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Abstract 
Web based applications, web services, and online data and model sharing technology are 

becoming increasingly available to support hydrologic research. This promises benefits in terms 

of collaboration, computer platform independence, and reproducibility of modeling workflows 

and results. In this research, we designed an approach that integrates hydrologic modeling web 

services with an online data sharing system to support web-based simulation for hydrologic 

models. We used this approach to integrate example systems as a case study to support 

reproducible snowmelt modeling for a test watershed in the Colorado River Basin, USA. We 

demonstrated that this approach enabled users to work within an online environment to create, 

describe, share, discover, repeat, modify, and analyze the modeling work. This approach 

encourages collaboration and improves research reproducibility. It can also be adopted or 

adapted to integrate other hydrologic modeling web services with data sharing systems for 

different hydrologic models. 

Key words: hydrologic modeling, data sharing, reproducibility, web services, HydroShare 

This is the accepted version of the following published article: 

Gan, T., D. Tarboton, P. Dash, T. Gichamo and J. Horsburgh, (2020), "Integrating hydrologic 
modeling web services with online data sharing to prepare, store, and execute hydrologic 
models," Environmental Modelling & Software, 130: 104731, 
https://doi.org/10.1016/j.envsoft.2020.104731. 

https://doi.org/10.1016/j.envsoft.2020.104731


2 
 

Software availability 

The software created in this research is free and open source as part of the larger HydroShare 

software repository. The HydroShare software repository is managed through GitHub and is 

available at https://github.com/hydroshare/hydroshare. The HydroShare REST API Python 

Client repository is available at https://github.com/hydroshare/hs_restclient.The Utah Energy 

Balance (UEB) web app software is available in GitHub at 

https://github.com/gantian127/tethysapp-ueb_app. A snapshot of the code for the app at the time 

of this writing was also published in Zenodo (Gan et al., 2020). Code for the HydroDS modeling 

web services is available at https://github.com/CI-WATER/Hydro-DS.  

 

1 Introduction 
Hydrologic modeling is essential as a guide to formulating strategies for water resources 

management or as a tool of scientific inquiry (Dingman, 2008). However, hydrologic modeling 

research presents a number of challenges. Modelers need to discover and collect data from 

various sources (Archfield et al., 2015) and use it to prepare model inputs. Model input 

preparation can be time consuming and may require a substantial learning curve, especially 

where programming is needed (Miles, 2014). Furthermore, modelers may need to access high 

performance computing (HPC) resources to effectively handle large scale or complicated 

hydrologic model simulations (Kumar et al., 2008; Laloy and Vrugt, 2012). Curating and sharing 

modeling datasets and metadata publicly is also important to improving reproducibility (Demir 

and Krajewski, 2013; Archfield et al., 2015; Hutton et al., 2016; Essawy et al., 2018; Chuah et 

al., 2020). Collaboration among people from various disciplines and areas is one of the key 

factors in catalyzing new research findings (Silliman et al., 2008). Computer systems as 

infrastructure (cyberinfrastructure) that enable collaboration have the potential to significantly 

advance environmental modeling research.  

With the development of web technologies and standards, one promising direction is to provide 

web services or web applications to help people overcome these hydrologic modeling challenges 

and improve the efficiency of hydrologic modeling work. There are a number of systems that 

help acquire or preprocess datasets as model input files for hydrologic models (Leonard and 

Duffy, 2013; Billah et al., 2016; Gichamo et al., 2020). For instance, Billah et al. (2016) 

https://github.com/hydroshare/hydroshare
https://github.com/hydroshare/hs_restclient
https://github.com/gantian127/tethysapp-ueb_app
https://github.com/CI-WATER/Hydro-DS
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developed web services that help to automate the grid data pre-processing workflow for 

preparation of model inputs for the Variable Infiltration Capacity (VIC) model (Liang et al., 

1996). The workflow includes the information that allows others to independently reproduce the 

model results and acts as a means for documenting the steps used to create model input files. 

Some systems focus on simulation using a specific hydrologic model while others couple 

different hydrologic models to simulate integrated hydrologic processes. For example, 

SWATShare (Rajib et al., 2016) established a collaborative environment to publish, share, 

discover, and download Soil and Water Assessment Tool (SWAT) models. This 

cyberinfrastructure also supports SWAT model calibration running on HPC resources and 

visualization of model outputs. Souffront Alcantara et al. (2019) developed a large-scale 

streamflow prediction system and made the results available using a hydrologic modeling as a 

service approach (HMaaS). This approach improves accessibility to modeling results to support 

decision making for developing countries that may have limited hydrologic modeling 

capabilities. The Community Surface Dynamics Modeling System (CSDMS) (Peckham et al., 

