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Highlights 

- Environmental modelling studies often require use of massive spatial datasets. 

- Sharing these data through data services can support replicable modelling. 

- HydroShare facilitates large data sharing via GeoServer and THREDDS data services. 

- We test model replicability using HydroShare with a data-intensive hydrologic model. 

- The methods and modeling approach consistently produced replicable model outputs. 

Abstract 

Reproducible environmental modelling often relies on spatial datasets as inputs, typically 

manually subset for specific areas. Yet, models can benefit from a data distribution approach 

facilitated by online repositories, and automating processes to foster reproducibility. This study 

introduces a method leveraging diverse state-scale spatial datasets to create cohesive packages for 

GIS-based environmental modelling. These datasets were generated and shared via GeoServer and 

THREDDS Data Server Connected to HydroShare, contrasting with conventional distribution 

methods. Using the Regional Hydro-Ecologic Simulation System (RHESSys) across three U.S. 

catchment-scale watersheds, we demonstrate minimal errors in spatial inputs and model 

streamflow outputs compared to traditional approaches. This spatial data-sharing method 

facilitates consistent model creation, fostering reproducibility. Its broader impact allows scientists 

to tailor the method to various use cases, such as exploring different scales beyond state-scale or 

applying it to other online repositories using existing data distribution systems, eliminating the 

need to develop their own. 
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1. Introduction 

Reproducibility is fundamental to accumulating knowledge and advancing science (Baker, 

2016; National Academies of Sciences, 2019; Stagge et al., 2019; Wilkinson et al., 2016). In one 

survey, 1500 researchers were polled to assess the issue of reproducibility in scientific research. 

The results showed that about 70% of researchers across different science fields had failed to 

reproduce another researcher’s results, and 50% failed to reproduce their own research results 

(Baker, 2016). Although data management and stewardship are essential elements to improve 

reproducibility (Wilkinson et al., 2016), another survey related to the success and challenges of 

data scientists reported that data scientists spent 19% of their time collecting data (finding and 

accessing) and 60% of their time cleaning and organizing data to fit data into their models 

(CrowdFlower, 2016). That leaves only 21% of their time for core analysis. To overcome these 

problems, the Findable, Accessible, Interoperable, and Reusable (FAIR) principles have been 

presented as high-level guidelines to improve scientific data management and access (Wilkinson 

et al., 2016). Ongoing efforts on FAIR guiding principles have advanced online data repositories 

with identifier mechanisms, data management plans, policies, and standards (Hodson et al., 2018).  

In recent years, the number of online repositories adopting FAIR principles has grown 

(Crosas, 2020; Wilkinson et al., 2017). For example, Dataverse (https://dataverse.org/) provides 

the ability to create DOIs, share metadata and data files, and access data with public licenses on 

their data landing pages. Similar to Dataverse, FigShare (https://figshare.com), Mendeley 

https://dataverse.org/
https://figshare.com/
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(https://mendeley.com), and Zenodo (https://zenodo.org/) offer repositories that support these 

capabilities, aligning with the FAIR principles. These online repositories have been developed for 

researchers focused on data publication through small files, typically under 1 GB. Often these files 

are subsets of larger datasets, such as in the case of hydrologic and environmental modelling 

geospatial datasets of digital elevation, land use, soils, or other geographic information. By 

focusing only on sharing data through small files rather than providing the ability to Find, Access, 

Interoperate with, and directly Reuse subsets of larger datasets, online data repositories are missing 

an opportunity to foster more reproducible science. Accommodating seamless data access, where 

model inputs can be reproducibly subset for an area of interest from larger-extent datasets via 

server-side methods, enhances reusability and interoperability of common datasets across multiple 

applications and case studies. 

In the hydrologic and environmental science community, the types of data and models, and 

thus the data and file-sharing needs of the modelling community, are diverse (Horsburgh et al., 

2016). HydroShare (https://www.hydroshare.org) helps to meet these diverse needs by providing 

an online repository to support sharing these multiple types of data and models across various 

environmental disciplines (Maghami et al., 2024; Morsy et al., 2017; Tarboton et al., 2024). The 

platform accommodates a wide array of data types, including time series, geographic features 

(Shapefile), geographic raster data (GeoTIFF), and multidimensional space-time datasets such as 

Network Common Data Form (NetCDF). In addition, HydroShare defines a computational model 

with two components to support model and model data sharing: 1) model program, i.e., source 

code or compiled software with related metadata such as version, programming language, and 

release date, and 2) model instance, i.e., model input and output data with related metadata such 

as application methods and a relationship to a model program. After creating a HydroShare 

https://mendeley.com/
https://zenodo.org/
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resource, users can share it using a unique uniform resource locator (URL) or DOI (after the 

resource is published). 

Moreover, the HydroShare Python Client, hsclient (“HydroShare/hsclient: HydroShare 

Python Client,” 2021), facilitates programmable interaction with HydroShare resources and 

JupyterHub computational environments (CUAHSI JupyterHub and CyberGIS-Jupyter for Water) 

for various analyses such as modelling and big data analysis using Jupyter notebooks (Choi et al., 

2021). As such, HydroShare can be regarded as one of the most versatile online data repositories 

supporting FAIR principles in the field because it provides users with different features/tools: 1) 

unique identifiers (Findable), 2) metadata of multiple data and model types (Accessible), 3) 

hsclient (Interoperable), and 4) JupyterHub (Reusable). The platform is equipped to handle a broad 

range of data and models, making it suitable for various types of environmental modeling, with 

particular strength in hydrological studies. HydroShare is mainly used for data publication of a 

collection of smaller files at the file level and is not commonly used to distribute larger datasets 

(over a few gigabytes in size), sharing the “small files” limitation as other online repositories such 

as FigShare. One example of such support in HydroShare is for a national-scale network of time 

series data types through an external web service application to support access to the National 

Water Information System (NWIS) as a seamless dataset. Time series data rarely reach gigabyte 

sizes, and efforts to provide similar seamless access to gridded datasets, which can easily reach 

gigabyte sizes, through HydroShare are limited.  

For national-scale spatial data sharing in the United States, several government-sponsored 

organizations and research centers have open-web data distribution systems. For example, the 

United States Department of Agriculture (USDA) National Resources Conservation Service 

(NRCS) provides over 100 high-resolution raster and vector data such as Census, Digital Elevation 
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Model (DEM), Hydrography, Land Cover, Soil, and Transportation in the Geospatial Data 

Gateway (“Geospatial Data Gateway,” 2021). The United States Geological Survey (USGS) 3D 

Elevation Program (3DEP) (“USGS 3DEP,” 2021) provides various elevation maps such as DEM 

and Lidar point clouds. The MRLC (Multi-Resolution Land Characteristics Consortium) (“MRLC,” 

2021) currently provides land cover, tree canopy, urban imperviousness, and other related data 

from 2001 to 2021. Also, while many web-based data distributed systems support Application 

Programming Interfaces (APIs) to access data and metadata for data interoperability 

programmatically, it is not uncommon for researchers to opt for graphical user interfaces (GUIs) 

to download needed data from these systems and then assemble and process it locally to support 

their modelling and analysis needs. This choice may be influenced by factors such as the ease of 

use of GUIs due to visualization advantages, the need for programming skills to effectively use 

APIs, and the potential for APIs to change or require updates over time, which may introduce 

additional maintenance requirements for the code. 

The vision of using a Service-Oriented Architecture, which supports standardized and 

reusable data interchange components and open web-based data-sharing technologies, has been 

put forth as more convenient data access approaches and approaches for integrating certain 

environmental models (Chen et al., 2020). Achieving this vision is difficult given the complex and 

heterogeneous data requirements in hydrologic and the larger environmental modelling 

communities. Miles and Band (2015) provided one solution to the problem: the Ecohydrolib 

Python library for managing spatial data distribution and preparation workflows for ecohydrology 

modelling. Their approach was to access data from standardized, national data providers and to 

use data processing software to map these data into specific environmental model needs for a 

modeled watershed, eliminating the need to curate the spatial data in a unified intermediate 
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database. HydroTerre (Leonard, 2015) offered a different solution to the problem. It involved 

creating a centralized database of essential terrestrial variables and inputs that simulation models 

can use more directly. The database was built by gathering and processing data from multiple 

national-scale spatial datasets. While generic and model agnostic, the idea was demonstrated for 

creating inputs to the Penn State Integrated Hydrologic Modelling (PIHM) system (Kumar et al., 

2010). Neither approach took advantage of the growing adoption of online data repositories like 

HydroShare to act as a standard gateway for data and model sharing, which has only been advanced 

in recent years.  

