0 6.6 6.6
Average atmospheric pressure (Pa) 74,000 74,000 74,000
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shrub and grass areas. Both shrub and grass are regarded as
open because during the winter snow season snow com-
pletely covers the shrubs. Snow density measured in the
conifer clearing was used to represent forested areas (both
conifer and deciduous). These density values were used
with the depth measurements at multiple locations to derive
the snow water equivalent (SWE). Temperature was also
measured at the surface and at 10 cm vertical intervals over
the entire snow pit depth. These temperature measurements
were used to derive the energy content of the snow. Num-
bered snow survey points (Figure 1) show locations where
the depth measurements were made across the four vegeta-
tion classes.

3. Model Description
[19] The UEB snowmelt model [Tarboton and Luce,

1996] is a physically based point energy and mass balance
model for snow accumulation and melt. Snowpack is char-
acterized using three state variables, namely, snow water
equivalent, Ws, (m), the internal energy of the snowpack
and top layer of soil, Us, (kJ m�2), and the dimensionless
age of the snow surface used for albedo calculations. The
UEB model is a single layer model. Us and Ws are pre-
dicted at each time step based on the energy balance.
Details of the original UEB model formulation are given
by Tarboton et al. [1995], Tarboton and Luce [1996] with
enhancements for the calculation of surface temperature
using a modified Force-Restore approach given by Luce
and Tarboton [2010] and You [2004].

[20] In this paper we present the canopy radiation trans-
mission component of an enhanced UEB model that includes
representation of canopy processes. The canopy component
is modeled as a single layer, which added to the original
single layer UEB model results in a two-layer model that
represents the surface and the canopy intercepted snow sepa-
rately. Energy balances are solved iteratively for each layer
to provide outputs of surface temperature, canopy tempera-
ture and the other energy fluxes that are based on canopy or
surface temperature. The quantity and state of snow in the
canopy is represented by a new state variable, canopy snow
water equivalent, Wc (m). We assume that the energy con-
tent of intercepted snow in the canopy is negligible so can-
opy temperature, including snow in the canopy, is assumed
to adjust to maintain energy equilibrium, except when this
requires canopy temperature to be greater than freezing
when snow is present in the canopy, in which case the extra
energy drives the melting of snow in the canopy.

3.1. Shortwave Radiation

3.1.1. Partitioning of Radiation
[21] The incoming solar radiation reaching the canopy

surface, Qt (W m�2) is partitioned into direct and diffuse
components, Qb (W m�2) and Qd (W m�2), as these com-
ponents penetrate the canopy separately. AT is the fraction
of top of atmosphere total radiation reaching the top of the
canopy either measured or estimated from diurnal tempera-
ture range using the procedure of Bristow and Campbell
[1984]. This is split into direct radiation fraction, ATb and
diffuse radiation fraction ATd. Cloudiness fraction, Cf, is
estimated from AT using an the empirical relationship pro-
vided by Shuttleworth [1993]. We assume that when the

sky is clear (Cf ¼ 0) that a fraction � of AT is direct. The
value of � may be estimated based on scattering and
absorption properties of the cloud free atmosphere and is
due to water vapor, dust and other scatterers in the atmos-
phere. We assume that when the sky is completely cloudy
(Cf ¼ 1) that all radiation is diffuse. Using these as bound-
ary conditions and assuming linear variation of each factor
with Cf (Figure 2) leads to

ATb ¼ �ATcð1� Cf Þ; (1)

ATd ¼ AT � ATb; (2)

where ATc ¼ max (AT ; as þ bs) is the clear sky transmis-
sion factor. as þ bs is the fraction of extraterrestrial radia-
tion reaching the surface on clear days. Shuttleworth [1993]
recommended as ¼ 0.25 and bs ¼ 0.5 for settings where no
actual solar radiation data are available.

[22] Once ATb and ATd are estimated, the total incoming
radiation can be partitioned into direct and diffuse parts

Qb ¼
ATb

AT
Qt (3)

Qd ¼
ATd

AT
Qt: (4)

3.1.2. Canopy Radiation Transmission
[23] We develop the canopy radiation transmission model

in three steps. First the attenuation of incident radiation due
to interception, but not scattering is quantified. This results
in an exponential decrease of radiation intensity with depth
into the canopy (Beer’s law). Next we consider scattering
using a two stream approach for an infinitely deep canopy.
This results in a modified exponential attenuation. In the
third step we consider a finite canopy with downward radia-
tion incident at the top and upward radiation incident at the
bottom. The direct and diffuse fractions of radiation trans-
mitted through the canopy in the first step without scattering

Figure 2. Partitioning of atmospheric transmission factor,
AT into direct and diffuse components, ATb and ATd.
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are represented by �
00
b and �

00
d , respectively. �

0�
b and �

0
d denote

the direct and diffuse fraction when there is scattering but
for a deep canopy and �b and �d denote direct and diffuse
fraction when there is scattering and the canopy is finite.
The approach used is general such that it can be applied
with both direct and diffuse radiation, and shortwave and
longwave radiation, but with different scattering parameters.
In this general approach we use Q to represent radiation that
may be direct, Qb, diffuse, Qd , or longwave, Qli, reaching
the surface and Qo to represent the corresponding the value
of this incoming radiation at the top of the canopy (all radia-
tion terms in W m�2).