2013) created an environment that promotes the sharing, reuse, and integration of open-source 

modeling software. Many models in CSDMS are installed and maintained on its high-

performance cluster. CSDMS members can access these resources and integrate them for 

complex model simulation. In addition, some systems support both model input preparation and 

simulation to facilitate modeling work. The AWARE framework, which is described as “A tool 

for monitoring and forecasting Available WAter REsource in mountain environments,” was 

developed to offer online geospatial processing services and other tools to help users monitor and 

forecast water resources in Alpine regions (Granell et al., 2010). Sun (2013) migrated an 

environmental decision support system from the traditional server-client model to Google cloud-

computing services with Google Drive holding some of the data to enable collaborative 

participatory modeling. Later, recognizing the computational demands of physically based 

hydrologic models in a web-based environment, Sun et al. (2015) explored the use of meta 

models to support water quality management and decision making. A similar approach was also 

applied to metamodeling of geological carbon sequestration (Sun et al., 2018). These prior 

approaches highlight the importance of easy to use server or web-based methods for 

collaborative and reproducible hydrologic modeling similar to those that are addressed in this 

paper.   
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Although these web services or web applications improve the efficiency of hydrologic modeling 

work, they do have limitations. One limitation is that they may require programming to use the 

web services and thus be difficult to use for those without the required programming skills or 

knowledge. Another limitation is related to the reproducibility of the modeling work, an essential 

principle in scientific research (Hutton et al., 2016). The model input/output files and the 

programming code for data processing and analysis are often not well curated and shared with 

the public (Stagge et al., 2019). This hinders the ability for the modeling community to 

reproduce and verify the modeling work and reuse the results.   

In this research, our goal was to integrate hydrologic modeling web services with a data sharing 

system to provide web-based simulation that improves the reproducibility of the modeling work 

and the usability of these web services. We define web-based simulation as the use of web 

technologies to develop, execute, and analyze simulation models with the web browser playing 

an active role in the modeling process, either as a graphical user interface or as a container for 

the simulation engine (Byrne et al., 2010; Walker and Chapra, 2014). We sought to provide an 

online environment within which users can prepare model input, execute the model, share and 

analyze the results, and repeat or modify the modeling work for collaboration.  

To achieve this goal, we designed an approach for system integration. The general idea was to 

add a browser-based graphical user interface (GUI) for the modeling web services to make them 

easy to use without programing knowledge and to take advantage of a data sharing system that 

provides advanced data curation and management capability beyond existing modeling web 

services. As a case study, we used this approach to integrate two example systems, HydroDS and 

HydroShare, to support web-based simulation for a snowmelt model. The functionality 

implemented was evaluated using snowmelt modeling use cases in the Animas watershed within 

the Colorado River Basin, USA. HydroDS (Gichamo et al., 2020) is a set of web-based, 

hydrological data services that provides access to input datasets and server side data processing 

tools for distributed hydrologic models such as the Utah Energy Balance (UEB) snow model 

(Tarboton and Luce, 1996). HydroDS includes a Python client library that makes it easy to use 

the hydrological data services in a Python programing environment to automate data processing 

workflows. Model input and output files can be temporarily saved in the HydroDS system and 

are then downloadable for further analysis. HydroShare is a hydrologic information system and 
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repository for sharing hydrologic data, models, and analysis tools (Tarboton et al., 2014). In 

HydroShare, the hydrologic datasets or models can be shared as resources that can be published, 

collaborated around, annotated, discovered, and accessed (Horsburgh et al., 2015). Aside from 

the data sharing functions, HydroShare also provides a representational state transfer (REST) 

application programming interface (API) and corresponding Python client library that enables 

other systems including web applications (or apps), to interact with HydroShare.  

The primary contribution of this work is that it demonstrates how the bar for collaborative and 

reproducible hydrologic modeling can be lowered through facilitating and better enabling the use 

of web-based hydrologic modeling. This is achieved through GUI and Python Notebook based 

web apps that serve as interfaces to web services and are underpinned by a data repository that 

enables users to collaborate and share their results in a reproducible way. We demonstrate how 

the capability of data and modeling services can be extended by providing a web browser based 

GUI that reduces the programming required for input data preparation and model simulation. 

This can make the modeling web services available to a broader user community for those who 

have limited programming skills. We also demonstrate how integration of modeling web services 

with a data sharing system can improve the accessibility of modeling work by enabling the 

research community to more easily discover and access modeling workflows for reuse and 

collaboration. With these new capabilities, this approach can facilitate research validation and 

experimentation in an online environment without using modelers’ local computing or data 

storage resources. Additionally, this approach can be adopted or adapted to integrate other 

hydrologic modeling web services with data sharing systems for various hydrologic models to 

support reproducible modeling research. 

In Section 2, we introduce the general architecture design and the case study that uses this 

approach to integrate the two example systems (HydroDS and HydroShare). In Section 3, we 

present the case study results, which describes the integration of the functionality implemented 

and tested for snow modeling use cases. Section 4 presents discussion and Section 5 summary 

and conclusions.   
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2 Methods  
2.1 General approach 

The purpose of the system integration presented here is to support web-based simulation that: 1) 

provides easy access through a web browser to the modeling web services, 2) provides online 

data curation and sharing to support management and reuse of the modeling work, and 3) avoids 

the complexity of changing existing systems to achieve system integration. 

Based on these criteria, we designed a three-layer web service based architecture to integrate 

hydrologic modeling web services with a data sharing system. This architecture includes a user 

interface layer, a data service layer, and a data storage layer (Figure 1). The user interface layer 

can be a web app that provides a web browser based user interface for modelers to use the 

hydrologic modeling web services without programming. This user interface layer web app can 

be hosted on web servers separate from the data service or the data storage layers and interact 

with them through REST APIs. This design decouples the user interface web app from the other 

two layers and avoids significant changes in the existing systems. The data service layer is a 

system that hosts hydrologic data and modeling web services. This layer can receive web 

requests from the user interface layer to prepare model input datasets or execute hydrologic 

models. The hydrologic data is the general use large data, and, in our implementation, contiguous 

US wide data used for model input preparation (e.g., climate, land cover, and terrain input data). 