Beyond these government-sponsored datasets, a growing number of datasets collected and 

maintained by national and international scientists could benefit from ways to share data online in 

a machine-readable way. Large sample hydrology studies (Addor et al., 2020) have become 

popular to cover large areas with consistent and robust high-quality datasets to “balance depth with 

breadth” (Gupta et al., 2014). For example, the Model Parameter Estimation Experiment (MOPEX) 

project provided hydrometeorological observation and attribute data for 438 catchments across the 

USA (Duan et al., 2006). Another example is the European catchments of Hydrological Predictions 

for the Environment model (E-HYPE), providing flow signatures and catchment attributes in 

35,215 catchments and 1,366 river streamflow gauges in Europe (Kuentz et al., 2017). In a recent 

effort, Catchment Attributes and Meteorology for Large sample Studies (CAMELS, 671 

catchments in the USA) (Addor et al., 2017; Newman et al., 2015) and CAMELS-Chile (516 

catchments in Chile) (Alvarez-Garreton et al., 2018) were created to provide climate data and 

catchment attribute data. Computational platforms are beginning to be developed to support direct 

access to these geosciences’ datasets. For example, PANGEO (https://pangeo.io) supports a 

community platform with big data in the climate, hydrologic, and ocean fields (Hamman et al., 
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2018). Outside such systems, data must be downloaded manually and processed for use in 

particular environmental models. 

A critical technological advancement that addresses this need for FAIR access to large-

scale datasets in online data repositories is machine-to-machine protocols for subsetting and 

transmitting big data. Two examples are GeoServer (http://GeoServer.org) (Crawley et al., 2017; 

Youngblood, 2013) and Thematic Real-time Environmental Distributed Data Services 

(THREDDS) Data Server (TDS) (Gan et al., 2020; Unidata, 2024). GeoServer supports data access, 

display, and processing of geographic raster and feature data using the Open Geospatial 

Consortium (OGC) Web Map Service (WMS) (Michaelis and Ames, 2017; Wenjue et al., 2004). 

TDS is advanced client/server software that provides remote access to data and metadata stored in 

various geo-temporal datasets. These services are integrated into HydroShare (Lippold, 2019). 

This means users can more easily share, access, retrieve, and subset large geographical data via 

GeoServer and various types of scientific data such as NetCDF via TDS. Automatic metadata 

harvesting and data sharing functionalities in HydroShare enable user-uploaded NetCDF, 

geographic raster data, and feature data to be available through its connected GeoServer and TDS 

instances. This allows functionalities provided by GeoServer and TDS to be leveraged to visualize 

and analyze spatial data stored in HydroShare, such as clipping geographic features and 

interpolating elevation data. We have observed that these capabilities of GeoServer and TDS are 

underused in HydroShare. GeoServer is primarily used to visualize geographic raster and feature 

data online, and TDS is primarily used to share and visualize grid-based multidimensional climate 

data (Gan et al., 2020). 

Ensuring data accuracy and reproducibility in environmental modeling is crucial, 

particularly when working with large-scale datasets from multiple sources. One challenge in data 
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integration involves managing spatial datasets that span various coordinate systems, which can 

lead to misalignments. Although georeferencing is a standard method for correcting these issues, 

its significance is often overlooked in large-scale models. Merging datasets across different 

coordinate systems can result in location shifts that impact data accuracy, potentially leading to 

errors in model outputs. Addressing georeferencing as a critical step in data integration is essential 

for maintaining consistency and reliability, particularly when working with spatial datasets that 

cover extensive areas. This consideration is especially relevant in large-scale environmental 

studies where precise data alignment is vital to accurate modeling . 

This research aims to explore and demonstrate how HydroShare, with its integrations of 

GeoServer and TDS, can support more complex use cases required in environmental modelling. 

Specifically, we focus on hydrological challenges like integrating and analyzing spatial data at 

varying scales, where georeferencing is critical. In the remainder of this paper, when we refer to 

large datasets or similar terms, we specifically mean datasets at the state scale unless otherwise 

noted. By “state scale,” we refer to the administrative boundaries of individual states within the 

United States. The states we use in this study range from 32,000 km² to 140,000 km². While these 

state-scale spatial datasets, obtained from national-scale datasets provided by government agencies, 

are smaller than datasets covering continental or regional extents, they are still valuable for our 

analysis. We use server-side methods, such as GeoServer and TDS, to expose large-extent spatial 

datasets to models, simulating watershed dynamics through streamflow simulation using the 

RHESSys model. The data collection, integration, and availability challenges we address in this 

study are part of the broader technical challenges faced in environmental modeling. Thus, our 

modeling objective tackles a small but essential subset of broader environmental modeling efforts. 
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This approach is a proof of concept and can be adapted to geographic boundaries, such as 

watershed boundaries or ecological regions, or applied to larger datasets in future studies.  

With this goal in mind, we aim to answer the following research questions: 1) Can the 

GeoServer and TDS implementations with HydroShare enable more seamless datasets access to 

support more reproducible environmental modelling? 2) Can HydroShare, with GeoServer and 

TDS, provide a more sustainable and scalable solution for sharing machine-readable, large-extent 

spatial (LES) datasets? 3) Can the approach approve the consistency between a conventional 

approach and the use of GeoServer and TDS data server? The remainder of the paper is organized 

as follows. The background section provides information about GeoServer and TDS within the 

context of this study. The methods section presents the procedures for creating LES datasets and 

sharing them on GeoServer and TDS in HydroShare in the context of the Regional Hydro-Ecologic 

Simulation System (RHESSys) model (Tague and Band, 2004) as it combines diverse, 

interdisciplinary sources of spatial data that are available on national servers for application to 

smaller watershed extents. The results section explores the results of this effort with applications 

in North Carolina, Maryland, and Virginia. The discussion section reviews the advantages and 

limitations of using the HydroShare integration of GeoServer and TDS for LES data access. We 

conclude with a summary of the contributions of this research in the larger context of reproducible 

environmental modelling and suggest pathways for future research to further advance spatial data 

analysis in support of reproducible environmental modelling. 
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2. Background 

2.1 GeoServer 

GeoServer is a Java-based open-source software developed to publish and visualize spatial 

data online. Open Geospatial Consortium (OGC), a non-profit organization, has released standards 

for sharing spatial data online, including the Web Map Service (WMS), Web Feature Service 

(WFS), and Web Coverage Service (WCS). Using a simple HTTP interface, WMS provides geo-

registered spatial images such as JPEG or PNG. WFS provides direct interoperability to discover, 

retrieve, and subset feature geographic data rather than sharing geographic data at the file level, 

such as downloading data. WCS is similar to WFS except that WCS provides direct 

interoperability to the raster geographic data while WFS provides direct interoperability to feature 

data. We used OWSLib (“OWSLib,” 2021) to visualize, retrieve, and subset spatial data using 

various formats such as Shapefiles, ArcGRID, and GeoTIFF through OGC web services (i.e., 

WMS, WFS, and WCS). GeoServer has been used within HydroShare to support spatial data 

visualization. In earlier versions of HydroShare, GeoServer served as the spatial backend for the 

HydroShare GIS web app based on the Tethys framework (Crawley et al., 2017).  This web app 

has since been deprecated in favor of providing preview maps of spatial data directly on the 

resource landing page using GeoServer WMS. This feature allows the sharing and visualizing 

public resources in HydroShare that contain spatial data. Every HydroShare resource that becomes 

public and contains geographic raster or feature content is automatically registered with GeoServer 

using customized middleware. 
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2.2 THREDDS Data Server (TDS) 

The Thematic Real-time Environmental Distributed Data Services (THREDDS) Data 

Server (TDS) is open-source software distributed by the Unidata community program of the 

University Corporation for Atmospheric Research (UCAR) (Unidata, 2024). TDS provides web 

services that provide remote access to data and metadata stored in a variety of well-known, geo-

temporal dataset formats used for environmental research such as GRIB (Gridded Binary), HDF5 

(Hierarchical Data Format version 5), and, most commonly, NetCDF (Network Common Data 

Form) as viewed through a Common Data Model (CDM) (Nativi et al., 2008). TDS presents 

gridded, point, and time series datasets organized into thematic catalogs and provides data access 

through web services. 

The TDS specifies two types of web service requests and responses, Data Access Protocol 

2 (DAP2) and Data Access Protocol 4 (DAP4), for remotely accessing CDM datasets. DAP2 is 

widely used for its simplicity and compatibility with many existing tools, making it suitable for 

standard data access tasks like subsetting and requesting dimensional constraints. DAP4, on the 

other hand, is a newer version that supports more complex data structures and enhances 

performance, but it is not yet as widely supported as DAP2. This study focuses on DAP2 due to 

its compatibility and efficiency in handling our specific data access needs. Remote access to TDS-

hosted datasets through DAP2 client software enables placing dimensional constraints on the CDM 

variable arrays transported in a response. The DAP2 request contains the constraints and 

effectively creates a subset of the TDS-hosted dataset for transport. The requesting client, therefore, 

need not concern itself with the size of the TDS-hosted dataset but only with the size of the data 

response. 
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As an additional advantage, DAP2 clients, such as Unidata’s NetCDF libraries or higher-

level software utilizing those libraries such as xarray (Hoyer and Hamman, 2017), initially make 

requests for only the metadata contained in the CDM header via a DAP2 Data Descriptor Structure 

(DDS) request and do not further request data until the variable array data is instantiated in the 

client via a DAP2 Distributed Oceanographic Data Systems (DODS) request. This “lazy-loading” 

behavior allows remotely opening the entire dataset but only transports portions of the dataset as 

needed programmatically, thereby reducing network load, transmission time, and memory 

consumption. 