3.1.2.1. Radiation Transmission Without Scattering
(Beer’s Law)

[24] In considering the penetration of light through a
canopy the interception of a beam at zenith angle � by an
incremental layer of vegetation results in reduction in in-
tensity given by

dQ ¼ �QG�
dy

cos �
; (5)

where Q is radiation intensity, � (m�1) is the leaf density, y
(m) is the distance measured vertically downward from the
top of the canopy and G is a leaf orientation factor quantify-
ing the average area of leaves when viewed from direction
�. Here G is assumed to be constant (i.e., independent of �).
Integrating equation (5) from the top of the canopy down-
ward results in Beer’s law (Figure 3)

Q ¼ Qoexp ��G
y

cos �

� �
: (6)

The nonscattering transmission factor is thus given by

�
00

b ¼
Q

Qo
¼ exp ð�Kb�yÞ; (7)

where Kb ¼ G=cos � groups leaf orientation and zenith
angle into a single parameter which is referred to as the
blackbody attenuation coefficient because it describes the
attenuation when the leaves are perfect radiation absorbers
(black bodies). �y gives the leaf area index of canopy above
point y.

3.1.2.2. Radiation Transmission With Scattering in an
Infinitely Deep Canopy

[25] The attenuation in equation (7) does not consider
scattering of light intercepted by the canopy. To account
for scattering we use an approximation following Monteith
and Unsworth [1990] that radiation from an incremental
layer is scattered equally in an upward and downward direc-
tion and that scattering is along the same path as the incom-
ing light. This approximation, strictly true only for leaves
oriented perpendicular to the light beam, has been suggested
and used as reasonable approximation for other angles to
obtain analytic results [Goudriaan, 1977; Monteith and
Unsworth, 1990] where otherwise radiation in multiple
directions would need to be modeled. With this approxima-
tion streams of both downward and upward radiation need to
be considered, hence the name two stream model, leading to

� dU ¼ �UKb�dyþ UKb�
�

2
dyþ QKb�

�

2
dy (8)

dQ ¼ �QKb�dyþ UKb�
�

2
dyþ QKb�

�

2
dy: (9)

In these equations � is the leaf scattering coefficient, Q and
U (W m�2), are intensity of the downward and upward
beams, respectively (Figure 4). These equations account for
the reduction in intensity of each beam due to interception,
similar to Beer’s law, but with scattering from each incre-
mental layer assumed to be half upward and half down-
ward. These equations are referred to as the Kubelka and
Monk equations [Monteith and Unsworth, 1990]. Note that
these are written for y positive in the downward direction.

[26] The pair of differential equations (8) and (9) have a
general solution (see the Appendix)

QðyÞ ¼ 1

2
C1 1� 1

k 0

� �
exp ðk 0Kb�yÞþC2 1þ 1

k 0

� �
exp ð�k

0
Kb�yÞ

� �
(10)

UðyÞ ¼ 1

2
�C1

1

k 0
þ 1

� �
exp ðk 0Kb�yÞ

�

þ C2
1

k 0
� 1

� �
exp ð�k

0
Kb�yÞ

�
;

(11)

where C1 and C2 (W m�2) are integration constants and
k0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
1��
p

.
[27] For an infinitely deep canopy with y ¼ 0 at the top

of the canopy, a beam penetrating the canopy is reduced to

Figure 3. Illustration of radiation attenuation through a
canopy that results in Beer’s law.

Figure 4. Incremental changes in upward and downward
radiation beams calculated using equations (8) and (9).

�The term is correct here and throughout. The article as originally published appears online.
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zero (Q ¼ 0) when y!1 (measured downward). This
condition results in C1 ¼ 0. With this boundary condition,
equations (10) and (11) reduce to

QðyÞ ¼ C2

2
1þ 1

k 0

� �
exp ð�k

0
Kb�yÞ (12)

UðyÞ ¼ C2

2

1

k 0
� 1

� �
exp ð�k

0
Kb�yÞ: (13)

These represent an exponential decrease in light intensity
into the canopy similar to equation (7) but with the expo-
nent reduced by a factor k

0
. k
0
quantifies the effect of multi-

ple scattering on light penetration. The value of C2 is
related to the top boundary condition, Qo. The deep canopy
solution, equation (12), yields the deep canopy multiple
scattering transmission factor

�
0

b ¼
QðyÞ
Qo
¼ exp ð�k

0
Kb�yÞ: (14)

This is a modification to Beer’s law for radiation transmis-
sion of a single beam accounting for scattering.

[28] The upward reflection factor giving the fraction of
radiation reflected back from a deep canopy with multiple
scattering, �0 can be estimated using equations (12) and
(13) as

�
0 ¼ UðyÞ

QðyÞ ¼
1� k

0

1þ k 0
: (15)

[29] The above is for a single beam. For diffuse radiation
the approach is to recognize that it is composed of single
beam components from each direction Qð�Þ. The compo-
nent of each of these normal to the surface is integrated
over the hemisphere. With this approach diffuse radiation

above and in the canopy is given by

Z
�

Qð�Þcos �d� and

Z
�

Qð�Þ� 0bcos �d�, respectively. In this integral �
0
b depends

on Kb which is function of �. Using these integrals, the
transmission factor for diffuse radiation, �

0
d may be

expressed as

�
0

d ¼

Z
�

Qð�Þ� 0bcos �d�

Z
�

Qð�Þcos �d�
; (16)

where Qð�Þ is the radiance of the sky from the direction �,
d� ¼ sin �d�d� is the solid angle for integration over the
hemisphere, � is the zenith angle in the range ð0; 	=2Þ and
� is the azimuth angle in the range ð0; 2	Þ.

[30] Assuming that radiation in the canopy is isotropic,
Qð�Þ ¼ Q, a constant; the solution to this equation [Nijssen
and Lettenmaier, 1999] is

�
0

d ¼ ½ð1� k
0
G�yÞexpð�k

0
G�yÞþðk 0G�yÞ2Eið1;k

0
G�yÞ�; (17)

where Eiðn;xÞ with n a nonnegative integer is the exponen-
tial integral, defined as

Eiðn;xÞ ¼ 2

Z1
1

expð�xtÞ
tn

dt: (18)

Because diffuse radiation is just an integral of direct beam
components over the hemisphere, the upward diffuse radia-
tion reflection factor for a deep canopy is also given by
equation (15).