The data is staged in this layer to enable high availability and performant data access in 

responding to web service requests. The data storage layer is a data sharing system for storing 

and sharing the data specific to users’ modeling work. This design uses the emerging 

functionality of data sharing systems to avoid additional software development work and provide 

the storage and data curation needs for systems that host hydrologic modeling web services. 
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Figure 1 A three-layer web service based architecture to integrate hydrologic data and modeling 

web services (e.g., HydroDS) with a data sharing system (e.g., HydroShare). 

2.2 Case study design 

Our case study was designed to use this general approach and integrate example systems to test if 

the system integration can support web-based simulation to improve research reproducibility and 

reduce the need for coding to use the modeling web services. We used the three-layer 

architecture to integrate HydroShare and HydroDS, and designed use cases to evaluate the 

application of implemented functionality for snowmelt modeling in a test watershed. We chose 

these systems because: 1) they represent the general functionality of hydrologic data and 

modeling web services (HydroDS) and data sharing systems (HydroShare); and 2) the authors 

have access to both systems and are thus able to work on them for integration. In the following, 

we first provide background on these systems and then present the case study design.   

HydroDS is a system that provides web based data services to simplify model input preparation 

for distributed hydrologic models (Gichamo et al., 2020). Modelers can use these web services to 

create model input files and save the time and energy often spent collecting datasets from 

multiple sources and developing code to preprocess the data into required file formats. For 

example, Table 1 shows the UEB model input variables and the major HydroDS Python client 

functions used to call the respective web services to prepare them. The UEB model requires 
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climate, terrain, and canopy datasets as model input and uses Network Common Data Form 

(NetCDF; http://www.unidata.ucar.edu/software/netcdf/) as its input/output file format. Modelers 

can use HydroDS functions to write data processing code for input preparation. HydroDS 

datasets are processed and stored in GeoTiff, shapefile, and NetCDF formats based on the 

functions that generate the datasets. Additionally, HydroDS data conversion functions help 

process UEB inputs in NetCDF format.  

Table 1 UEB model input variables and HydroDS Python client functions for input preparation. 

Input type Specific variables Major Python client functions for 
preparation 

Model domain Watershed grid subset_raster() 
delineate_watershed() 
raster_to_netcdf() 

Terrain  Slope 
Aspect 

create_raster_aspect() 
create_raster_slope() 
raster_to_netcdf() 

Canopy  Canopy cover 
Canopy height 
Leaf area index 

project_clip_raster() 
get_canopy_variable() 

Climate  Incoming shortwave radiation 
Minimum air temperature 
Maximum air temperature 
Air vapor pressure 
Precipitation 

subset_netcdf() 
concatenate_netcdf() 
subset_netcdf_by_time() 
project_subset_resample_netcdf() 

 

The HydroDS system was built using Django, an open-source Python web framework for web 

development (https://www.djangoproject.com/) (Figure 2). Several open-source libraries and 

software programs for processing NetCDF, shapefile, and raster datasets were installed in 

HydroDS, such as NetCDF4 Python module, NCO (Zender, 2008), GDAL 

(http://www.gdal.org/), and TauDEM (Tarboton, 1997). They were used to provide the required 

data management and processing capabilities. Additionally, datasets from multiple sources for 
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input preparation were also stored in this system, including the National Elevation Dataset 

(NED) (https://www.usgs.gov/), National Land Cover Datasets (Homer et al., 2015), and Daymet 

climate data (Thornton et al., 2016).  

 

Figure 2 The HydroDS system architecture. 

HydroShare’s system architecture (Figure 3) is centered on several open source components 

(Heard et al., 2014). The major components include Django and iRODS (http://iRODS.org/). 

Django provides the functionality that was used to build the web user interface to help users 

manage their shared datasets or models. iRODS is open source data management software that is 

used for data storage and access control. Aside from data sharing functionality, web apps hosted 

on other web servers can also connect to HydroShare. For example, the Consortium of 

Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) JupyterHub web app 

(http://jupyter.cuahsi.org) was developed by others (Castronova, 2016) and connected to 

HydroShare. This web app was built with the JupyterHub software stack (https://jupyter.org/hub) 

and configured with many scientific Python libraries and tools. It provides an online 

https://www.usgs.gov/
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programming environment where researchers can load data from HydroShare and develop 

Python code for data analysis and visualization. Another example platform for web apps is the 

HydroShare Tethys Apps portal (https://apps.hydroshare.org/apps/), a system established by the 

HydroShare team to host multiple web apps and interact with HydroShare resources (Fig. 3). 

This web portal was built using the Tethys platform (Swain et al., 2016) that includes software 

and development kits to simplify and reduce the programming skills needed to develop web apps 

for environmental data visualization, analysis, and modeling applications. In order to enable 

information exchange between HydroShare and the HydroShare Tethys Apps portal, Oauth 

(https://oauth.net/) is used to support user authentication and authorization, and the HydroShare 

REST API Python client “hs_restclient” (https://github.com/hydroshare/hs_restclient) is used to 

transfer the datasets between the two systems. 

