Journai of Hydrology, 102 (1988) 113-135 113
Elsew.er Science Publishers B.V., Amsterdam — Printed in The Netherlands

a1

HYDROLOGIC SAMPLING — A CHARACTERIZATION IN TERMS
OF RAINFALL AND BASIN PROPERTIES

- RAFAEL L. BRAS, DAVID G. TARBOTON and CARLOS PUENTE*

. Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
(I1.S.A)

" (Received May 18. 1987; accepted after revision September 9, 1987: received at pubhsher March
- 9, 1988)

ABSTRACT

- Bras, R.L., Tarboton, D.G. and Puente, C., 1988. Hydrologic sampling-A characterization in terms
of rainfall and basin properties. In: R.L. Bras, M. Hino, P.K. Kitanidis and K. Takeuchi
(Editors}, Hydrologic Research: The U.S.—Japan Experience. J. Hydrol., 102: 113-135.

This paper considers the sampling of rainfall and discharge processes both in time and in space
and links the sampling problem to basin and rainfall characteristies. The effectiveness of different
.. sampling strategies is measured by the variance of the error in estimating either total or peak of

streamflow from a single storm event. This is related to the rainfall and basin rainfall-discharge
properties through parameterizations of these processes. Rainfall is modeled as a collection of rain
cells which occur randomiy in space and time and has parameters which define the probability of
oceurrence of rain cells in space and time and the spread of rainfall due to a eell. Discharge from
rainfall is parameterized in terms of the fluvial geomorphology of the basin. Linear filtering
techniques are used to compute the variance of the estimation error for different sampling
strategies, Sampling strategies are defined by the number of rain gages, rainfall sampling interval
and discharge measurement interval. The results can be used in hydrologic network design to
assess the effectiveness of different sampling options.

NOTATION

Area (L%
Random process time varying parameter
Random process parameter for p,{f)

Rain ¢el] decay parameter : [T}
Subseript to represent DF or IF + o° in Cp (d) [LA]
Cell birth parameter (temporal) [T
Covariance operator

 Cpd) Spatial component of rainfall covariance function

C(A. BY) Ares variance reduction factor

. D Rain cell spread parameter - 18]

Sd Distance, usually between two points z,, z, _ : L]

LA Generic sampling interval, may refer to rainfall or flow - m-.

AL, Rainfall sampling interval = T v & B

At, Flow sampling interval S F e i
Expectation, i.e., mean value operator ) ' L
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Rainfall sampling error process

Sampling error process of {,{f) (cluster process)
Velocity correction parameters

State transition matrix

Function defined in eqn. (48)

Generic functions

Rainfall intensity from a cell

Gamma function

Autocovariance function for point rainfall
Autocovariance function of clustering process
Cumulative discharge

Rainfall sampling error to process variance ratio
Sampling error to process variance ratio for cluster process
Instantaneous unit hvdrograph

Summation index, or index of location

Rain cell center rainfall rate (i.e., intensity)
River basin scale parameter

Length of highest order stream

Cumulative observable rainfali

Celi birth parameter {spatial) ]
River basin shape parameter/number of Nash reservoirs
Mean rainfall intensity

“Number of rein gages

Number of rain cells in a cluster

Area averaged rainfall rate

Observable rainfall rate

Area averaged (,(t) {cluster process)
Number pi =~ 3.14159 . .,

River basin discharge rate

Discharge from Nash reservoirs

White noise spectral density {l.e.. variance)
Spectral density of white noise w,(f)
Spectral density of white noise wi(1)
Horton area ratio

Horton bifurcation ratio

Horton length ratio

Two-dimensional space

Radial distance from cell center

Cluster spatial distribution parameter
Variance of distance of cell birth from cluster center
Varianee in total rainfall/discharge

Time, when subscripted denotes different times. with convention
L2t

Time of peak mean flow rate

Forecast lead time

Time of birth of cell

Cell veloeity vector

Flow velocity in streams

White noise .
White noise of sampling error process
White noise of process p,{¢)

White noise of process &,{2)

White noise vector

Stream order index

[L/T]
[L/T}
(T

(L/T]