3. Methods 

The overall modelling workflow used in the study is presented in Figure 1. The figure 

shows how datasets can be shared through HydroShare with different data management and 

distribution systems. All files in HydroShare are stored in the Integrated Rule-Oriented Data 

System (iRODS), a distributed data storage and management system that allows for the fast parallel 

transfer of large datasets (Yi et al., 2018). Public spatial datasets are also automatically replicated 

into GeoServer and TDS in HydroShare. One goal of this study is to explore how to retrieve spatial 

datasets from GeoServer and TDS to support more reproducible environmental modeling. To 

demonstrate this, we present an example application using LES datasets within RHESSys on 

CyberGIS-Jupyter for Water computing gateway, which is a well-tailored CyberGISX (Yin et al., 

2017) instance to support data-intensive and reproducible research in the environmental modeling 

community. Further details on these steps are provided in the following subsections.  
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Figure 1. The workflows to create, share, subset, apply, and evaluate LES datasets for more 

reproducible environmental modelling. 

3.1 Create and Share LES Datasets 

3.1.1 Collect Spatial Data 

 Environmental models often require spatial datasets, including Digital Elevation Models 

(DEMs), land cover, and soil maps, to generate model inputs (DeVantier and Feldman, 1993). 

DEM data are used to delineate a watershed and extract spatial attributes such as flow direction, 

slope, aspect, and flow accumulation. Land cover is used to calculate surface roughness, 

evaporation, and transpiration according to the different land cover types, including impervious 

surfaces and vegetation type and extent. (e.g., agricultural crops, pasture, forest communities). Soil 

map data are used to generate parameters required to calculate water movement through soil, 

including infiltration, groundwater recharge, lateral transport, and soil hydraulic information 
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required to estimate evaporation and transpiration. Many web-based spatial data distribution 

systems currently provide low to high-resolution spatial data. They provide low-resolution data 

services such as the 90 m resolution Shuttle Radar Topography Mission (SRTM) (“SRTM,” 2021) 

and the Google Earth Engine Datasets  (“Google Earth Engine,” 2021) for various earth science 

data and analysis. National-scale data is supported by federal government organizations such as 

USGS and USDA, as mentioned in the introduction section. High-resolution data services, most 

often hosted by specific research centers or state government organizations, provide 1-m or even 

higher resolution DEM and land cover data. 

Depending on the specific application and the size of the watersheds, hydrologists often 

use 10-m or 30-m resolution DEM data in GeoTIFF format, especially when modeling state or 

larger scale areas where finer resolutions may not be practical or add significant value. For 

collecting DEM data to support modelling, we tested different data distribution interfaces and 

selected the Geospatial Data Gateway (GDG), which is operated by inter-government cooperation 

between the three service center agencies: Natural Resources Conservation (NRCS), Farm Service 

Agency (FSA), and Rural Development (RD). We selected GDG because it distributes data by 

various spatial units, including states, counties, bounding box, and custom areas of interest. For 

collecting land cover data, we emphasized data continuity for various applications such as land 

cover change. Therefore, we selected MRLC, a group of federal agencies, because this product 

provides consistent and reliable land cover information from 2001 to 2016 at the national scale. 

Finally, to collect soil data, we selected GDG. There are three soil datasets in GDG: 1) the National 

Soil Geographic Database (NATSGO), which is a very general soil map of the entire U.S.; 2) the 

State Soil Geographic Database (STATSGO), which is a more detailed state-wide map; and 3) Soil 

Survey Geographic Database (SSURGO), which is the most detailed county-level data. We 
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obtained the most detailed soil data from SSURGO to support watershed modeling use cases. In 

addition, we collected attribute data of SSURGO relevant to environmental models. SSURGO 

GeoTIFF datasets have a Mukey (Map unit key, the index to link different soil metadata tables) 

for each cell. We selected five SSURGO attribute tables that RHESSys required to link with the 

MUKEY in the GeoTIFF: 1) mapunit (mukey table), 2) chorizon (horizon table), 3) chtexgrp 

(horizon texture group table), 4) chtextur (horizon texture table), and 5) comp (component table). 

These tables are distributed at the county level through the Web Soil Survey web distribution 

system (Soil Survey Staff, 2021), which is associated with the GDG. Therefore, we downloaded 

county-level SSURGO metadata for each of the three states and merged them into a single 

SSURGO attribute table that can be joined to the GeoTIFF through the Mukey attribute. 

While DEM, Land Cover, and SSURGO soil datasets are systematically available and 

regularly updated, there are important considerations regarding their availability and quality. For 

example, depending on the source, DEMs can vary in resolution and accuracy, which may affect 

the precision of watershed delineation and other spatial analyses. Land Cover datasets, although 

typically updated every few years, may only partially capture rapid land use changes, potentially 

leading to outdated or less accurate modeling inputs. Similarly, while detailed, SSURGO soil data 

may have varying completeness levels across regions, which could influence the accuracy of soil-

related parameters in the model. These factors highlight the importance of selecting and evaluating 

datasets to meet the specific hydrological modeling objectives. A fuller exploration of the 

availability and quality of these datasets is outside the scope of this paper; as such, a discussion 

could form the basis for a separate study on data limitations and quality. 

After selecting a source for obtaining the spatial datasets, we next selected the best scale 

(national, state, or local) for storing the datasets in HydroShare. In making this decision, we 
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considered 1) the file size of the spatial datasets, 2) the capabilities of GeoServer and TDS at 

handling different-sized datasets, and 3) the reusability of applications across different watersheds. 

Ultimately, we decided that aggregating the spatial data at the state scale would be best for the 

following reasons. Initially, we considered the feasibility of using national-scale spatial data within 

GeoServer and TDS because this would allow for truly reproducible environmental modelling. 

The size of the national-scale 30 m resolution DEM, land cover dataset, and SSURGO dataset at 

the national scale are 44.6, 20, and 3.7 GB, respectively. We could not find specific guidelines that 

specify the maximum size of datasets that can be distributed using GeoServer and TDS. Based on 

our experience, due to memory limitations, GeoTIFF files exceeding 1 GB can be challenging to 

manipulate and convert to NetCDF on most personal computers. Therefore, while a national-scale 

dataset is technically feasible, it may be impractical to work with and maintain. Our decision to 

avoid using national-scale datasets was driven by these technical constraints, which limit practical 

processing rather than the typical file size limitation for sharing data in many online repositories, 

as discussed in the introduction. Given the challenges with the national scale, we then considered 

state-scale data aggregations. In this case, using Virginia as an example, the DEM is 951 MB, land 

cover is 342 MB, and SSURGO is 157 MB. The process of uploading and subsetting the data on 

GeoServer and TDS was simplified at this file size. For datasets smaller than state-scale, it will be 

difficult to support more reproducible modelling because many watersheds cross county 

boundaries. For these reasons, we chose state-scale as a useful spatial aggregation for distributing 

LES datasets, while other similarly sized spatial aggregations, like large watersheds, could also 

have been used. We obtained 10-m or 30-m DEM and 30-m SSURGO spatial data from GDG. 

Also, we collected 30-m land cover spatial data in 2001, 2003, 2006, 2008, 2011, 2013, and 2016 

from MRLC to create the LES datasets (Figure 2). The following subsections describe how these 
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data were processed to have a consistent spatial reference system and uploaded and shared through 

HydroShare.  

 

 
Figure 2. The selection of data distribution systems and spatial data to create LES datasets 

 

3.1.2 Create Consistent LES Datasets 

In this step, we considered the following factors in creating consistent state-scale spatial 

datasets for use in GeoServer and TDS: 1) using data types optimal for GeoServer and TDS, 2) 

adopting a consistent coordinate system across all spatial data, 3) applying georeferencing 

transformations to adjust shifted locations in the merged state-scale DEM, and 4) having complete 

and meaningful metadata compatible with HydroShare for each dataset. 

We adopted GeoTIFF as the spatial data type for the LES datasets on GeoServer and 

NetCDF for TDS. GeoTIFF is an OGC implementation standard for raster data commonly used to 

store grid-based spatial data with geographic metadata that describes the spatial location, including 

spatial extent, coordinate reference system, and resolution. Most data providers serve DEM and 

land cover data as GeoTIFF, which is also one of the primary data types GeoServer supports. For 

SSURGO data, the information is typically served at the county scale using a shapefile format with 

soil attribute metadata. We explored merging the county-scale SSURGO shapefiles into a state-
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scale shapefile and serving the data through GeoServer. Doing so resulted in a large dataset that is 

difficult to manage and feed into environmental models. Fortunately, since Feb 2021, the USDA 

NRCS National Soil Survey Center has started to provide national-scale SSURGO data as a 30-m 

resolution GeoTIFF. The GeoTIFF format can store a collection of 2D arrays, which makes it 

easily transferrable into a NetCDF multidimensional array. Given that TDS supports the NetCDF 

format in the background, we decided to use GeoTIFF in GeoServer and NetCDF in TDS as the 

data types for distributing the LES copies of the DEM, land cover, and soil spatial datasets at a 

state scale. 