 

Figure 3 System architecture of HydroShare and HydroShare Tethys Apps portal 

In our case study design, we applied the three-layer architecture based on the features of 

HydroDS and HydroShare to support UEB modeling work (Figure 1). A Tethys web app (the 

UEB web app) was developed and hosted in the HydroShare Tethys Apps portal and serves as 

the user interface layer to provide easy access to the HydroDS web services. HydroDS is the data 

service layer used to prepare the model input files and execute the model. HydroShare acts as the 

data storage layer to store and share the results created from HydroDS. The main activity 

between the UEB web app and HydroDS is the transfer of user input information to HydroDS for 

model input preparation or model simulation. Between HydroDS and HydroShare, the activity is 

mainly the transfer of model input/output files and associated metadata for modeling work. The 

UEB web app also interacts with HydroShare to retrieve the metadata of shared model input files 

to facilitate model simulation. We also chose Python for our case study implementation because: 

1) there is significant momentum and a growing community of Python development within the 

scientific computing community; 2) both HydroDS and HydroShare have available Python client 
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libraries that facilitated more rapid development; and 3) the availability of open-source Python 

libraries and development tools facilitated our work. 

We evaluated the system integration for two snowmelt modeling use cases. These use cases were 

designed to use the web-based simulation functionality to test the sensitivity of the UEB model 

outputs to different grid cell resolutions of the model input files. The results can help modelers 

evaluate the tradeoffs between model performance and computational as well as data storage 

requirements. In the first use case, a user prepares model input, executes the model, and curates 

the results in HydroShare. In the second use case, another user discovers the shared modeling 

work in HydroShare and modifies the work to derive new results with different grid cell 

resolution and compares the snowmelt model outputs from the two use cases.    

3 Results 
3.1 System integration 

3.1.1 User interface layer 

The UEB web app was developed as a Tethys web app and hosted in the HydroShare Tethys 

Apps portal to provide a graphical user interface for the HydroDS web services. The HydroShare 

Tethys Apps portal hosts various web applications to support data visualization, analysis, and 

model simulation. This platform was designed to lower the barrier for the development of 

environmental web apps and is targeted at scientists and engineers who have some scientific 

programming experience, but not necessarily web development experience (Swain et al., 2016). 

Swain et al. showed that, compared to creating a website project from scratch, using the Tethys 

platform can reduce the need to learn multiple languages for web app development and the total 

number of lines of code for each web app. 

We chose HydroShare Tethys Apps portal to host the UEB web app for several reasons. First, 

and in general, using a web app portal decouples the user interface application from the systems 

that host data and hydrologic modeling web services. Loosely coupled systems allow changes in 

one system component without big changes in the other system components making them easier 

to maintain. Second, Tethys platform provides software development kits to simplify and reduce 

the coding and learning of web programming languages required for web app development.  
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The UEB web app was designed to provide three functions: model input preparation, model 

execution, and job status checking. Users can interact with this web app to perform modeling 

work without writing program code to simplify access to HydroDS. Figure 4 (a) shows the user 

interface for model input preparation. This has two main sections: the user input form section on 

the left and the map view section in the center. The user input form section allows the user to 

enter settings to create a complete model input package for model simulation. The map view 

section helps the user draw a bounding box and optionally an outlet point to specify the modeling 

domain. If just a bounding box is provided, the entire bounding box is used as the model domain. 

If an outlet point is provided, the watershed draining to the outlet is computed within the 

bounding box and used as the domain. The user needs to ensure that the bounding box is 

sufficient to contain the entire watershed draining to the outlet point. 

After the user fills out the form and clicks on the “Input Data Preparation” button, the web 

request is sent to HydroDS and a corresponding job ID is returned so that the UEB web app can 

monitor the status of the submitted job. Figure 4 (b) shows the user interface for model 

execution. It also has two main sections: the model input information section on the left and the 

map view section. The model input information section allows the user to select a model input 

package stored in HydroShare. When the user selects a model input package, its corresponding 

metadata is retrieved from HydroShare and shown in this section. Furthermore, if the metadata 

includes the bounding box and outlet point information for the modeled domain, it will be 

automatically shown on the map to orient the user geographically. After the user clicks on the 

“Submit Model Execution” button, the web request is sent to HydroDS, and the corresponding 

job ID is returned so that the UEB web app can monitor the job status. Figure 5 shows the job 

status checking user interface where the status of submitted model input preparation or model 

simulation jobs is shown. When the job is completed successfully, the user is provided with a 

link to the resource in HydroShare that stores the model input package (in the green frame) or 

model output files (in the red frame). If the job fails, the user will be provided with detailed error 

information (in the yellow frame).   
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(a) 

 

(b) 

Figure 4 User interface of the UEB web app for input preparation (a) and model execution (b). 
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Figure 5 User interface of the UEB web app for job status checking. 