3.1.2.3. Radiation Transmission With Scattering in a
Finite Canopy

[31] The radiation transmission factors shown in equa-
tions (14) and (15) above are for an infinitely deep canopy.
We obtain the solution for a finite canopy by recursive
superposition of the deep canopy solution (Figure 5). At
depth y into a deep canopy, the solution is

Q1ðyÞ ¼ Qo�
0 ðyÞ (19)

U1ðyÞ ¼ �
0
Qo�

0 ðyÞ; (20)

where �
0 ðyÞ may be �

0
b from equation (14) or �

0
d from equa-

tion (17).
[32] Now suppose the canopy has a finite depth, D (m),

and incident radiation, Qo, at the top with no incident radia-
tion from below the base. At the base, y ¼ D, the upward
radiation U should be zero rather than U1ðDÞ given by
equation (20). This can be obtained by adding (superpos-
ing) a solution for radiation input �U1ðDÞ at the base.

[33] Applying equations (14) and (15) but for �U1ðDÞ
incident from below, we get

U2ðyÞ ¼ �U1ðDÞ�
0 ðD� yÞ ¼ ��0Qo�

0 ðDÞ� 0 ðD� yÞ (21)

Q2ðyÞ ¼ ��
0
U1ðDÞ�

0 ðD� yÞ ¼ �ð�0 Þ2Qo�
0 ðDÞ� 0 ðD� yÞ: (22)

This would result in Q2ð0Þ ¼ ��
0
U1ðDÞ�

0 ðDÞ ¼ �ð�0 Þ2Qo �
ð� 0 ðDÞÞ2 at the top where y ¼ 0. As before the top boundary
condition Q2ð0Þ should be zero. This necessitates super-
posing another solution using incident radiation input of
�Q2ð0Þ at the top, which gives

Q3ðyÞ ¼ �Q2ð0Þ�
0 ðyÞ ¼ ð�0 Þ2Qoð�

0 ðDÞÞ2� 0 ðyÞ (23)

U3ðyÞ ¼ ��
0
Q2ð0Þ�

0 ðyÞ ¼ ð�0 Þ3Qoð�
0 ðDÞÞ2� 0 ðyÞ: (24)

Continuing this process recursively, the finite depth solu-
tion is

QðyÞ ¼ Q1ðyÞ þQ2ðyÞ þQ3ðyÞ þ . . . (25)

UðyÞ ¼ U1ðyÞ þU2ðyÞ þU3ðyÞ þ . . . (26)

These infinite series can be evaluated to give

QðyÞ ¼ Qo
½� 0 ðyÞ � ð�0 Þ2� 0 ðDÞ� 0 ðD� yÞ�

1� ð�0 Þ2ð� 0 ðDÞÞ2
(27)
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UðyÞ ¼ Qo
½�� 0 ðyÞ � ð�0 Þ� 0 ðDÞ� 0 ðD� yÞ�

1� ð�0 Þ2ð� 0 ðDÞÞ2
: (28)�

Using equations (27) and (28), the finite canopy transmis-
sion and reflection factors, � and � can be calculated as

� ¼ QðDÞ
Qo
¼ �

0 ðDÞ½1� ð�0 Þ2�
1� ð�0 Þ2ð� 0 ðDÞÞ2

(29)

� ¼ Uð0Þ
Qo
¼ �

0 ½1� ð� 0 ðDÞÞ2�
1� ð�0 Þ2ð� 0 ðDÞÞ2

: (30)

Equations (29) and (30) can be used for both direct and
diffuse radiation. The fraction of direct radiation transmit-
ted through the canopy, �b, and diffuse radiation transmit-
ted through the canopy, �d , can be calculated using
�
0 ¼ � 0b and �

0 ¼ � 0d , respectively, in equation (29). Simi-
larly the direct and diffuse fractions of radiation reflected
back from the canopy in an upward direction, �b and �d
can be calculated using �

0 ¼ �b
0 and �

0 ¼ � 0d , respectively,
in equation (30).

[34] In evaluating (29) and (30) in the direct radiation
case, using equation (14)

�
0

bðDÞ ¼
QðDÞ

Qo
¼ exp ð�k

0
Kb�DÞ ¼ exp ð�k

0 G

cos �
LF Þ: (31)

Here �D, the leaf area index over the full canopy depth D
has been replaced by LF where L is the tree level leaf area
index and F is the canopy cover fraction accounting for the
fact that trees may not completely cover the domain. The
product LF is effectively a canopy level leaf area index. We
assume a constant leaf orientation factor, G ¼ 0.5, represent-
ing isotropic leaf orientations.

[35] In the diffuse radiation case, using equation (17)

�
0

dðDÞ ¼ ½ð1� k
0
G�DÞexp ð�k

0
G�DÞ þ ðk 0G�DÞ2Eið1; k

0
G�DÞ�

¼ ½ð1� k
0
GLFÞexp ð�k

0
GLFÞ þ ðk 0GLFÞ2Eið1; k

0
GLFÞ�

:

(32)

We treat G, L, and F as constants, neglecting any effects
canopy intercepted snow may have on canopy radiation
transmission and reflectance.

[36] Figure 6 compares the transmittance of direct and
diffuse solar radiation calculated using the two stream
approach (equation (29)) with the transmittance of radia-
tion calculated using Beer’s law (equation (7)) as a function
of zenith angle. A significant increase in transmittance over

Figure 6. Radiation transmittance as a function of solar
zenith angle calculated using Beer’s law (equation (7)) and
the two stream approach (equation (29)) developed in this
work for canopy level leaf area index (LF) of 3.15 and leaf
scattering coefficient � of 0.5.

Figure 5. Sequence of superposed deep canopy solutions that offset the deep canopy backscatter by
adding another deep canopy solution in the opposite direction with negative input to obtain finite canopy
solution.