Each dataset obtained from the federal agencies was originally provided in a different 

spatial coordinate system. Adopting a consistent coordinate system is essential to create a unified 

LES dataset to support environmental modelling. We adopted the Universal Transverse Mercator 

(UTM) geographic coordinate system for consistency at the state-scale. Resampling is required 

when transforming coordinate systems. For resampling of the LES datasets, we used a bilinear 

interpolation resampling method for the DEM because it is continuous data and used a nearest 

neighbor resampling method for the land cover and soil data because they are categorical data, 

meaning they are organized into discrete categories or classes (e.g., land cover types or soil types). 

When multiple DEMs are merged into one DEM, there are often overlapping areas at the 

edges of each original DEM. These areas made the merged DEM (GeoServer and TDS LES DEM) 

shift about 0.3-m to 1.0-m horizontally compared to the original raw DEM. If users delineate a 

watershed using the merged LES datasets without recognizing these changes, the watershed 

boundary may not match the boundary delineated using the original data products. This may 

sometimes allow environmental models to execute without producing any fatal errors, depending 

on the specific application. To address these potential issues, we applied a georeferencing tool to 
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transform spatial data in ArcGIS to linearly shift the merged DEM back to its original location 

using control points. It is essential to note that the importance of georeferencing becomes even 

more apparent when non-fatal errors are less noticeable. Unlike cases where changes in the 

watershed's shape are easily recognized, modelers may overlook discrepancies without prior 

studies for comparison and validation. This oversight can lead them to assume that the LES 

datasets are identical to the original data, potentially resulting in erroneous model setup and 

parameter tuning. This underscores the critical need for a rigorous georeferencing step in the 

process. 

Figure 3 shows the complete workflow using the steps described above to create the LES 

datasets in the GeoTIFF and NetCDF formats. First, each state's data was projected using the 

appropriate UTM zone coordinate system. We used a projected coordinate system because 

environmental models use length units, such as meters, instead of degrees used in a geographic 

coordinate system. After creating the state-scale merged DEM, we applied a georeferencing tool 

to adjust its spatial alignment to match its original location. Land cover data are distributed at the 

national scale; therefore, we extracted state-scale land cover datasets and projected the data to the 

same coordinate system as the state-scale DEM. Finally, SSURGO data, distributed at the national 

scale using a USA Contiguous Albers Equal-Area Conic USGS version, was clipped to the state 

scale and projected to the same coordinate system as the DEM and land cover data. 
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Figure 3. The workflows to create the LES in GeoTIFF and NetCDF format. 

After creating the LES datasets, we added metadata directly within the NetCDF datasets to 

capture essential information about the changes made in the original metadata file distributed by 

GDG. We added 16 metadata fields, including data title, bounding coordinates, grid coordinate 

system name, UTM Zone number, scale factor at central meridian, and horizontal datum name. 

3.1.3 Share Datasets in HydroShare 

For this step, we reviewed and used three tools to share the LES datasets through 

HydroShare: 1) iRODS to fast transfer large datasets (over 1 GB) into HydroShare, 2) OWSLib 
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Python libraries to make the LES datasets interoperable via GeoServer, and 3) xarray (Hoyer and 

Hamman, 2017) Python libraries to make the LES datasets interoperable via TDS.  

The first step was to upload the datasets into a new HydroShare resource. This step is trivial 

if the size of datasets is under 1 GB as datasets can then directly be uploaded through the 

HydroShare web browser user interface. For datasets exceeding 1 GB, users must employ iRODS 

for fast transfer of large data into HydroShare. Various iRODS clients, such as icommands and 

Cyberduck, serve as effective tools for parallel transferring substantial datasets via multiple threads 

into the HydroShare iRODS user space. We used Cyberduck for its user-friendly interface and 

convenience. After uploading the LES datasets into the HydroShare resource, datasets were 

automatically recognized with the proper aggregation type of geographic raster (GeoTIFF) or 

multidimensional contents (NetCDF). The content type metadata, such as title, keywords, 

spatial/temporal coverage, and spatial reference, and variable metadata, were automatically 

extracted by HydroShare as part of the data upload process. When a HydroShare resource is made 

public, the spatial datasets are automatically provided through GeoServer and TDS.  

After the LES datasets are available on HydroShare and through the linked GeoServer and 

TDS access points, users can quickly discover and programmatically interact with the LES datasets 

from GeoServer and TDS using the newly created HydroShare resource ID. Users can use 

OWSLib to request subsets of data from GeoServer. In TDS, users can use xarray to subset specific 

data of interest. Subsequently, users can convert the NetCDF output from TDS into GeoTIFF 

format using the rioxarray package(“rioxarray,” 2021). This conversion allows the data to be used 

as input for environmental models that expect GeoTIFF raster inputs. 
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3.2 Example Application for an Environmental Model Use Case 

We used an example application to demonstrate the data service and how it supports 

reproducible environmental modelling workflows. Figure 4 depicts the workflow steps for 

seamlessly applying LES datasets as model inputs, which include the DEM, extracted land cover, 

and soil texture maps. The development of parameters from the spatial data, execution and 

visualization modeling workflow was modified from Miles and Band’s (2017) RHESSys 

Workflow. As part of our evaluation of data consistency between LES datasets (TDS and 

GeoServer) and the conventionally accessed spatial data provided by federal agencies, we 

incorporated daily streamflow outputs from the RHESSys model (Tague and Band, 2004) as an 

illustrative example. RHESSys is a GIS-based hydro-ecological modelling framework for 

simulating carbon, water, and nutrient fluxes. In this evaluation, we also used the newly prototyped 

pyRHESSys(Choi and Lin, 2021), an API for RHESSys that provides programmatic control over 

model input creation, manipulation, execution, and output visualization and analysis. 

We compared three approaches for accessing the spatial data required to parameterize the 

RHESSys model: 1) the data manually subset from data provided by federal agencies and 

conventionally shared at file level, 2) the data processed and distributed through GeoServer in the 

GeoTIFF format, and 3) the same data processed and distributed through TDS in a NetCDF format. 

We compared the watershed DEM, extracted land cover, and SSURGO data to evaluate data 

consistency across the three approaches. To ensure a fair comparison, all model parameters and 

parameterization processes remained constant across the three data input approaches. The 

hydrological processes in RHESSys were driven by daily forcing datasets, including precipitation, 

maximum and minimum temperature, vapor pressure deficit, relative humidity, and direct 

downward shortwave radiation. These forcing datasets were sourced from Daymet (Thornton et 
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al., 2022) for Scotts Level Branch, MD, and Spout Run, VA, while data for Coweeta Subbasin 18, 

NC, was obtained directly from the Coweeta Hydrologic Laboratory (personal communication, 

November 12, 2021). After executing RHESSys using data from these three approaches as input, 

we also assessed the impact of the three data access approaches on model output, particularly on 

daily streamflow outputs. The goal was to confirm that the proposed seamless data distribution 

approach and reproducible workflows are consistent with a careful, manual modelling process. 

 

 
Figure 4. Workflows for reproducible RHESSys modelling and evaluation of data consistency 

using LES datasets. 
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4. Results 

This section presents results from the example application where the proposed reproducible 

workflows are applied to three different watersheds using the RHESSys model on CyberGIS-

Jupyter for Water computing gateway. First, we describe the three example study watersheds. Next, 

we present the HydroShare resources for sharing the datasets and workflows. Then, we present the 

developed workflows as Jupyter notebooks that show the steps to create and subset LES datasets 

based on Figure 1 in the methods section. Finally, we present results from the method evaluation 

described in Figure 4 that aims to measure data consistency across three approaches for distributing 

spatial data and how each method impacts the results of a reproducible RHESSys model run. 