{L/T]
[T
[
(L)
[L%]

[L/T]

[L/T]
{LIT]
[L/T]

[L/T]
(LT

(L]
L7
L
L%

3!
[T}

[L{T]
[L/T]




; Weight factor in estimation of area rainfall
- a(h Generic random process '
x State vector
yide, dy) Cell births counting process
Ty Spatial location (coordinate vector) of cell center ) [L]
z Spatizl location (coordinate vector), when subscripted denotes
different tocations : o [L]
I, 2) Point rainfail rate {i.e., intensity) [LiT}
Z,(t, 2 (L, 2} Artificial processes which when added give point rainfali rate. {.(!) is
: called the cluster process fLiT}

INTRODUCTION

This paper describes a study of the sampling of rainfall and discharge in an
interrelated fashion. Since discharge is directly due to rainfall, it is the
contention here that rainfall and discharge sampling network design should be

considered together. Measures of the effectiveness of combined rainfall and
flow measurements are developed in terms of the variance of sampling error.
Tarboton et al. (1987) addressed this problem by considering rainfall to have a
separable, stationary covariance structure. The concept is extended here to
include nonstationary models of the rainfall process. Rainfall is modeled as a
collection of rain cells which occur randomly in space and time. The formula-
tions of Waymire et al. (1984) and Rodriguez-Iturbe and Eagleson (1987) are
used. '

Linear systems theory is used to link the precipitation (input) and discharge
(output). This implies assumptions of linearity in the basin response, which can
be represented by a convolution equation. Discharge is parameterized in terms
of the Auvial geomorphology of the basin. The next two sections give details of
these parameterizations. A sampling strategy is defined as the number of rain
gages within a basin and the intervals between rain and flow measurements. A
state space approach is used to formulate the minimum vartance linear
estimate of streamflow due to a storm, given a particular strategy for rain and
flow measurements. Since linear theory is being used, the variance of this
estimate can be computed before any measurements are made. This variance is
used to define the effectiveness of the sampling strategy and can be used to
compare different sampling strategies when designing hydrologic sampling
networks.

PARAMETERIZATION OF RAINFALL

The structure of rainfall patterns has been studied extensively using radar
and detailed rain gage measurements. Austin and Houze (1972) and Harrold
(1973) identify structures which consist of rain cells embedded within
mesoscale precipitation areas within synoptic storm systems. Waymire et al.
(1984) give a model which conceptually incorporates this hierarchical
structure. Rodriguez-Iturbe and Eagleson (1987) develop models along similar
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lines and derive moments of the multidimensional probability distribution of
occurrences. These results are in the form of nonstationary expected values
‘and covariance functions for rainfall intensity. These functions are used here
to parameterize the rainfall process.

Two models for the distribution of rain cells are used. The first assumes that
rain cells are distributed uniformly (according to a Poisson distribution) in
space. The second assumes that rain cells occur around cluster points,
according to a Neyman-Scott type clustering process.

Model with Poisson cccurrence of rain cells in space

It is assumed that each storm is made up of a random number of rain cells
which occur in space and time according to a three-dimensional point process.
Each cell spreads its rain according to a function g, (f - 7; |z - y)) which
represents the rainfall intensity at time ¢ from the beginning of the storm on
point z from a cell born at time 7 at point y. The function g, () is taken to have
the structure: :

ioe;”e"g’ignz, fort =0
g,lt.r) = { (1}
0o - fort < 0 .

where i, the cell center intensity, is an independent random variable, x and D
are parameters defining the temporal and spatial extent of the rain cell. The
rainfall intensity at any point is represented by:

{oa) = | f gzu[(t = iz = ) x(dr, dy) (2)

B - x

where 7(dt, dv) represents the number of cells born in the infinitesimal region
dt, dy near (z, y). Integration is over the two-dimensional space R* and all time,
although with the definition of g; in egn. (1) the integrand is only nonzero for
T < ¢, t.e., cells initiated before time ¢ It is assumed that the spatial and
temporal occurrences of cells are independent events and also that cells occur
spatiaily according to a two-dimensional Poisson process with parameter
A{L™*) and temporally (from the beginning of the storm) according to an
exponential distribution with parameter f[T"']. With these assumptions
Rodriguez-Tturbe and Eagleson (1987) derive the nonstationary mean and
covariance functions of the process. For a storm with rain cells moving with-
velocity u. Tarboton (1987) obtains the foliowing results Wthh involve an
approximation to the covariance expression:
E(i) penD?