�The equation is correct here. The article as originally published appears online.
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the Beer’s law attenuation occurs due to multiple scattering
in the canopy.

3.2. Longwave Radiation

[37] Longwave radiation originates from three possible
sources : the sky, snow surface and the canopy. Longwave
radiation from each of these sources is considered to be dif-
fuse radiation that penetrates through or is scattered by the
canopy according to diffuse radiation transmission proc-
esses. However the scattering of longwave radiation is much
less than that of shortwave radiation because the leaf-scale
reflectance for longwave, � ¼ 1� "c, is very close to 0,
where "c is canopy emissivity. Longwave radiation emitted
by the canopy, Qlc, is calculated as "c
Tc

4ð1� �dÞ, where 

is the Stefan–Boltzmann constant (5.67 � 10�8 W m�2 K�4),
Tc (K) is the canopy temperature and ð1� �dÞ accounts for
the fraction of the canopy exposed. The longwave radiation
emitted from the atmosphere, Qli, and snow surface, Qle,
are calculated as "a
Ta

4 and "s
Ts
4, where "a and "s are air

and snow emissivity, and Ta (K) and Ts (K) are air and
snow surface temperatures, respectively.

[38] We use Satterlund’s parameterization [Satterlund,
1979] of air emissivity for clear sky conditions

"acls ¼ 1:08 1� exp � ea

100

� �Ta=2016
� �� �

; (33)

where ea is air vapor pressure (Pa). To adjust for cloud
cover we use

"a ¼ Cf þ ð1� Cf Þ"acls; (34)

where Cf is the cloud cover fraction.

3.3. Multiple Reflections Between the Canopy and
Surface

[39] The above canopy transmission parameterization
represents multiple scattering within the canopy. There is
however the opportunity for light to reflect multiple times
between the canopy and surface. Section 3.3 describes how
these multiple reflections are numerically evaluated.

[40] For solar radiation we treat the canopy as a single
layer with internal multiple scattering accounted for as
described above. When each component of the solar beam
(direct and diffuse) impacts the canopy; part of it is absorbed,
part is reflected and part is transmitted. The reflected part is
lost upward. The transmitted part is absorbed or reflected at
the surface; and the part reflected from the surface is again
absorbed, transmitted or reflected by the canopy leading to
multiple reflections between the canopy and surface. These
multiple reflections are assumed to be diffuse and the reflec-
tion by or transmission through the canopy is calculated
using � and � from equations (29) and (30). Radiation that is
reflected from the surface is calculated using snow surface
albedo, A, which is modeled based on snow surface age and
depth [Tarboton and Luce, 1996; Tarboton et al., 1995]. The
effects of forest litter on the beneath canopy snow albedo are
not modeled.

[41] After multiple reflections the overall fractions of so-
lar radiation from above transmitted and reflected by the
canopy, f1 and f3 (Figure 7) are given by

f1 ¼
ð1� AÞ�

1� A�dð1� �dÞ
(35)

f3 ¼
ð1� AÞ� þ A��d

1� A�dð1� �dÞ
: (36)

Here � and � are direct or diffuse factors depending on
whether the incident radiation is direct or diffuse. The frac-
tion of radiation intercepted by the canopy, f2 can be calcu-
lated by subtracting (35) and (36) from 1. Summing up
fractions from both direct and diffuse beams yields

Qsns ¼ f1bQb þ f1dQd ; (37)

Qcns ¼ f2bQb þ f2dQd ; (38)

Qrns ¼ f3bQb þ f3dQd ; (39)

where Qsns, Qcns, and Qrns are subcanopy net solar radia-
tion, canopy net solar radiation and reflected solar radia-
tion lost upward, respectively. Here subscripts b and d in
f1, f2, and f3 refer to direct and diffuse solar radiation,
respectively.

[42] For longwave radiation we ignore multiple reflec-
tions as both plants and snow strongly absorb longwave
radiation (absorptivity equal to emissivity close to 1). Like
shortwave radiation, longwave radiation from all three
sources is partitioned into fractions: f1 (absorbed at sur-
face), f2 (absorbed in canopy) and f3 (lost to sky). Summing
up fractions from all sources yields

Qsnl ¼ f1iQli � Qle þ f1eQle þ f1cQlc; (40)

Qcnl ¼ f2iQli þ f2eQle þ f2cQlc � 2Qlc; (41)

Qrnl ¼ f3iQli þ f3eQle þ f3cQlc þ Qlc; (42)

where Qsnl, Qcnl, and Qrnl are subcanopy net longwave radi-
ation, canopy net longwave radiation and reflected net
longwave radiation lost upward, respectively. The sub-
scripts i, e, and c in f1, f2, and f3 are used to represent the

Figure 7. Factors to quantify the ultimate partitioning of
any radiative input Q into components absorbed by the
surface, f1, or canopy, f2, or lost to the sky above, f3. Q
may represent solar or longwave radiation from the sky/
atmosphere, canopy or surface. f1 þ f2 þ f3 ¼ 1.
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radiation from sky, snow surface and from the canopy,
respectively. The fractions f1, f2, and f3 for longwave radia-
tion are calculated as

f1i ¼ "s�d ; f2i ¼ ð1� �dÞ"c þ �dð1� "sÞ; f3i ¼ ð1� �dÞð1� "cÞ;
f3e ¼ �d ; f2e ¼ ð1� �dÞ"c; f1e ¼ ð1� �dÞð1� "cÞ;
f1c ¼ "s; f3c ¼ �dð1� "sÞ and f2c ¼ ð1� �dÞð1� "sÞ"c:

(43)

With emissivities close to 1 there is a very small error in
these equations that we neglect due to the neglect of multi-
ple reflections. The net longwave and shortwave radiation
calculated here are used with other energy fluxes in the
snowmelt model energy balance equations to provide the
net energy that drives the snowmelt in the open, beneath
the canopy or within the canopy.