4.1 Example Watersheds 

The three study watersheds are 1) Coweeta Subbasin18, NC (A = 0.126 km2, DEM 

resolution: 10 m), 2) Scotts Level Branch, MD (A = 8.36 km2, DEM resolution: 30 m), and 3) 

Spout Run, VA (A = 55.42 km2, DEM resolution: 60 m), all of which are shown in Figure 5. The 

United States Forest Service Coweeta Hydrologic Laboratory has been measuring hydrologic and 

ecologic variables for gaged catchments since 1934 (“USFS Coweeta Hydrologic Laboratory,” 

2021).  Subbasin18 is a forest-dominated basin. Coweeta catchment with steep topography that is 

well-studied in hydrologic studies, leading to long-term records of several hydrologic and 

environmental parameters and variables, including observed streamflow in the subbasin. For this 

reason, we chose it as one of our study watersheds. Scotts Level Branch, located near Baltimore, 

Maryland, has a USGS streamflow observation station (USGS 01589290) and represents a 

suburban watershed. Spout Run is a mixed land-use watershed with substantial agricultural land 

cover in Northern Virginia and a USGS streamflow observation station (USGS 01636316). The 

watershed contains the Blandy Experimental Forest, which has one of the National Science 
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Foundation’s National Ecological Observatory Network (NEON) sites. Using these three 

different-sized watersheds, we evaluated the applicability of the LES dataset distribution method 

as part of a reproducible modeling workflow. The simulation periods for each watershed are as 

follows: 1/1/2004 - 10/31/2014 for Coweeta Subbasin18, NC, 1/1/2007 - 9/30/2020 for Scotts 

Level Branch, MD, and 1/1/2004 - 12/31/2020 for Spout Run, VA (the dates reported herein follow 

the U.S. formatting convention of MM/DD/YYYY). 
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Figure 5. Three different sized watersheds to evaluate data consistency in different resolutions 

using LES datasets: 1) Coweeta Subbasin18, NC (A = 0.126 km2, DEM resolution: 10 m), 2) 

Scotts Level Branch, MD (A = 8.36 km2, DEM resolution: 30 m), 3) Spout Run, VA (A = 55.42 

km2, DEM resolution: 60 m) 

4.2 Sharing the Datasets and Workflows in HydroShare 

To share the datasets and workflows we used and developed, we created a HydroShare 

collections resource ((Choi et al., 2024)) referred to as HS 1. This collection resource comprises 

seven HydroShare resources (HS 2-8), each containing different datasets or workflows. To 

simplify referencing each HydroShare resource, we assigned an identifier known as the "HS 
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number." The interactions and dynamics of these eight HydroShare resources are elucidated in the 

Data Availability section using a visual diagram (Figure D1) that illustrates their interrelationships. 

4.3 Creating the LES Datasets 

We created Jupyter notebooks to automate the data processing workflow required to create 

the LES datasets for the three states (Choi et al., 2024) (HS 2). GIS processing was first done in 

these workflows to merge, extract, and project GeoTIFF data. We used ArcPy, a GIS Python 

package, to perform geographic data analysis, conversion, and data management in ArcGIS (Toms, 

2015). After creating LES datasets in GeoTIFF format to be exposed by GeoServer, we converted 

GeoTIFF to NetCDF using xarray and rioxarray Python packages so that the same data used by 

GeoServer can be exposed by TDS which requires data to be in the NetCDF format. We used 

xarray to manipulate data type and add metadata in the NetCDF file and rioxarray to save GeoTIFF 

to NetCDF format. These procedures created three composite HydroShare resources (HS 3-5) to 

share LES datasets(Choi et al., 2024). 

 The automated workflows consist of three parts (DEM, land cover, and SSURGO), as we 

mentioned in Figure 3 in the methods section. In this subsection, we demonstrated how these 

general methods can be applied to create Virginia LES DEM in GeoTIFF format (Figure 6). Before 

starting this procedure, we created ArcPy Conda virtual environments from ArcGIS Pro 2.1. Then, 

we created Jupyter notebooks to capture these automated workflows (Figure 6). We imported 

required libraries such as ArcPy, xarray, and NumPy. After collecting 30-m resolution DEM from 

GDG, we unified the multiple projected coordinate systems of the original DEM into one projected 

coordinate system using the ProjectRaster_management module in ArcPy. In the case of Virginia, 

the DEM has UTM Zone 17N and 18N projected coordinate systems, so we unified them to UTM 

Zone 17N. We then merged each DEM into one state-scale DEM in GeoTIFF format using the 



 
 

29 

MosaicToNewRaster_management module in ArcPy. After that, we read the Virginia GeoTIFF 

file and created an xarray data format using the rasterio Python library. Then, we added metadata 

of the original DEM, such as spatial domain, UTM detail information, and geodetic model 

information, into NetCDF. Finally, we saved xarray format data to NetCDF. Following similar 

procedures, we created state-scale land cover and SSURGO using this Jupyter notebook. Due to 

the proprietary nature of ArcGIS Pro software, we developed these Jupyter notebooks (HS 2) on 

the Windows operating system, which means they cannot be directly used in the CyberGIS-Jupyter 

for Water computing gateway. These Jupyter notebooks can be employed by researchers interested 

in creating LES datasets, including for other states ore regions.  
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Figure 6. A workflow example: creating Virginia LES DEM in GeoTIFF and NetCDF formats 

(HS 2). Note that the figure displays a modified single cell for clarity and illustrative purposes, 

while the original code in the corresponding notebook in HS 2 is presented in multiple cells. 
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Using these automated workflows, we created GeoTIFF and NetCDF LES datasets for the 

DEM, land cover, and SSURGO in North Carolina, Maryland, and Virginia. For the DEM, we 

selected different resolutions for each state. Given the small drainage area of Coweeta Subbasin18 

and to evaluate higher resolution data consistency, we generated 10 m resolution DEM GeoTIFF 

for North Carolina. We could not convert 10 m resolution DEM GeoTIFF (a DEM with higher 

resolution compared to other states) to NetCDF LES datasets due to computing memory limitation 

in a local computer and CyberGIS-Jupyter for Water. As a result, we could not use the TDS 

approach in North Carolina; instead, we had to employ LES DEM exclusively in GeoTIFF format 

via GeoServer. In Maryland and Virginia, we created 30 m resolution LES DEM in GeoTIFF 

format and converted it to NetCDF. We applied 30 m resolution DEM to Scotts Level Branch as 

an example for general resolution application. Considering the larger drainage area of Spout Run 

and for evaluating lower resolution data consistency, we resampled DEM from 30 m to 60 m 

resolution. For the land cover from MLRC and SSURGO from GDG, we created 30 m LES 

datasets for all three states because they only come with 30 m resolution GeoTIFF. After creating 

GeoTIFF LES datasets for DEM, land cover, and SSURGO, we converted them into NetCDF LES 

datasets. Given the NetCDF capacity to create time or variable stacked datasets within the same 

domain using dimension and coordinate structures, we created a consolidated land cover NetCDF 

LES dataset by stacking seven GeoTIFF LES datasets from 2001 to 2016 (2001, 2003, 2006, 2008, 

2011, 2013, and 2016). This approach offers enhanced convenience and efficiency, enabling 

researchers to manage seven years of land cover data within a single NetCDF file.  

Table 1 shows the file sizes and resolutions of GeoTIFF and NetCDF LES datasets in the 

three states. The original LES datasets retrieved from the federal agencies are not compressed files 

and are very difficult to handle. To minimize the file sizes, we used GeoTIFF and NetCDF 
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compressed formats. We used a LZW compression algorithm (Akoguz et al., 2016) to calculate 

GeoTIFF in ArcGIS. The nccopy tool, a command-line utility to compress NetCDF files, supports 

multiple levels of compression (level 0-9, where a high value represents high compression and 

requires more time) for variable data in NetCDF. We used the level 1 compression command 

“nccop -d1 input.nc output.nc,” which effectively reduced the size of the original NetCDF. 

Specifically, the original size of the Virginia GeoTIFF DEM (30 m) was 1.53 GB, and the 

compressed size was 0.95 GB. The original size of Virginia NetCDF DEM (30 m) was 1.60 GB, 

and the compressed size was 0.78 GB. Therefore, using the compressed format makes it more 

convenient to share the LES dataset online.  

Sharing LES datasets is convenient for seamless access to spatial data, though it is 

challenging to suggest appropriate dataset sizes considering the varying memory capacities of 

different computers. In the case of North Carolina GeoTIFF DEM (with a 10 m resolution), 

although the file size was 5.66 GB, there was no problem in creating a GeoTIFF DEM. Yet, as 

mentioned earlier in this section, we could not convert DEM from GeoTIFF to NetCDF for North 

Carolina due to a memory limitation preventing us from using TDS to access DEM. The memory 

capacity of the computer used to prepare datasets and the server hosting the data is crucial for 

creating, uploading, and interoperating large datasets. The servers hosting GeoServer and TDS 

require significant testing, considering the large volume and size of file transfers required 

concurrently across different users’ requests. In addition to the guidelines mentioned in the 

methods section regarding challenges in manipulating and converting GeoTIFF to NetCDF due to 

memory limitations, our experimental findings are based on the specific experiments conducted 

during this research, further emphasizing the importance of considering data size for stable data 

interoperability.  
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Based on these experiments, it is apparent that maintaining stability for data 

interoperability via GeoServer is achievable for datasets below 5 GB. Similarly, for TDS, datasets 

up to 1 GB demonstrate stable performance. Despite the servers being able to handle larger sizes, 

adhering to these specified limits ensures more robust performance, particularly when faced with 

concurrent user requests. Suppose a user chooses to work with finer-scale data compared to our 

study. In that case, they are expected to encounter similar limitations more prominently and 

potentially face additional challenges we did not encounter. Depending on the specific computing 

resources available, these challenges could further complicate the practical use of finer resolutions. 