Bl ) = — (¥ - = m) e

!ﬁE(lQ)TED -(:+c}:, [e(:-.-:-ﬂ,‘uz _ e—{:ac)tzle..gﬂj.‘pl (4)

Covlitt, 21), {lta, 22)) = 5 ;
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where here d is the distance between points 2z, and 2z, and ¢ = ju|/2D. To
- simplify notation we have used the convention ¢, = t,.
This covariance function is of the separable form:

Cov[{(t,. 2)), {(t. 2)] = (4, tz)cyz(le ) (5)

~ where Cp, (d) = e 30 and y(t,, §,) is a nonstationary autocovariance function
for point rainfall.

Model with cells clustered in space

Rain cells are now assumed to be distributed in space according to a two-
dimensional Nevman-Scott process. Cluster centers occur according to a
Poisson process with parameter p. These cluster centers are not rain cells, but
are just points around which the density of cells is larger than in other regions.

) ~ Each cluster has associated with it a number of rain cells v, which is a random

variable, independent and identically distributed for each cluster center. The
birth points (z, ¥) of cells follow distributions that are exponential in time with
parameter ¥ and multivariate normal in space, centered (mean) at the cluster
center x with variance ¢°. The spread of rain from each cell is the same as in
non-clustered case, given by eqn. (1). With these assumptions Rodriguez.-Iturbe
and Eagleson (1987) derive the nonstationary mean and covariance functions
of the process. Again, approximating their results to account for moving cells
in the covariance function, Tarboton (1987) gives:

E(i,)ypBE(vY2rn D*

Elit. 2)] = P—

(e —e ) = m) (6)

Covlitt. ). {(t:. 2.) —pi:—')gE;—;a) R L
. B0~ Djph E*Go)nD’

(x — BAIDF + o)

. d‘..!
m. aly Lay _-eals _ -
~ (e e e e emp[ S| 0’2)} (7)

(e- fity _ e- zt|)

where here d is the distance between points z, and z, and &, = ju|/2 ./ [F + .
Again the convention is ¢, = t,. Notice that with Z replaced by pE(v), eqn. (8)
is identical to the nonclustered mean, eqn. (3) and that the first term of eqn. (7)
" is identical to eqn. (4). The second term of eqn. (7} can be expressed in terms of
- the mean. leading to:

Cov[i(t,. 2. {(ta. 2)] = (. 1) Cpalizy ~ 2,0 + 1o{ty. tn) Cpo_ (2, — 2, k

(8

- where 7(2,. £} is analogous to the Poisson case with 4 = pE(v):




118

Elv(y -~ 1)

" —ealty = 1)

oty L) E v janpD? + o) m(t, )m(t;) e (9)
and:

Cp(d) = e 48 - o (10)

where B” can represent D? or I* + ¢°. For the clustered case it is convenient
to think of {(2, z) as the sum of two independent processes {, (¢, z) and {,(¢, 2),
Le..

it 2) = {(t2) + 4, 2) (11)
with J, (¢, z) having all the properties of (t, z) in the unclustered case and i, 2)
having 0 mean and covariance: '

COV;[":-::(t]’ 2}, Cz.(tzn 2)} = 7l L) Cpuﬁz(iz) = 2) (12)

Area averaged rainfall

Our interest here is in the area average precipitation intensity since this is
the input to a lumped rainfall-runoff model. This is defined:

. .
pt) = Zji(t, 2)dz , (13)
A

Clearly from (3) and (6). E[p(t)] = m(?), since the mean is independent of spatial
location.
The covariance is:

1 : '

Cov[p(t). p(t,)] = v, ) ar f J. Cpellzy — 2)) dz, dz, (14)
a3

For the clustered rainfall model this spatial averaging is applied separately

to(,(*) and {,(-) in (11). Define:

. 1 , _ :
CA, BY) = Z—QHCBE(izl — zi) dz, dz, (15)
A4

This is an area reduction factor since it relates the point covariance to the area
averaged autocovariance. For rectangular regions this integral has been
evaluated and is given in Fig. 1.