4. Model Application and Simulation Results
[43] Simulations were performed for the period of Janu-

ary 2008 to July 2008, December 2008 to July 2009 and
January 2009 to July 2010 to estimate the radiation and
snowmelt in the open and within and below the deciduous
and coniferous forest using the hourly meteorological
inputs of precipitation, temperature, wind speed and rela-
tive humidity. For forested areas, the open site meteorolog-
ical variables are assumed representative of conditions at a
height of 2 m above the forest canopy. Wind speeds within
and beneath the canopy were calculated working downward
from above the canopy using exponential and logarithmic
wind profiles [Bonan, 1991; Koivusalo, 2002]. Input pre-
cipitation data were taken from the SNOTEL site located in
a small opening in the conifer forest and the other meteoro-
logical input data were obtained from the shrubs B (SB)
open site (Figure 1). Leaf area index values for conifer and
deciduous forest were chosen based on the ranges of values
that are found in the literature, but with adjustments within
these ranges to fit our data. Canopy coverage fraction was

estimated based on our field observations of the canopy,
but not on formal measurements. Thermal conductivity of
snow and soil were adjusted (calibrated) to obtain a better
match between modeled and observed surface temperature
at the central open site for the whole simulation period.
This adjustment was needed to correctly estimate the
energy fluxes, including longwave radiation that is based
on surface temperature. The thermal conductivity parame-
ters obtained from calibration at the open site were used in
both open and forest settings. By calibrating thermal con-
ductivity at the open site we separate the calibration issue
from the evaluation of the canopy radiation model that is
the main focus of this paper. Other parameters follow the
original UEB model [Tarboton and Luce, 1996; You, 2004]
are presented in Table 2.

[44] The model is able to predict the SWE, snow surface
temperature, snow average temperature, canopy wind
speed, radiation, energy fluxes and interception for both
open and forest areas. Measurements of the four radiation
components and surface temperature were available for the
years 2009 and 2010, but not 2008 at the open site. We
compare measured and modeled radiation components for
2009 and 2010 to validate the models calculation of open
(above canopy) radiation. We then drive the model by
inputs of measured open incoming shortwave and long-
wave radiation for 2009 and 2010, and modeled incoming
shortwave and longwave radiation in 2008. 2008 serves as
a check of the more complete model including atmospheric
radiation parts. We evaluate the modeling of canopy radia-
tion transmission processes by comparing modeled and
observed below canopy net radiation and SWE. The SWE
comparisons serve as an aggregate test of all aspects of the
model, not limited to correct radiation transmission.

4.1. Four Radiation Components and Surface
Temperature

[45] The four radiation components were continuously
measured at the central tower site for two winters (2008–
2009 and 2009–2010). Measurements were compared with

Table 2. Model Parameters

Name Values Basis

Air temperature above which precipitation is all rain (Tr) 3�C Tarboton et al. [1995], U.S. Army Corps of Engineers [1956]
Air temperature below which precipitation is all snow(Tsn) �1�C Tarboton et al. [1995], U.S. Army Corps of Engineers, [1956]
Emissivity of snow ("s) 0.98 Tarboton et al. [1995]
Ground heat capacity (Cg) 2.09 kJ kg�1 C�1 Tarboton et al. [1995]
Nominal measurement of height for air temperature and humidity (Z) 2.0 m Tarboton et al. [1995]
Surface aerodynamic roughness (Zo) 0.01 m You [2004]
Soil density (�g) 1700 kg m�3 Tarboton et al. [1995]
Liquid holding capacity of snow (Lc) 0.05 Tarboton et al. [1995]
Snow saturated hydraulic conductivity (Ks) 20 m h�1 Tarboton et al. [1995]
Visual new snow albedo (��o) 0.85 Tarboton et al. [1995]
Near IR new snow albedo (�iro) 0.65 Tarboton et al. [1995]
Bare ground albedo (�bg) 0.25 Tarboton et al. [1995]
Thermally active depth of soil (de) 0.1 m You [2004]
Thermal conductivity of snow (�s) 3.6 Wm�1 K�1 Adjusted
Thermal conductivity of soil (�g) 14.4 Wm�1 K�1 Adjusted
Atmospheric transmittivity for cloudy conditions (as) 0.25 Shuttleworth [1993]
Atmospheric transmittivity for clear conditions (as þ bs) 0.75 Shuttleworth [1993]
Ratio of direct to total radiation for clear sky (�) 6/7 Calculated
Richardson number upper bound for stability correction (Rimax) 0.16 Koivusalo [2002]
Leaf scattering coefficient (conifer/deciduous) (�) 0.5 Norman [1979]
Emissivity of canopy (conifer/deciduous) ("c) 0.98 Bonan [1991]
Interception unloading rate (Us) 0.00346 h�1� Hedstrom and Pomeroy [1998]

�The value is correct here. The article as originally published appears online.
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model outputs aggregated to a daily time scale so as to
mask the effect of diurnal fluctuations and to better see
daily total comparisons (Figure 8). Simulated values of so-
lar radiation (incoming and reflected) and longwave radia-
tion (incoming and outgoing) compared well with the
observations for the 2 years with measured radiation data
(2009 and 2010). The modeled incoming radiation that
tracks observations reasonably well confirms cloud cover
and atmospheric transmittivity parameterizations based on
diurnal temperature range. The modeled outgoing radiation
that tracks observation reasonably well serves to check the
model albedo and surface temperature and emissivity rep-
resentations. The high correlation and modest BIAS and
RMSE values in scatterplots (Figure 8), relative to the
ranges of these measurements also confirm the model
effectiveness. Some of the differences may also be due to
measurement errors such as the sensor sometimes having
snow on it in this winter environment.