Table 1. Compressed file sizes and resolutions of GeoTIFF and NetCDF in the three states 

States DEM Land Cover (7 Years)* SSURGO 
GeoTIFF NetCDF GeoTIFF NetCDF GeoTIFF NetCDF 

North Carolina File Size 
(MB) 

5,659 - 257 304 112 80 
Maryland 358 294 134 165 52 44 
Virginia 951 783 342 422 157 121 

North Carolina Resolution 
(m) 

10 - 30 30 30 30 
Maryland 30 30 30 30 30 30 
Virginia 60 60 30 30 30 30 

*The land cover GeoTIFF file size (MB) mentioned for each state in the table are the summation 

of sizes of the seven GeoTIFF files each of which represents one specific year but the NetCDF 

file size for each state are for one file which is stacked land cover of the seven years   

4.4 Subsetting the LES Datasets  

After creating three states’ LES datasets and sharing them on the HydroShare GeoServer 

and TDS, we subset these datasets to collect spatial model input for specific watersheds for use in 

RHESSys preprocessing workflows. In Figures 7 and 8, we used Scotts Level Branch, MD, as a 

demonstrative example to illustrate the subsetting LES datasets on GeoServer and TDS within 

HydroShare. This subsetting procedure is shared through the RHESSys workflow notebooks (HS 

7) in HydroShare (Choi et al., 2024). 
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4.4.1 Subset LES Datasets from GeoServer 

We used OWSLib within the CyberGIS-Jupyter for Water environment to perform the 

GeoTIFF DEM subsetting in GeoServer. Figure 7 shows the process using the Maryland LES 

Datasets (GeoTIFF) in HydroShare as a specific example. First, we imported the required Python 

libraries to use the WCS service in GeoServer. Second, we requested GeoTIFF as an object using 

a WebCoverageService module in OWSLib. Then, we subsetted certain areas using a getCoverage 

method with a bounding box. Finally, we saved the subsetted object to GeoTIFF format. 
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Figure 7. Subsetting Example: Scotts Level Branch from MD LES GeoTIFF Dataset from 

GeoServer using OWSLib (HS7: Jupyter 

notebookStep_2_Retrieve_Spatial_Inputs_and_TimeSeries_Data.ipynb. Note that the codes 

presented in this figure are simplified. In the original notebook, there are more details, including 

conditional statements based on the selected data access approach and study area, and the codes 

are spread across multiple cells) 

4.4.2 Subseting LES Datasets from TDS 

Subsetting land cover LES Datasets (NetCDF format) in TDS is more straightforward than 

in GeoServer (GeoTIFF format) because users can directly access TDS via xarray. Therefore, users 

can easily create xarray array format (xarray.DataArray) objects using an xarray open_dataset 

module. Then, they can subset the land cover data in their watershed and simulation year of interest, 

e.g., the Scotts Level Branch watershed for 2006, using slicing ranges for x and y to specify the 

UTM corner coordinates and years (Figure 8). Finally, users can convert xarray data array objects 

to GeoTIFF format using the rioxarry library. This conversion is a crucial step because the 
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subsetted data obtained from TDS serves as RHESSys model inputs, and it specifically requires 

GeoTIFF format for its input data. 

 

 
Figure 8. Subsetting Example: Scotts Level Branch from MD LES NetCDF Dataset from TDS 

using xarray (HS 7: Jupyter notebook: 

Step_2_Retrieve_Spatial_Inputs_and_TimeSeries_Data.ipynb. Note that the codes presented in 

this figure are simplified. In the original notebook, there are more details, including conditional 

statements based on the selected data access approach and study area, and the codes are spread 

across multiple cells) 

4.5 Evaluating Data Consistency 

 To evaluate the data consistency in three different watersheds with different spatial data 

resolutions: 10, 30, and 60 m, we created RHESSys input from LES datasets and executed 

RHESSys using a reproducible RHESSys Jupyter notebook (HS 7) (Choi et al., 2024). In these 

procedures, we created nine case studies using three different datasets resulted from the three data 

distribution approaches (conventional, GeoServer, and TDS) and three watersheds (Coweeta 

Subbasin18, Scotts Level Branch, and Spout Run). For the conventional approach, where spatial 

datasets were manually collected to represent a scenario where a user does not use an API to 
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retrieve data, we created three resources that contain model instances for each watershed in 

HydroShare (Choi et al., 2024) (HS 7). We then presented the evaluation results of data consistency 

in three different watersheds using Jupyter notebooks (Choi et al., 2024) (HS 8). For this evaluation, 

we employed difference maps for model inputs (watershed DEMs, extracted land covers, and 

SSURGO maps), comparing the data obtained from the conventional approach to LES datasets 

(GeoServer and TDS) (Figure 9) and regression plots for model outputs (RHESSys daily 

streamflow outputs) (Figures 10 and 11). These results are presented in the following subsections. 

  

4.5.1 Evaluate Spatial Model Input 

To emphasize the significance of georeferencing, we contrasted RHESSys daily streamflow 

outputs before and after applying them to the LES datasets with those derived from georeferenced 

conventionally distributed data. Figures 9(1a) to 9(3c) show the spatial model input difference 

between the conventional approach and LES (GeoServer or TDS) approaches without applying 

georeferencing. In contrast, Figures 9(4a) to 9(4c) present the same comparisons with 

georeferencing applied. As mentioned earlier, GeoServer and TDS datasets are the same data but 

only in different file formats, meaning they both produce the same results. Therefore, only one of 

them is used to create the difference maps for spatial model inputs in ArcMap (Figures 9(1) to 

9(4)). 

Figure 9(1) shows the differences in the DEM elevation between the conventional approach 

shared as HS 7 resource and the subsetted LES (GeoServer or TDS) approaches at (a) Coweeta 

Subbasin18 (10 m), NC, (b) Scotts Level Branch (30 m), MD, and (c) Spout Run (60 m), VA 

before applying the georeferencing corrections described in the methodology section. The 

difference is defined as LES datasets DEM subtracted from conventionally accessed DEM. In each 
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map, red and green cells show the highest positive and negative DEM elevation differences, 

respectively, between the data conventionally distributed and the LES datasets, while the yellow 

ones indicate the lowest values. The differences in elevations in Figure 9(1) primarily stem from 

horizontal shifts due to the lack of georeferencing in the state-scale DEM compared to the 

georeferenced conventionally distributed data. These shifts lead to varying changes in elevation 

values across cells, with more significant discrepancies observed in some cells (highlighted in red 

and green for the highest positive and negative differences, respectively). Notably, these shifts are 

most pronounced between discrete hillslopes, particularly in Coweeta Subbasin18 (Figure 9(1a)) 

and Scotts Level Branch (Figure 9(1b)), potentially reflecting horizontal shifts of more than one 

pixel resolution. Coweeta Subbasin18, characterized by its forest-dominant watershed, exhibits the 

most significant differences in elevation compared to the other two watersheds, which are urban 

and suburban. Smaller elevation changes (depicted by yellow cells) occur in areas with gentler 

topography, predominantly seen in Spout Run (Figure 9(1c)), a suburban watershed with milder 

hillslopes. Furthermore, when merging multiple DEMs to create a state-scale DEM, inevitable 

resampling of cell values (elevation) may result in further differences between the DEM values of 

georeferenced conventionally distributed DEM and non-georeferenced subsetted LES DEM. 
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Figure 9.  Comparison of differences in DEM elevation (in meters), extracted land cover 

classification code, and extracted SSURGO soil texture between the conventionally accessed data 

and subsetted LES datasets (GeoServer or TDS) before and after georeferencing for (a) Coweeta 

Subbasin 18, NC, (b) Scotts Level Branch, MD, and (c) Spout Run, VA. Panels 9(1a) to 9(1c) 

show DEM differences, 9(2a) to 9(2c) show extracted land cover classification code differences, 

and 9(3a) to 9(3c) show extracted SSURGO soil texture differences, all before applying 

georeferencing. Panels 9(4a) to 9(4c) show results after georeferencing for DEM, land cover, and 

soil. Soil and land cover difference maps for Spout Run, VA, are zero and not shown in 9(4c). 

Figure 9(2) compares to Figure 9(1), focusing on the differences in the extracted land cover 

classification code. The differences are shown in terms of whether the LES datasets' land cover 

values for each cell agree with the conventionally accessed values (gray cells) or not (red cells) 

because these maps used land cover classification codes as discrete integer values; for instance, 

code 41 corresponds to deciduous forest. The conventionally accessed land covers were extracted 

from national-scale land cover maps. Therefore, theoretically, the value of conventionally accessed 

data and LES data in the same location should be the same. In the model preprocessing, the 

watershed boundaries delineated using the DEMs are used to extract land cover and soil maps. 

Because the watershed boundaries are slightly shifted due to a lack of georeferencing, as stated 

earlier, the land cover classification codes are slightly changed in the LES datasets.  Figure 9(2a), 

(2b), and Figure 9(2c) illustrate that 4.2%, 9.1%, and 9.4% of land cover changed, respectively, 

due to the creation of LES datasets and RHESSys preprocessing. This change percentage is 

calculated as the count of altered cells divided by the total number of cells multiplied by 100. The 

higher differences in land cover changes in Spout Run and Scotts Level compared to Coweeta 

Subbasin18 can be attributed to the higher diversity in land cover classifications among adjacent 
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neighboring cells within these two watersheds. This makes them particularly sensitive to slight 

shifts in the watershed boundary, resulting in comparatively higher differences in land cover 

changes. 