In practice it is not possible to measure the area averaged process. eqn. (13).
It is approximated from point rain gage measurements as follows:

N
By = ¥ o it z) . (18)
i=1 -
where w; is a set of weights corresponding to N gages at locations z;. Other .
investigators (Rodriguez-Iturbe and Mejia, 1974; Lenton and Rodriguez-Iturbe,
1974; Bras and Rodriguez-Iturbe, 1975) have done work on the positioning of the
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Fig. 1. Area reduction factor for a rectangular region with a double exponenti&] correiation.

gages and the choice of weights to optimize this approximation. From eqns. (16) -
and (13) we can define the sampling error process:

ety = pl) - p) (17
-. Then using eqns. (5). (8) and (13)~(15) we can obtain:

N N
78, L) [Z Z [U:Cf,‘i(izi - z_.")

i1 g1

Covle(t,), e(t,)]

It

N
=2 Y Z0Cullz, ~ 2) dz + C(A, Bﬂ)} (18)
[ A’h
and:
Covle(t,), p(ty)] = 74, zz)[z %j Cuollz; — 20}z - C(A, Bz)J (19)
121 A

In principle these can be evaluated for a given set of gage locations z,. The
optimal gage locations z; and weights w, could be obtained by minimizing (18)
for a given N. If locations are fixed the optimal weights are obtained by
invoking a principle of orthogonality between process and errors and setting
{19) equal to zero. We choose to avoid these issues, so for simplicity we assume
w,'= 1/N and take the gages as randomly located. We then get taking expecta-
tions over the random location of gages in (18) and (19): -

— 2
Covle(t,). e(t,)] = y,. tz)l__,?_(éﬂ

. ~ (20)

and;
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Covle(t,), p(t;)] = 0 | (21)

Other methods of gage location will be analogous except for a different multi-
plicative constant in (20). Equation (21) will hold for any optimal set of weights,
lLe., process and error are orthogonal.

BASIN RESPONSE

The basin response is parameterized in terms of its instantaneous unit
hydrograph. This gives runoff via the convolution:

1]
Q) = V1) p(t— 1)dr (22)
o .
where p(t) is the area averaged rainfall intensity, I{f) the basin’s transfer
function or instantaneous unit hydrograph (IUH), and @(¢) the runoff at time
L. ' '
Here we use an approximation to Rodriguez-Iturbe and Valdes (1979) geo-
morphologic instantaneous unit hydrographr(GIUH) suggested by Rosso (1984).
Rosso uses a two parameter gamma probability density function to represent
the TUH:

i) = kRC(m))" (¢/R)™" exp(— t/k) (23)

where % = scale parameter. m = shape parameter; and I'() = gamma
function. '
The parameters m and k are related to geomorphology by:

m = 3.29(}?3/}?,1)0'73}?%37 ) (24)
ko= OT0[R,/(Ry R (g) @5)

where Ry. R,, R, are the Horton numbers: bifurcation ratio, area ratio, and
length ratio, respectively: L is the length of the highest order stream; and v is
the peak velocity on the streams, assumed constant over the basin. The Horton
numbers R, R, and R, are the constants in. Horton's well-known empirical
laws and are obtained from the channel network ordered according to
Strahler's ordering scheme., Quantitatively. - these are R; = N, N1,
R, = L./L,.,and R, = A_/A,_, where N, is the number of streams of order
@. L, is the mean length of streams of order w and A4, is the mean area of basins
of order w. For further details see Strahler (1964). Equation {23) can be concep-
tualized as a cascade of linear reservoirs with storage constant & (the Nash
{1957) model). Basin response can be described by a finite number of differential
equations:
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(26)

dQﬁ‘l Y ] 1
R TR

@n

where . i1s fiow from the ith linear reservolr.