The UEB web app was built based on Tethys, which by default includes a narrow left panel and 

a wide right panel in the main app section. We designed the app to display a map in the main app 

section and parameter entry form with control buttons on the left. Menu bars at the top were used 

to switch between steps in the designed use of the app, which can provide the user with guidance 

on the functionality of each page. Implementing this design required customizing the default 

Hypertext Markup Language (HTML) and cascading style sheets (CSS) script provided by 

Tethys. The user input forms in the left panel were implemented using Bootstrap, an open-source 

front-end web framework (http://getbootstrap.com/) and the Template Gizmos API 

(http://docs.tethysplatform.org/en/latest/tethys_sdk/gizmos.html) from the Tethys software 

development kit. The map view in the right panel was implemented using the Google Maps 

JavaScript API (https://developers.google.com/maps/). Additionally, the HydroShare REST API 

Python client was used to manage all the interactions between the user interface layer and the 

data storage layer. For example, the metadata for existing model input packages from 

HydroShare can be retrieved using the Python client and displayed on the model execution 

interface. We also created a resource for the UEB web app in HydroShare (Gan et al., 2020). 

This resource stores the metadata information of the UEB web app and helps users to discover 

and launch the web app through HydroShare for hydrologic modeling research.  
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3.1.2 Data service layer  

To support the work described in this paper, we implemented new web services and job 

submission capability in the HydroDS system, which were used by the UEB web app for model 

input preparation, model simulation, and job status checking. This was an extension of the 

original design for the HydroDS web services (Gichamo et al., 2020), which required users to 

make multiple web requests to process various datasets for input preparation (Table 1). It is 

inefficient for the UEB web app to send multiple web requests to HydroDS and periodically 

check for completion. Thus, we used the existing data processing functionality in HydroDS and 

implemented a new web service for model input preparation, which enables the user to click on 

the “Input Data Preparation” button in the UEB web app to submit a single web request to 

HydroDS to accomplish the work. Figure 6 (a) shows the detailed tasks done by this new web 

service. It first creates a complete UEB model input package that includes both the input data 

files and the model parameter files. Then, it generates a Python file to document the details of 

how the model input package can be created using the HydroDS Python client. Finally, it 

transfers all of the files and associated metadata to HydroShare. In this web service, the Python 

script created was designed to provide input preparation details instead of hiding the processing 

work behind the scenes as a black box to users. This design ensures that novices can view and 

learn from the syntax of the Python script, using it as an example to learn how to use HydroDS 

web services and create input preparation workflows for other hydrologic models. It also focuses 

on another major target user group for this system – i.e., modelers who want better tools to make 

their work easier but who still want to know the coding details of the research. For both types of 

users, this Python script can be reused to reproduce or derive new model input for the UEB 

model.  

We also implemented a new web service that is called when the user clicks on the “Submit 

Model Execution” button in the UEB web app to make a single web request to HydroDS for 

model simulation. Figure 6 (b) presents the specific tasks accomplished by this web service. It 

first downloads the model input package from HydroShare into HydroDS. Then, it validates the 

model input package to check if there are missing files required for executing the model. If the 

validation is successful, HydroDS executes the UEB model and then transfers the model output 

files and stores them with the model input package in HydroShare. To support data transfer 
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between the data service and data storage layers, the HydroShare REST API Python client 

“hs_restclient” was used for reading and writing files and metadata to and from HydroShare. 

In order to improve the user experience by supporting job status checking and display in the 

UEB web app, we also added job submission capability for the two new web services. When 

users make web requests to HydroDS via the UEB web app, the web service responds with a job 

ID, and the model input preparation or model execution process can be accomplished 

asynchronously so that users are able to check the job status any time after the job submission 

(Figure 7). In HydroDS, a database was created to store information for the submitted jobs. 

When a job is initiated, the job ID and associated metadata are stored in the database (e.g., job 

creation date, job creator, and job status). After the job is launched and completed, the job status 

is updated. Web services for querying the job status from HydroDS were also implemented, and 

were used by the UEB web app to get the job details and present them on the user interface.  

 

Figure 6 The functionality of the added web services in HydroDS. Panel (a) for model input 
package preparation; Panel (b) for model simulation. 
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Figure 7 Job management workflow.  

3.1.3 Data storage layer 

In HydroShare, we chose the “model instance” resource type (Morsy et al., 2017) to support 

curation and sharing of the data files and metadata generated by HydroDS. This resource type 

was specifically designed to support the collaborative sharing of model input/output files and 

their associated metadata, which best suits our requirement to improve reproducibility of 

hydrologic modeling research (Figure 8). For example, users can store model input/output files 

in a HydroShare model instance resource and describe them with predefined resource-level 

metadata as well as user-defined key-value pair metadata. This can help others discover and 

access the model instance with enough information for reuse. Users can also manage the 

resource access control, so that it can be kept as private and accessed only by trusted users to 

prepare and edit the contents, or it can be shared to the public so that anyone can discover and 

reuse it for validation or deriving new results. In addition, users can formally publish their 

modeling work in HydroShare to get a digital object identifier (DOI) and formal citation 

information. This encourages proper citation of the shared work. 
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(a) 

 

(b) 

Figure 8 Example model instance resource in HydroShare. Panel (a) shows different resource 

functions and predefined metadata; Panel (b) shows the user-defined metadata and suggested 

citation information. 
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When the UEB web app is used for model input preparation, a new model instance resource is 

created in HydroShare to store the model input package. The information entered in the user 

input form of the UEB web app is stored as user-defined resource metadata in HydroShare, 

which saves users from manual metadata editing work to provide detailed information about the 

input package. When the UEB web app is used for model simulation, the model instance 

resource is downloaded from HydroShare into HydroDS for execution, and the resulting model 

output files are sent back to the corresponding model instance resource in HydroShare. In the 

case where a user submits a model simulation job but deletes the model instance resource before 

the job completes, a new model instance resource is created that includes model input package 

and output files after the model simulation. The user can run the simulation to generate model 

output multiple times with all the results stored in the same resource. Additionally, other users 

can use the resource copy function in HydroShare to duplicate the model instance resource as 

their own new resource to repeat or build on the modeling work. 