Figure 9(3) provides a similar comparison to Figures 9(1) and 9(2) but focuses explicitly 

on differences in the extracted SSURGO soil texture. Similar to land cover maps, the differences 

are shown in terms of whether the soil values for each cell are changed (LES datasets 

agree/disagree with conventionally accessed data values) because these maps used soil texture 

code as discrete integer values. The reason for the difference in the soil maps is the same as in the 

land cover discussed earlier. Figures 9(3a), (3b), and (3c) show that 18.0%, 4.9%, and 5.3% of the 

soil maps were altered, respectively, during the creation of LES datasets and RHESSys 

preprocessing. The higher differences in soil texture observed in Coweeta Subbasin18, compared 

to the other two watersheds, can be attributed to the greater diversity in SSURGO classifications 

among adjacent neighboring cells. This heightened diversity makes Coweeta Subbasin18 

particularly sensitive to slight shifts in the watershed boundary, resulting in higher observed 

differences in soil maps. 

To demonstrate the importance of georeferencing, we applied it to all three datasets across 

the three states, and the results are presented in Figure 9(4). This figure displays the differences in 

the watershed DEM elevation, extracted land cover classification code, and extracted SSURGO 

soil texture between the conventionally accessed data and the subset LES datasets (GeoServer or 

TDS) at the three watersheds: (a) Coweeta Subbasin18, NC, (b) Scotts Level Branch, MD, and (c) 

Spout Run, VA, after applying georeferencing (only watershed DEM is shown for Figure 9(4c). 

Typically, the georeferenced method uses at least three points to transform a raster or shapefile; in 

our case, resampling and merging multiple GeoTiff files only altered cell values and shifted cell 
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locations without introducing distortion. Therefore, we found that using a single control point was 

sufficient to align the merged DEM with the original raw DEM accurately. As a result of this 

georeferencing, we were able to eliminate the DEM differences except for the DEM of Spout Run 

(60 m resolution), where slight differences, within a range of ± 6 cm, between the DEM of the 

conventionally accessed data and subsetted LES datasets (GeoServer or TDS) exist, as shown in 

Figure 9(4c). These slight differences exist because we resampled the DEM from 30 m to 60 m 

resolution to evaluate the applicability of lower resolution for larger watersheds. The difference 

between the conventionally accessed and LES datasets DEMs, land covers, and soil maps at 

Coweeta Subbasin18 (Figure 9(4a)) and Scotts Level Branch (Figure 9(4b)), and the difference 

between the conventionally accessed and LES datasets land cover, and soil at Spout Run (not 

shown in the figure) are zero.  

 

4.5.2 Evaluate Model Output  

To further emphasize the importance of georeferencing, the RHESSys model outputs 

before and after georeferencing are compared. Figures 10 and 11 show three regression analyses, 

each comparing two RHESSys daily streamflow outputs from the three different data input 

approaches: conventional, GeoServer, and TDS. The results are provided for the three watersheds: 

Coweeta Subbasin18 in North Carolina, Scotts Level Branch in Maryland, and Spout Run in 

Virginia. Figure 10 explains the performance results of RHESSys outputs without applying the 

georeferencing tool (conventional vs. GeoServer: Nash-Sutcliffe Efficiency (NSE) 0.684, 

conventional vs. TDS: NSE 0.647) for the Coweeta 18 watershed. As explained earlier, applying 

georeferencing significantly improved the model inputs. As a result, the RHESSys outputs are also 

expected to be improved. Figure 11 (a) and (b) showed perfect agreement between the model 
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outputs generated from the conventional and LES inputs (conventional vs GeoServer: NSE 1.0, 

conventional vs TDS: NSE 1.0) for Coweeta Subbasin18 in North Carolina. Also, other subplots 

in Figure 11 showed perfect agreement after applying the georeferencing tool for the other two 

watersheds. These results demonstrate the importance of georeferencing for achieving data 

consistency; without georeferencing, spatial input data will not result in the expected modeled 

daily streamflow output. 

   

Figure 10. Comparing RHESSys daily streamflow outputs through regression analyses using three 

data distribution approaches in Coweeta Subbasin18, North Carolina, before georeferencing: (a) 

Conventional vs GeoServer, (b) Conventional vs TDS, and (c) GeoServer vs TDS 
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Figure 11. Comparing RHESSys daily streamflow outputs through regression analyses using three 

data distribution approaches after applying georeferencing in three watersheds: Coweeta 

Subbasin18 in North Carolina - (a) Conventional vs. GeoServer, (b) Conventional vs. TDS, and 

(c) GeoServer vs. TDS; Scotts Level Branch in Maryland -  (d) Conventional vs. GeoServer, (e) 

Conventional vs. TDS, and (f) GeoServer vs. TDS; and Spout Run in Virginia - (g) Conventional 

vs. GeoServer, (h) Conventional vs. TDS, and (i) GeoServer vs. TDS (HS 8) 

5. Discussion 

This research focuses on leveraging GeoServer and Thematic Real-time Environmental 

Distributed Data Services (THREDDS) integrated into HydroShare to expose spatially large 

datasets to environmental models for open and reproducible environmental modelling. This 

approach addresses the limitations of previous spatial data sharing for hydrologic research. Beyond 
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addressing these limitations, a key benefit of using GeoServer and THREDDS data services (TDS) 

in our proposed approach is the significant reduction in manual effort required for data collection, 

cleaning, and integration. The approach streamlines workflows by automating these traditionally 

time-consuming tasks, reducing the time needed for preparing datasets and minimizing the 

potential for human error. As data scientists typically spend a large portion of their time on such 

preparatory tasks, this method offers a considerable improvement in efficiency, enabling 

researchers to focus more on analysis and model building. This efficiency gains particular 

importance when dealing with large datasets, where the manual approach would be more 

cumbersome and error-prone.  

We acknowledge that our approach may still face some other challenges. The first 

challenge concerns API-based data access: when APIs are updated or changed, it can render hard-

coded scripts obsolete over time. As mentioned in the introduction, this is a common issue that 

might contribute to why some researchers prefer manual data collection over APIs. It also 

underscores the need for ongoing maintenance and adaptability in data-driven workflows. The 

second challenge involves limitations in using various types of geographic datasets. While 

GeoServer supports Raster (GeoTIFF) and Vector (Shapefile) formats for spatial data, our primary 

choice was the GeoTIFF format with GeoServer. This preference is rooted in the practical 

consideration that subsetting SSURGO shapefiles can be resource-intensive due to the 

heterogeneous details of soil attributes, making it a computationally demanding process compared 

to grid-based geographic data. As we look to use LES datasets more effectively in the future, it 

becomes apparent that exploring alternative approaches or capabilities to work with shapefiles and 

their attributes (dbf table) in a manner well-suited for environmental modelling yet resource-

efficient would be a valuable pursuit. 
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We selected the state scale as the spatial unit for distributing LES datasets, though other 

spatial aggregations can also be considered. For some hydrologic applications, the Hydrologic Unit 

Code (HUC) (Seaber et al., 1987) might be a more suitable scale than the state scale as often used 

by administrative maps. We opted for the state scale because federal web-based distribution 

systems readily provide data at this aggregation level, requiring minimal data processing for 

GeoServer and TDS distribution. The presented approach is general and agnostic to the specific 

spatial aggregation unit. Therefore, the presented steps for creating and sharing the datasets can be 

used or adopted by other researchers seeking to establish datasets for inter-state boundary 

watersheds. 

Regarding the tools used, GeoServer and TDS each have strengths and limitations. TDS is 

better suited for handling multidimensional datasets, such as NetCDF, commonly used in 

environmental modeling due to their ability to represent complex temporal and spatial 

relationships. However, for very large files, such as the 10m resolution GeoTIFF dataset for North 

Carolina, TDS may encounter performance issues, as demonstrated in this study. On the other hand, 

GeoServer is highly efficient in managing and serving geospatial raster and vector data, such as 

GeoTIFF and Shapefiles. It excels in subsetting and visualizing geographic data but lacks TDS's 

multidimensional handling capabilities. The choice between these two tools depends on the 

specific data formats and use cases the study requires. 

In the introduction, we compared our approach to two other approaches for supporting 

more reproducible environmental modelling in the literature: EcoHydroLib and HydroTerre. In 

more recent years, a third approach has emerged that is important to consider: Google Earth Engine 

(GEE) (Gorelick et al., 2017). GEE is a cloud-based platform for planetary-scale geospatial 

analysis that supports applications such as climate change, disease surveillance, environmental 
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protection, and water management. Over 450 articles published in 150 journals have used GEE 

datasets (Kumar and Mutanga, 2018), and the datasets available through GEE are continuously 

updated at a rate of nearly 6000 scenes per day (Gorelick et al., 2017). One example of a system 

built on GEE is Climate Engine (http://ClimateEngine.org), which leverages cloud computing to 

process, visualize, and download climate and remote sensing data for resource monitoring and 

analysis (Huntington et al., 2017). However, the use of GEE has two disadvantages. First, datasets 

like SSURGO are not natively included in GEE, requiring researchers to manually upload their 

data. Also, GEE is not open source, and it would be valuable to have an open and fully transparent 

alternative to GEE to support scientific modelling where users have control over the spatial data 

used as model input, and the data can be easily shared with appropriate metadata from HydroShare. 