Here inflow is taken as the area averaged (lumped) rainfall with no con-
sideration for infiltration. In future work the effects of infiltration and its
variability will be considered.

STATE SPACE FORMULATION

In a previous section the covariance functions of area average rainfall
intensity and the difference between this and average rainfall intensity at the
gages was developed. This section uses these functions to formulate a linear
stochastic model of the rainfall process and measurement system. These are
augmented with the differential equations describing the basin response to
obtain a combined state space model of the rainfall runoff process. First some .
general results are given that help us obtain a stochastic model from a
covariance function. :

The stochastic model used here will be a first-order nonstationary stochastic
differential equation of the form:

%x(t) - el + wld) @7)

where x(t) is a zero mean process and w({) is white noise with nonstationary
spectral density q(#). The processes we wish to model have covariance functions
in time of the form:

Cov(t,, t;) = f, [max(ty, £)] folmin(t, &) (28)

Note that y(¢,. t,) and y,(¢,, ), the functions we are interested in, are of this
form. It can be shown that (Tarboton, 1987) a(t) and g(f) are related to the parts
of the covariance function f,{-) and f;(-) by: -

at) = AWOL® : (29)

and:
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qt) = f[i(0f(8) - LOAM) (30)

Here the prime notation is used to denote the derivative. Equation (30) places
a restriction on the forms of (28) that can be modeled by (27) since g(¢) must be
positive. This condition is satisfled in our case.

Using eqns. (29) and (30) with the Poisson rainfall covar:ance function, eqn
{14) leads to:

at) = - (¢ + 2) (31)
and:
gty = (rA, DQ)ZBE(ES)HD‘?[e"ﬂ' + 2&2f- i {fe# — e"z”):| | (32)

A differential equation describing the area integrated rainfall process
deviation from mean is therefore:

d
T [p(t) — mB)] = — (¢ + Dpt) ~ m®)] + wt) (33)
where w(t) is white noise with time varying spectral density g(t).

Similarly applying (29) and (30) to the sampling error covariance equatmn

(20) results in:

a.z(z) = - (e + e® + W , (34)

where w"(¢) is white noise with time varying variance [1 — C(4, DY)/
[N C(A. D?)] {q()]. Note that the factor 0 = [1 — C(A, D*))/[N C(4, D)) gives
the ratio of rainfall sampling error to process variance, and is an important
variable in assessing the performance of the rainfall sampling network.

For the clustered rainfall model we treat the two parts £ty and {,(0)
separatelx. see eqn. (11). {,(¢) is completely analogous to the Poisson rainfall,
so can be modeled by eqns. (33) and (34). Applying egns. (29) and (30) to p.(t).
the area averaged form of {,{¢) gives:

ae” ™ — Be#

a,(f) = TF Cow & (35)
and:

Efv(v ~ 1)]
L{f) = 2 S
q:(8) ClA, D" + ¢M)e,[m(O)P ElF + o) (36}
The stochastic differential equation describing p,(2) is therefore:
d -,
a‘t.pz(t) = @,(t) p.{t) + w,(t) (31

where w,(f} is white noise with time varying spectral density g,{t).
The error process ,(t) can be modeled by an analogous process with white

T —
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noise wi(f) that has covariance given by gi(t) = [1 — CA, D* + o)
[N CA. D* + o*)]ig:(t)]. Here the factor 0, = [1 - C(A, D* + o"/
[N C(A, D? + ¢%)] gives the ratio of error to process variance for the cluster
process.

Rainfall observations are in fact generally cumulative over the observation
interval. To allow for these it is convenient to define:

wy = [ipy + e®]dt : (38)

for the Poisson case and:

Ity = [[pGt) + pu(®) + ety + ex(D)jde ' (39)
{

for the clustered case. Then an observation can be represented as () —

It — Af). The differential equi_valents of {38) and {39} are:

d . . . '