[46] The outgoing longwave radiation, and many other
fluxes at the snow surface, are functions of the snow surface
temperature, which itself results from the balance of energy
fluxes to and from the surface. This is why the representa-
tion of surface temperature by a snowmelt model is impor-
tant. The model predictions of surface temperature at the

open (snow/shrub) central tower site compared reasonably
well to measured values (Figure 9). Some zero values seen
in the model differed from observed values (Figure 9)
because of the model retaining snow a few days longer than
was observed. Temperature values above 0�C occur on days
without snow.

4.2. Net Radiation

[47] The model simulation of below canopy net radiation
was compared with the net radiation measured below coni-
fer (CA) forest and deciduous (DB) forest canopy, aggre-
gated to daily time scale (Figure 10). The model
predictions of net radiation followed the below canopy net
radiation measurements reasonably well with correlation of
about 0.90 for both forest types (Figure 10). Also, small
BIAS and RMSE values were observed. In Figure 10 the
scatterplots for 2008 where inputs were modeled radiation are
separated from scatterplots for 2009 and 2010 where inputs
are measured longwave and shortwave radiation from the
open site. Both the time series and scatterplots for 2008
showed that the predictions of below canopy net radiation
from the modeled above canopy radiation were not signifi-
cantly different than those predicted using the measured
above canopy radiation as input. For all these results the

Figure 8. Time series and scatterplots of observed and modeled mean daily radiation components:
(a) incoming solar radiation, (b) outgoing (reflected) solar radiation, (c) incoming longwave radiation,
(d) outgoing longwave radiation.
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modeled net radiation tended to have a slight overprediction
bias compared to the measurements in the early period. How-
ever the model showed relatively good agreement with obser-
vations during spring, which is important for calculating

melt. The BIAS and RMSE values were found to be slightly
higher for deciduous forest in comparison to conifer forest.

[48] To further evaluate the model, modeled beneath
canopy daily net radiation versus open area daily net radia-
tion was compared to observations of the same quantities
each year for both conifer and deciduous forest (Figure 11).
The solid lines in the Figure are linear least square fits con-
strained to go through the origin: red for simulated and
black for the measured values, with the slopes given in the
plots. These graphs show what fraction of open net radia-
tion is measured beneath the canopy and how the model is
able to represent this for both coniferous and deciduous for-
est. These figures indicate a slight over prediction bias in
the model.

[49] The original UEB model uses linear relationships to
reduce shortwave, longwave or net radiation beneath the
canopy based on forest cover fraction, F. Wind speed and
the corresponding heat and vapor fluxes are reduced by fac-
tor (1–0.8 F). Table 3 compares the new model simulated
radiation with old model results. The old model predictions
of beneath canopy radiation, especially the longwave radia-
tion is very low. The old model reduces the incoming long-
wave radiation beneath the canopy, however the beneath
canopy longwave radiation increases because of the higher
emissivity of the canopy in comparison to the atmosphere.

Figure 9. Scatterplot of observed and modeled hourly
surface temperature for the year 2008 and 2009 at central
tower (snow/shrub).

Figure 10. Time series and scatterplots of mean daily net radiation: observed and modeled beneath the
deciduous and coniferous forest canopy.
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Also, while calculating beneath canopy radiation, the origi-
nal model does not consider leaf area index and provides
similar solutions for two different forest types with differ-
ent leaf area with same canopy cover fraction.

4.3. Snow Water Equivalent

[50] Snow depths were monitored in the field by man-
ually probing depth at twenty one locations and automati-
cally with snow depth sensors mounted in on twelve
weather station towers (Figure 1). These depths were used
with density sampled over the depth of two snow pits to
derive snow water equivalent, SWE (m), in each of the veg-
etation classes. The model was initialized with measured
SWE values (from snow depth sensors) on 1 April and run

for the period between 1 April to 30 June to simulate the
SWE values that were compared with observations made in
the open, and beneath the deciduous and coniferous cano-
pies (Figure 12). The simulation period was chosen to
cover the melt period only, because the canopy radiation
transmission is dominant in driving snowmelt, while other
processes like interception and sublimation are more im-
portant earlier in the snow season. The observed SWE val-
ues (from depth sensors) below the conifer and deciduous
forest are averages of the measurements in each forest type.
The observed SWE for the open area is taken from a single
site (SB) chosen because this site was least affected by
wind drift and scouring. All the meteorological input varia-
bles used in this work were taken from the SB site. Field

Figure 11. Observed and modeled below canopy net radiation presented in comparison to open area
net radiation (observed and modeled) for the years 2008, 2009 and 2010. Solid lines are least square fits
constrained to go through the origin. The regression slope is indicated for each line and gives the average
fraction of under canopy net radiation as compared to net radiation in the open.

Table 3. Comparison of New and Original UEB Model Radiation Components With Some Measurements

Mean Energy Fluxes (W m�2)
Averaged for 1 April to 30 June

Melt Period 2009 and 2010 Open, Measured

Deciduous Conifer

Measured New UEB Old UEB Measured New UEB Old UEB

Surface/subcanopy solar radiation Qss; 231.1 – 147.1 66.7 – 49.2 68.2
Qss: – – 82.3 44.7 – 32.5 45.7

Surface/subcanopy longwave radiation Qsl; 284.2 – 306.2 85.0 – 325.5 85.1
Qsl: – – 315.9 92.6 – 310.1 92.7

Surface/subcanopy net solar radiation Qsns; – – 64.8 22.0 – 16.8 22.5
Surface/subcanopy net longwave radiation Qsnl; – – �9.7 �7.6 – 15.4 �7.6
Surface/subcanopy net radiation Qsn; 70.3 39.3 55.1 14.4 22.9 32.2 14.9
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surveyed SWE values were quite variable. The field sur-
veyed SWE values for each vegetation class presented here
are from locations selected to have their first SWE value
most closely matching the SWE value for that vegetation
class calculated from snow depth sensors and used to initi-
alize the model. The snow melt and SWE values in the
open area and beneath the deciduous and conifer forest can-
opy were reasonably predicted by the model.