The proposed approach by our study can address both GEE disadvantages.  

Containerizing proprietary software such as ArcPy, part of ArcGIS, poses a barrier to 

reproducibility because not everyone may have access to this software. We used ArcPy to create 

the LES datasets. ArcPy is currently compatible only with the Windows operating system. While 

Docker Containers on Windows is experimental and available only on some versions, such as 

Windows Server 2019 and Windows 10 Professional and later editions, it is feasible to containerize 

proprietary software like ArcPy that operates exclusively on Windows. Thus, if we can install the 

proprietary software with containerization tools in the same operating system and if the software 

license is successfully recognized, it is possible to containerize proprietary software. The issue 

remains regarding access to the software license so that anyone, and not only those with access to 

the software, can reproduce the work. Also, the application of open-source GIS software such as 

GRASS GIS or QGIS will be a future work to achieve end-to-end environmental modeling. 
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Data availability to support environmental modelling is increasing rapidly, but data 

replication across distributed systems can present problems. For one, some data may have 

copyright issues because these data represent intellectual property (Abubahia and Cocea, 2017). 

Even if data can be freely used and copied it will become increasingly difficult to understand if 

verified data are being used to support a study. We had to manipulate the raw data provided by the 

federal agencies to give the data a consistent and accurate spatial coordinate system. For 

reproducibility, it is important to document such changes and associate the procedure for making 

the changes with the new data product. As a result, geographic data ownership and provenance are 

crucial concepts to consider (National Research Council, 2004). In the broader technology 

landscape, similar challenges are being addressed through blockchain technology, where a 

distributed digital ledger can track changes to a digital object. Related to blockchain technology, 

the concept of Non-Fungible Tokens (NFTs) (Farnaghi and Mansourian, 2020; Franke et al., 2020), 

where digital objects are uniquely identified within the blockchain, could prove valuable for 

identifying digital objects (National Research Council, 2004) used in environmental modelling 

(e.g., both data and processing scripts) and tracking the provenance of these objects in a consistent, 

globally accessible, and secure way. An extension of this work could involve treating spatial 

datasets as NFTs with ownership and provenance, thereby incorporating blockchain technology 

into the existing HydroShare data management capabilities. This approach would provide a means 

to precisely clarify the attributes and provenance of the increasing volume of raw and processed 

datasets necessary for reproducible and open environmental modelling.   
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6. Conclusions 

Spatial data is an essential component for open and reproducible environmental modelling. 

Recently, there have been many efforts to improve the use of spatial data as model input. 

HydroShare provides a means for easily sharing datasets, including spatial datasets. It also supports 

exposing spatial data stored in HydroShare through APIs for programmatic data access within 

environmental modelling. Currently, HydroShare provides the capability for spatial datasets to be 

distributed using GeoServer and TDS, which can be accessed using APIs. These capabilities have 

been used mainly for data visualization use cases. This research demonstrates how these 

capabilities can support seamless, reproducible environmental modelling workflows.  

The primary contribution of this research is the methods developed for integrating 

HydroShare with GeoServer and TDS for exposing Large Extent Spatial datasets to models for 

open and reproducible environmental modelling. We demonstrate how to create, share, and subset 

large datasets as inputs to an environmental model, thereby advancing the concept of seamless 

modelling, where model inputs can be constructed using reproducible workflows and common 

base datasets. We show the applicability of developed methodologies through three different 

watershed applications in three different states at three different spatial scales. Using the RHESSys 

model for each watershed, we show that no significant error is introduced when using the new data 

distribution system compared to traditional approaches where a user manually retrieves the 

original data from the federal agencies.  

Georeferencing is critical in ensuring spatial data accuracy, especially when dealing with 

large-scale datasets spanning multiple coordinate systems. In this study, we applied georeferencing 

to correct spatial misalignments, demonstrating its importance in maintaining data consistency. 

Our results highlight that, without proper georeferencing, even small shifts in data can lead to 
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considerable inaccuracies in model outputs. By emphasizing the need for georeferencing, 

particularly in large-scale environmental modeling, we ensure that datasets from different sources 

are correctly aligned, ultimately improving the reliability of the results. 

We discussed ways the proposed approach can be further advanced, for example, using 

other spatial aggregations of large data beyond the state-scale aggregation used in this paper. 

Finally, we discussed the challenge of data tracking and provenance, especially across systems and 

in the context of environmental modelling, where data from multiple sources is needed and each 

dataset requires extensive preprocessing. 

Beyond sharing large, national-scale datasets maintained by federal agencies, individual 

scientists can also deploy the methods used in this work. Current data sharing through online 

repositories allows for data publication, a crucial step toward reproducibility. The proposed 

approach builds on this step to show how technologies like GeoServer and TDS when integrated 

with an online repository, provide a means for scientists to create and share file-based scientific 

data in a way that provides programmatic access without the need to deploy their own web-based 

data distribution systems. Scientists can easily share, update, and extend their data through such 

systems, including HydroShare, as demonstrated in this research, to support reproducibility and 

replicability through robust API-based access to their data. Creating and sharing datasets online 

using this approach offers a powerful means for scientists to achieve FAIR guiding principles, 

including reusability of data for multiple applications in different case studies and interoperability 

for programmatic access to multiple data collections using a consistent access protocol.  
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Data and Software Availability 

 All data and codes used are available through eight HydroShare resources (see Figure D1 

for a visual representation of these resources). We published all data with persistent digital object 

identifiers (DOI’s) on HydroShare and shared all data in a collection resource in HydroShare (Choi 

et al., 2024). This collection resource provides the links for all HydroShare resources as 

“Collection Contents.” Eight HydroShare resources consist of the following: one collection 

resource (HS 1), one resource with Jupyter notebooks for automated workflows to create LES 

datasets (HS 2), three resources for three LES datasets (HS 3-5), one resource for RHESSys model 

instances (i.e., input) of the conventional data distribution approach and the observation time series 

in three different watersheds (HS 6), one resource with Jupyter notebooks for three different 

approaches and three different watersheds (HS 7), and one resource with Jupyter notebooks for 

evaluation of data consistency (HS 8). The Jupyter notebooks in HS 7 utilize the “RHYESsys-

2024-02” kernel on CyberGIS-Jupyter for Water. The libraries and dependencies in the kernel will 

remain the same. Still, if a user needs to use it on an environment other than CyberGIS-Jupyter for 

Water, they may extract an environment.yml file and, with some effort, can reproduce and build 

on our study for a different environment. 
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Figure D1. Visual representation of the eight HydroShare resources created in the study 

 

List of Relevant URLs 

Chesapeake Conservancy conservation innovation center:  

                       https://www.chesapeakeconservancy.org/conservation-innovation-center 

Creating Python Conda virtual environment (ArcPy) in ArcGIS Pro:  

https://pro.arcgis.com/en/pro-app/latest/ArcPy/get-started/work-with-python-environments.htm 

CUAHSI JupyterHub: https://jupyterhub.cuahsi.org 

CyberGIS-Jupyter for Water: http://go.illinois.edu/cybergis-jupyter-water 

CyberDuck: https://cyberduck.io 
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Cyberduck application: https://help.hydroshare.org/creating-and-managing-resources/accessing-

hydroshare-irods-from-a-windows-pc-or-mac  

 
icommands: https://help.hydroshare.org/creating-and-managing-resources/accessing-hydroshare-

irods-from-linux 

 
MRLC (Multi-Resolution Land Characteristics Consortium): https://www.mrlc.gov 

National-scale SSURGO 30 m resolution GeoTIFF data:                                                                       

https://nrcs.app.box.com/v/soils/folder/132131296196 

nccopy: https://www.unidata.ucar.edu/software/netcdf/workshops/2011/utilities/Nccopy.html 

OGC implementation standard: http://docs.opengeospatial.org/is/19-008r4/19-008r4.html 

OWSLib: https://github.com/geopython/OWSLib 

pyRHESSys: https://github.com/uva-hydroinformatics/pyRHESSys 

rioxarray: https://github.com/corteva/rioxarray 

SSUGRO Mukey Grids (GeoTIFF): https://nrcs.app.box.com/v/soils/folder/132131296196 

USDA NRCS Geospatial Data Gateway: https://datagateway.nrcs.usda.gov 

USGS 3D Elevation Program (3DEP): https://www.usgs.gov/core-science-systems/ngp/3dep 

Web Soil Survey web distributed system:                                                   

https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx 

xarray: http://xarray.pydata.org 
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