In addition to using the model instance resource for data curation and sharing, we also used the 

CUAHSI JupyterHub web app for post-modeling analysis and to demonstrate reuse of a shared 

model instance. This web app provides an online programming environment that supports the 

development and execution of program code from a Jupyter Notebook file. The benefit of using 

this web app is that users do not need to download the modeling work and install software on 

their local computers. Instead, the model instance resource can be directly retrieved from 

HydroShare into this web app for reuse. Working in CUAHSI JupyterHub web app does require 

use of the Python programming language for post-modeling analysis. However, Python is widely 

used in scientific research and is, in our experience, relatively easy for modelers to understand, 

especially in a Jupyter Notebook context where code snippets are short, can be explained by 

accompanying text information, and can serve as a gentle programming and scripting entry point 

for users who have background with other programming languages or who are new to these 

concepts. Users can develop and execute Python code in a Jupyter Notebook file to visualize or 

analyze the model input/output datasets (Figure 9). Other users can also use this web app and the 

Python script from the model instance resource to repeat or modify the model input preparation 

workflow to validate the existing model input package or generate a new model input package 

(Figure 10). This provides another option for model input preparation, which is more scripted, 

but less graphical user interface friendly than the UEB web app. 
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Figure 9 Python code for post-modeling analysis in the CUAHSI JupyterHub web app. 
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Figure 10 Python script for model input preparation loaded into a Jupyter Notebook file in the 
CUAHSI JupyterHub web app. 

 

3.2 Snowmelt modeling 

We used the Animas watershed in the Colorado River Basin (Figure 11) as the study area to 

implement our two use cases for model input preparation, then simulation of snowmelt for water 

year 2010. This served to validate the implemented functionality and test if the system 

integration can provide web-based simulation to support hydrologic modeling.     

In the first use case, the UEB web app was used to prepare the model input package, execute the 

model, and then have all the results automatically copied into a HydroShare resource. Figure 4 

and Table 2 show the interfaces and detailed settings information that were used in the UEB web 

app for model input preparation and model simulation for the Animas watershed. Figure 5 shows 

the job status of the corresponding results. The green frame is the status for model input 

preparation, and the red frame for model simulation. Figure 8 is the resource landing page for the 



22 
 

model instance resource (Gan, 2019a), which was created to store the model input/output files, 

the associated metadata, and the Python script of the input preparation workflow for the first use 

case.  

 

Figure 11 The Animas watershed in the Colorado River Basin. 

The second use case demonstrated collaboration and showed how the modeling work created in 

the first use case could be discovered, modified, and reused to derive new findings. Assume that 

the user who prepared the model in the first use case was user 1, and the user who collaborated 

and reused the model was user 2. The first author of this paper actually acted as both users with 

separate HydroShare accounts to prepare this illustration. The second use case included the 

following steps. First, user 2 discovered and got access to the model instance resource created by 

user 1. Second, user 2 retrieved the resource into the CUAHSI JupyterHub web app, which was 

used by user 2 to modify the Python script from the model input package of the first use case to 

create a new model input package and store it in a new model instance resource in HydroShare. 

Third, the UEB web app was used by user 2 to execute the model with the new model instance 
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resource. Finally, the CUAHSI JupyterHub web app was used by user 2 to develop Python code 

in a Jupyter Notebook to compare the model outputs from the two use cases.  

Table 2 Inputs set for model input preparation in the first use case. 
Item Value  Required? 

(Yes/No) 
Bounding box [north, south, west, east] [37.9695, 37.2626, -108.0505, 

-107.5150] in degrees 
Yes 

Energy content initial condition  0  Yes 
Snow water equivalent initial condition  0 Yes 

Snow surface dimensionless age initial 
condition 

0 Yes 

Snow water equivalent of canopy 
condition 

0 Yes 

Snow surface temperature one day 
prior to the model starting time  

0 Yes 

Spatial coordinate system NAD83/UTM zone 13N Yes 
Time period [start date, end date] [2009/10/01, 2010/10/01] Yes 
Cell size for model simulation [dx, dy]  [1200, 1200] in meter Yes 

Watershed outlet [longitude, latitude] [-107.8797, 37.27917] in 
degree 

No 

HydroShare resource title Animas watershed snowmelt 
modeling in the 2010 water 
year (case study1) 

No 

HydroShare resource keywords snow melt, UEB Utah Energy 
Balance Model 

No 

 

Figure 12 shows the discovery page in HydroShare where the model instance resource created in 

the first use case can be discovered. In HydroShare, users can search for resources with text or 

geolocation information and filter the listed results with different facets (e.g., authors or 

keywords) to find the needed content. 