5. Discussion
[51] The radiation transmission model we developed is

based on a simple two stream approximation that uses leaf
area index as a key parameter and provides solution similar
to Beer’s law but adjusted for multiple scattering. The model
is not intended to replace detailed multilayer radiation

transfer models that consider the leaf orientation, inclination
and distribution for each layer separately, but is suggested as
a parsimonious approach when detailed information for each
canopy layer is not available.

[52] Overall, in examining the results, we see that the
model simulated radiation values were in general agree-
ment with the observed radiation values below different
forest canopies. We found that there was a tendency to over
predict early season net radiation (Figure 10) and overall
slightly over predict the fraction of open net radiation
found beneath a canopy (Figure 11). These effects were
generally small and may be due to many factors. The radia-
tion transmission model has a number of simplifications
and does not represent canopy architecture, leaf orientation
and layering effects. The model calculates average radia-
tion beneath the canopy ignoring vertical and horizontal
forest heterogeneity that result in spatial variability of radi-
ation beneath the canopy. Also, the radiation sensor may
not have been ideally placed to measure average radiation.

[53] There are also uncertainties associated with the leaf
level reflectances that were taken from the literature and
estimates of leaf area index. There might also be measure-
ment errors. During the early winter the upper part of the
net radiometer had a tendency to catch snow which may
result in bias in the measurements. There could also be
uncertainty in the partitioning of incoming solar radiation.
As direct and diffuse radiation attenuates differently in the
canopy, the uncertainty in partitioning may also lead to
errors in canopy radiation transmission processes. Small
errors in predicting the canopy or surface temperature may
cause errors in representing the longwave radiation that has
a large contribution to net radiation. Also, the albedo of
snow beneath the forest canopy is influenced by the forest
litter.

[54] The radiation transfer processes in the conifer can-
opy was better represented by the model in comparison to
that in deciduous canopy (Figure 10). The problem in the
deciduous site could be the poor representation of canopy
structure. In our simulation we assumed similar leaf struc-
tures and reflectivity for both deciduous and conifer trees.
However the emissivity and scattering characteristics of
these two species can be different, as one is leaved and the
other is leafless tree during the winter.

[55] Given all the uncertainties and assumptions in the
model, the model seems to be successful in terms of predict-
ing the net radiation for snowmelt (Figure 10). The model’s
generally good prediction of net radiation is reflected in
SWE and snowmelt comparisons for open, beneath decidu-
ous and conifer forest canopies (Figure 12). Slower ablation
as forest density increases (open to deciduous to conifer) is
evident in the observations. This effect is evident in the
model results, reflecting the model’s capability to, in aggre-
gate, represent the processes driving snow melt in open and
forested areas, with appropriate sensitivity to forest type.

[56] In the SWE comparisons using the full new UEB
model, there are model changes in terms of the representa-
tion of other canopy processes such as snow interception/
sublimation and turbulent fluxes of sensible heat and latent
heat that have not been fully described or evaluated in this
paper and that do, to some extent impact the results in
Figure 12, and even to some extent the net radiation
comparisons since they impact surface temperature. It is

Figure 12. Snow Water Equivalent (SWE) comparison
across different vegetation classes for the 2008, 2009 and
2010 snowmelt periods.
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simply not possible to isolate and evaluate only one set of
processes in a system such as snow under a canopy where
there are many interacting processes. Our focus on the melt
period where radiation dominates the beneath canopy latent
heat and sensible heat fluxes which totaled about 2% of
beneath canopy net radiation serves as the best possible
validation of the new radiation components added. Future
work will more comprehensively evaluate the other new
model components.

[57] The two stream multiscattering approach used here
enables the quantification of the energy balance of the
snowpack and simulation of snowmelt in forested environ-
ments without requiring detailed canopy structure inputs.
The approach is simple enough to be applied in a spatially
distributed way so as to explicitly represent variability in
canopy processes in the simulation of snowmelt over a
watershed in a relatively physically based fashion. This
would take advantage of detailed spatial information such
as different grid values of slope and aspect (to account for
topography) and leaf area index and canopy coverage to
quantify the vegetation. Advancing capability for remote
sensing of these quantities [e.g., Fassnacht et al., 1997;
Running et al., 1989; Zheng and Moskal, 2009] would ben-
efit this modeling approach.

[58] While we have not quantitatively compared this
approach to other approaches that require similar input in-
formation, we feel that the physically based rigor of the
two-path multiscattering approach gives it a theoretical
advantage that has been shown to, at least for our data, do a
reasonable job of capturing sensitivity to canopy variabili-
ty. Our model does not address transition effects such as so-
lar radiation penetration to snow beneath a forest canopy
near an opening, or shading of open areas by nearby for-
ests. Further study to understand and quantify the impacts
and importance of transitions on snow accumulation and
melt is warranted.

6. Conclusions
[59] We developed a simple canopy radiation transfer

model that looks similar to Beer’s law but considers the
multiple scattering and reflection of radiation in the canopy
based on two radiation streams, upward and downward.
The model estimates the radiation beneath the canopy,
which is important to predict the snowmelt responsible for
water supply, using leaf area index as the key canopy pa-
rameter. The model results agreed well with observed net
radiation and SWE values beneath coniferous and decidu-
ous forest canopies. The model had a weakness in predict-
ing the radiation beneath the canopy during the early
winter ; however the prediction of radiation for the late
winter and spring period was better. The model was able to
capture the differences in ablation between open and for-
ested areas and in coniferous and deciduous forest.