The Python script loaded into a cell in a Jupyter Notebook within the CUAHSI JupyterHub web 

app is shown in Figure 10. This Python script is from the model instance resource of the first use 

case created by user 1 and documents the workflow of model input preparation for creating the 

climate forcing datasets and parameter files. Figure 10 highlights where user 2 modified the 
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Python script and changed the model resolution from 1200 meters to 600 meters, a model 

configuration change being tested by user 2 in the second use case (reuse of a model previously 

established). This modification was designed to test the sensitivity of the model to grid cell 

resolution and determine whether different resolutions lead to different snow outputs. After the 

modification, the Jupyter Notebook file was used by user 2 to execute the script and to create a 

new model instance resource in HydroShare to store the results, which includes the modified 

Python script and the new model input package (Gan, 2019b). After the new model instance 

resource was created, the UEB web app was used by user 2 to execute the model to create the 

model output files, which were automatically stored in the same resource.  

 

Figure 12 The HydroShare discovery page used to search for the model instance resource 
created in the first use case. 

Finally, the CUAHSI JupyterHub web app was used by user 2 to retrieve the two resources from 
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HydroShare and to develop data visualization code (Figure 9) to compare the snow output from 

the two use cases. It was found that in the Animas watershed, the comparison of 600 meters 

versus 1200 meters grid cell resolutions resulted in only very small differences in the model 

output for snow water equivalent and total surface water input (Figure 13 and Figure 14). This is 

mainly because the spatial variability of the terrain and canopy input for the UEB model at the 

two grid cell resolutions only has small differences, which leads to similar performance for the 

snowmelt results. Any user can also test with higher grid cell resolutions (e.g., 100m or 300m) 

and compare the model outputs.  

This sensitivity test is useful because UEB modelers may choose a coarser cell resolution for 

model simulation to decrease the simulation time and the size of input and output datasets if 

there is no significant difference for the snowmelt output. In addition, users may also reuse the 

first use case to conduct model experiments for parameter sensitivity analysis and find out the 

relationship between different parameter settings and model performance. The modeling and 

analysis process can be conducted using the web-based simulation without using the local 

computing and storage resources. The corresponding results for model experiments can be 

directly curated and shared with others for validation or reuse.  
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Figure 13 Comparison of snow water equivalent created by the two uses cases. 

 

 

Figure 14 Comparison of total surface water input created by the two uses cases. 
4 Discussion  

This case study demonstrated that after using the three-layer web service based architecture to 

integrate example systems, users were able to develop, share, and reuse modeling work in an 

online environment by interacting with HydroShare and HydroShare Apps (Figure 15). The UEB 

web app helped to prepare the model input and execute the model through a graphical web user 

interface. The model instance resource in HydroShare was used to curate and share the modeling 

results as well as the associated metadata, which enabled others to discover and access them. The 

CUAHSI JupyterHub web app also provided a web-based tool with which users can modify the 

work and analyze the results without using data storage or computing resources on their own 

local computers.  
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Figure 15  System integration that enables users to interact with HydroShare and HydroShare 
Apps for multiple modeling tasks. 

We also compared three ways to accomplish the same tasks involved in the snow modeling use 

cases: 1) conducting research without HydroDS web services, 2) conducting research with 

HydroDS before system integration, and 3) conducting research with HydroDS after system 

integration (Table 3). The first option represents how modelers are doing modeling research 

now. The second option represents the use of modeling web services to simplify the work 

involved in the first option, which might still be difficult in a real application because of the 

requirement for learning and writing program code. The third option represents a new way of 

using the modeling web services, which provides a graphical user interface to lower the 

requirement of programming and the functionality to support data curation and sharing.  

Table 3 Comparison of three ways to accomplish tasks for the snowmelt modeling use cases. 

Modeling task Option1: Traditional method Option2: Use HydroDS before integration Option3: Use HydroDS after integration 

Prepare input 
and execute 
model 

Local PC: 
• Collect data from multiple 

sources 
• Learn and write code 
• Install software to run script 
• Install and configure model 

 

Local PC: 
• Learn about HydroDS client library and 

write Python script 
• Install Python interpreter to run script 

 

Data sharing system: 
• Enter required information in the UEB 

web app 
 

Curate and 
share results 

Local PC: 
• Manually upload data and 

script to a data sharing system 
• Manually add metadata 
 

Local PC: 
• Download model input/output from 

HydroDS 
• Manually upload data and script to a 

data sharing system 
• Manually add metadata 
 

Data sharing system: 
• Data, script, and metadata directly 

and automatically stored in 
HydroShare 

 

Repeat or 
modify 

Data sharing system: 
• Download script and data 
 

Data sharing system: 
• Download script and data 
 

Data sharing system: 
• Enter required information in the UEB 

web app 
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modeling 
work 

Local PC: 
• Learn and modify script 
• Install software to run script 
• Install and configure model 

Local PC: 
• Learn and modify script 
• Install Python interpreter to run script 
 

Or  
• Use CUAHSI JupyterHub web app to 

modify and run script (if familiar with 
HydroDS) 

 

This comparison allowed us to evaluate whether the system integration could accomplish the 

modeling work with less need for coding, and fewer manual operations or data transitions among 

different environments. We found that the system integration provided benefits in several 

aspects. First, the system integration lowered the requirement for writing Python script to interact 

with HydroDS web services. The UEB web app only requires knowledge of the UEB model, 

which allows users to overcome the programming barrier, saving the time required to write 

Python code. Additionally, the Python script created by HydroDS to document the input 

preparation workflow also helps users learn and use the web services from example code.  

Second, the system integration simplifies data curation and management efforts. The data files, 

metadata, and Python script are automatically curated in the data sharing system (HydroShare) 

without manually moving the files among different environments (HydroDS, local computer, and 

HydroShare), a process that can be error prone with potential for information loss. This 

automatic data transfer capability can encourage the preparation and sharing of modeling work 

rather that retaining it only on local computers. This also supports collaboration and makes it 

easier to comply with open data mandates and document reproducibility.  

Third, the system integration can simplify the way for others to validate reproducibility of the 

modeling work, and reuse or extend it for their own work. Users can use the UEB web app and 

the CUAHSI JupyterHub web app to repeat or modify the modeling work without downloading 

the files to their local computers or configuring their local environments for model execution or 

data analysis.     

While this work has shown that the framework of a user interface layer, data service layer, and 

data storage layer can facilitate web based collaborative and reproducible hydrologic modeling, 

there are opportunities for further work to address limitations and improve the current 

functionality. For example, the post-modeling analysis still requires coding for data visualization 

and analysis. Thus, new capabilities could be added in the UEB web app to support visualization 

and analysis of the model input/output datasets through a GUI (e.g., visualization of the 
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watershed delineation result). Additionally, new capabilities for scenario generation and 

management could be implemented in the UEB web app to, for example, better support scenario 

analysis for hydrologic modeling research such as has been implemented for other models (Sun, 

2013). As for new app capability, it is important to consider the balance between what is coded 

in a specific GUI application, such as the UEB web app, and provides specific functionality for 

users that the app developers anticipate are needed, versus general purpose capability in an app, 

such as the Jupyter Notebook platform, that can empower users more, but requires programming. 

User driven design and active monitoring of how systems are used can provide information to 

help with this balance     

5 Conclusions 
In hydrologic modeling research, we are starting to see the availability of more and more 

hydrologic modeling web services that enable users to write code and make their work more 

efficient. However, limitations still exist in real application of such services in terms of their 

usability and the reproducibility of the modeling work. Users need to learn and write code to 

utilize these web services, which may be a barrier for those with limited programming skills. In 

addition, a good mechanism is needed for curation and sharing of not only the data and metadata, 

but also the script of the modeling work, which can improve the research reproducibility and 

encourage collaborations around them.   

In this paper, we presented an approach that uses a three-layer RESTful web service based 

architecture to integrate open source software to enable web-based simulation to support 

hydrologic modeling research. As an example, we integrated the HydroDS hydrologic data and 

modeling web services with a data sharing system, HydroShare, and tested the implemented 

functionality with use cases of snowmelt modeling for the Animas watershed in the Colorado 

River Basin. The results demonstrated that the system integration enabled users to work within 

an online environment to create, describe, share, discover, modify, and analyze the modeling 

work, which encourages collaboration around the hydrologic modeling research and significantly 

reduces the need for coding and manual operation for data transfer and model configuration. This 

approach has the advantage of reusing open source software to support hydrologic modeling 

research in terms of collaboration, computer platform independence, and reproducibility of 

modeling workflows and results.  
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In addition, the general design of the three-layer web service based architecture can be adopted 

or adapted to other open source data sharing and modeling software. Furthermore, other 

modeling web services can be integrated with a data sharing system such as HydroShare using 

the methods we described to support automated data curation and post-modeling analysis without 

repeating development of similar functionality. While we used HydroShare for our work, other 

data sharing systems could also be used. We found that the following data sharing system 

features were needed to ease integration with other cyberinfrastructure and add value to them. 

First, the system should have well-developed data sharing functionality and a corresponding web 

service API for interoperating with other systems over the Internet. For example, HydroShare 

has a REST API interface and a Python client for that API, which helped us to develop new 

REST API based web services in HydroDS that enable automatic data transfer between the two 

systems to support data curation and sharing. Secondly, the data sharing system needs to be a 

platform where new functionality for interacting with the shared datasets can be added as loosely 

coupled components (e.g., as web apps) without requiring significant changes to the existing 

system. For instance, the HydroShare Tethys Apps portal established by the HydroShare team 

was used to host the UEB web app, which provided a user interface layer to interact with 

HydroDS and HydroShare with minimal changes in both systems.  

In the future, possible development could include a new web app that provides a graphical user 

interface for multiple data processing web services from HydroDS. This would benefit 

researchers by making it easier for them to reuse and combine different web services based on 

their needs and to prepare inputs for other hydrologic models without writing code, while having 

the results directly curated in HydroShare. Given that this work is Python-based, future work 

could also involve integration with wider and domain agnostic open source scientific Python 

environments – e.g., the PANGEO software ecosystem (https://pangeo.io/). Finally, while the 

work reported in this paper extended the existing HydroDS services, future work should examine 

how these types of services can be more standardized such that they become more generally 

usable in modeling workflows (e.g., Castronova et al., 2013; Qiao et al., 2019). 

 

https://pangeo.io/
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