[60] The approach used here offers improvements over
existing models that use simple linear reduction or Beer’s
law to attenuate radiation in a forest canopy. The canopy
radiation transmission model developed in this work is an
advance over Beer’s law which does not account for multi-
ple scattering of radiation. It uses a physically based
approach to model absorption and scattering of radiation by
the canopy, but limiting inputs to parameters that may be

relatively easily obtained in the field or by remote sensing.
Many of the canopy radiation transmission models used in
snow modeling are either oversimplified and less physically
relevant or over parameterized and require extensive inputs
that are hard to obtain. The solution for multiple scattering
in a canopy with finite depth using the two stream approxi-
mation given here is, to our knowledge, new. The findings
from this work may be of interest not only to people who
want to use the improved UEB model but also to the wider
snow modeling community who want to better predict the
beneath canopy radiation and energy balance with a parsi-
monious parameterization of the penetration of radiation
through canopy in a forested environment.

Appendix: Solution to Equations (8) and (9)
[61] Equations (8) and (9) are

�dU ¼ �UKb�dyþ UKb�
�

2
dyþ QKb�

�

2
dy (A1)

dQ ¼ �QKb�dyþ UKb�
�

2
dyþ QKb�

�

2
dy: (A2)

Subtracting equation (A1) from (A2) and dividing by dy
gives

d

dy
ðQþ UÞ ¼ ��KbðQ� UÞ: (A3)

Similarly, adding equations (A1) and (A2) and dividing by
dy gives

d

dy
ðQ� UÞ ¼ ��KbðQþ UÞ þ �Kb�ðQþ UÞ: (A4)

Let

R ¼ Qþ U (A5)

T ¼ Q� U : (A6)

Substituting R and T in equations (A3) and (A4) yields

d

dy
R ¼ �T�Kb (A7)

d

dy
T ¼ ��KbRþ �Kb�R ¼ ��Kbð1� �ÞR: (A8)

Differentiating equation (A8)

d2

d2y
T ¼ ��Kbð1� �Þ

dR

dy
: (A9)

Putting dR=dy from equation (A7) and rearranging equation
(A9) yields

d2

d2y
T � ð�KbÞ2ð1� �ÞT ¼ 0: (A10)
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Equation (A10) is a second-order linear ordinary differential
equation that may be written in operational form as

ðD� rÞðDþ rÞT ¼ 0; (A11)

where

D ¼ d

dy
and r ¼ �Kb

ffiffiffiffiffiffiffiffiffiffiffiffi
1� �
p

: (A12)

Denoting

ðDþ rÞT ¼ T1; (A13)

equation (A11) becomes

ðD� rÞT1 ¼ 0 or equivalently
dT1

dy
� rT1 ¼ 0: (A14)

Equation (A14) is a first-order linear differential equation
with solution

T1 ¼ c1exp ðryÞ: (A15)

Putting T1 in equation (A13) yields

ðDþ rÞT ¼ c1exp ðryÞ or equivalently
dT

dy
þ rT ¼ f1ðyÞ;

(A16)

where

f1ðyÞ ¼ c1exp ðryÞ:

The solution to first-order linear differential equation (A16)
is

T ¼ exp ð�ryÞ
Z

exp ðryÞf1ðyÞdyþ c2exp ð�ryÞ

¼ exp ð�ryÞ
Z

exp ðryÞc1exp ðryÞdyþ c2exp ð�ryÞ

¼ c1exp ð�ryÞ
Z

exp ð2ryÞdyþ c2exp ð�ryÞ

¼ c1exp ð�ryÞ exp ð2ryÞ
2r

þ c3

� �
þ c2exp ð�ryÞ

¼ c1

2r
exp ðryÞ þ c1c3exp ð�ryÞ þ c2exp ð�ryÞ

¼ C1exp ðryÞ þ C2exp ð�ryÞ:

(A17)

This is the solution to equation (A10).
[62] Calculating R from equation (A8)

R ¼ � 1

ð1� �Þ�Kb

dT

dy
: (A18)

Differentiating equation (A17), we get

dT

dy
¼ C1r exp ðryÞ � C2r exp ð�ryÞ: (A19)

Putting dT=dy in equation (A18)

R ¼ � 1

ð1� �Þ�Kb
½C1r exp ðryÞ � C2r exp ð�ryÞ�

¼ C2
r exp ð�ryÞ
ð1� �Þ�Kb

� C1
r exp ðryÞ
ð1� �Þ�Kb

: (A20)

From equation (A5) and (A6), we have

Q ¼ Rþ T

2
(A21)

U ¼ R� T

2
: (A22)

Putting R and T in (A21) and (A22) gives Q(y) and U(y) as
functions of depth y

QðyÞ ¼ 1

2
C1 1� r

ð1� �Þ�Kb

� �
exp ðryÞ

�

þC2 1þ r

ð1� �Þ�Kb

� �
exp ð�ryÞ

� (A23)

UðyÞ ¼ 1

2
�C1

r

ð1� �Þ�Kb
þ 1

� �
exp ðryÞ

�

þC2
r

ð1� �Þ�Kb
� 1

� �
exp ð�ryÞ

�
:

(A24)

Substituting the value of r from equation (A12) in (A23)
and (A24) yields

QðyÞ ¼ 1

2

C1 1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �Þ

p
 !

exp ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �Þ

p
�KbyÞ

þC2 1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �Þ

p
 !

exp ð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �Þ

p
�KbyÞ

2
666664

3
777775

(A25)

UðyÞ ¼ 1

2

�C1
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �Þ

p þ 1

 !
exp ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �Þ

p
�KbyÞ

þC2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �Þ

p � 1

 !
exp ð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �Þ

p
�KbyÞ

2
666664

3
777775:

(A26)

Denoting k
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �Þ

p
gives equations (10) and (11) in

the body of the paper.
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