(—ﬂl(t) = e({) + pl) ' (40)
d : .
T Wty = et) + p(t) + ) + pa(t) (41}

A gquantity of interest is often the total flow from a storm. This is mathemat-
FE ically:

i

A = | Q.(dr (42)

b

~Differentiating we get:

dA() ) .
—_— = 43
— = QO @),
The state space model of combined rainfall and runoff is formed by
combining egns. (26}, (33), (34), (37), (40}, (41) and (43) into a single vector
stochastic differential equation in which the input is taken as the true area
averaged precipitation p(t), for the Poisson case or p(f) + p.(t} for the clustered

case.
This is:
s .
a-;x = Fx +w (44)

For the Poisson rainfall model, the state vector x is: -

x = (@) ... Q). p(t) — m2), e(t), I(t), h(D)]

and w is a white noise vector with a spectral density matrix with all elements
zero except those on the diagonal in positionsm + landm + 2 which contain
the spectral densities of white noise for p(t) — m(?) and e(f) given by eqns. (33)
and (34).
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For the clustered rainfall model the state vector is:

x = (@) ... @0, pi(1) — m), e,(t), palt), ex(2), 1(8), A(D)] (45)

w for this model has a spectral density matrix with all elements zero except
diagonal elements in the m + 1 to m + 4 positions corresponding to the
spectral densities of white noise for p,(t) — m{?), ¢,(2), p.(t) and e,(t) given with
eqns, (33), (34) and (37).

Standard linear filtering techniques are used to find linear minimum
variance estimates of the states given a priori estimates at time 0 and observa-
tions from that time. The variance of the estimation error can be computed in
advance, This advance computation of error variance, hefore any sampling is
done, is used as a measure of the effectiveness of the sampling. The procedure
for propagation and updating of state estimates was first presented by Kalman
and s clearly explained by Brown (1983). Rainfall observations of the form
it) — it — A{f) representing measurement of accumulated rainfall require use
of a delayed state filter (Brown, 1983, p. 315). Here the possibility of flow
measurements occurring in the interval (¢ — Af, {} slightly complicates matters
requiring extensions te the method described by Brown (1983). Tarboton (1987)
gives full details of these extensions. which are technical and not necessary for
understanding the remainder of this paper.

Generally, linear filtering techniques account for errors in measurement as
well as uncertainty due to variability of the process and scarcity of sampling.
In this study measurement errors were taken as zero. This was done for reasons
of simplicity and generality. We did not want to mix the effect of high uncer-
tainty due to poor measurements with high uncertainty due to sampling
scarcity. Measurement errors are also device and scale. dependent so it is
difficult to obtain general results valid for many devices and scales. This study
therefore focuses on the effectiveness of error free yet scarce sampling in
reducing estimation error.

SAMPLING STRATEGY DESIGN

The model developed above is used as a tool to compare different sampling
- options. Sampling consists of rainfall measurement and flow measurement. The
number of rain gages and frequency with which rainfall and flow are measured
constitute a sampling strategy. Specifically a strategy is defined by the triplet
(N, At,. At,) where N is the number of rain gages; Af, s the rainfall measure-
ment interval: and A¢, is the discharge measurement interval. Prior to a storm
the rainfall intensity is zero and the volume and rate of runoff from the storm
are zero. These are known with certainty, so initial conditions of zero uncer-
tainty, l.e. error covariance matrix set equal to zero, were used. One term in
this matrix corresponding to the nugget variance in the clustering process had
to be initialised different from zero. Tarboton (1987) gives the details of this.
During a storm our knowledge of rainfall and flow rates and volumes becomes
uncertain, dependent on our sampling strategy. We will use two design criteria.
First the network design will be based on the asymptotic variance of
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cumulative flow estimates and then the criterion will be the accuracy of the
prediction of peak flow for a given forecast lead time.

Variance of total flow

When considering the asymptotic variance of total flow volume it is
important to realize that the basin parameterization plays no role in the
process variance. This is because the unit hydrograph oniy controls the time
at which precipitation inputs reach the output and not the question of whether
they get there which has been neglected here through our neglect of infiltra-
tion. The variance of total volume can be obtained by evaluating:

i F({ | [p(t) - m(t)]dr}z)

il

where p(1) is given by (13), m(f) is given by (6) and autocovariance is given by
(14) Doing this we obtain:

. _ +E(inD?

av Az + ) cA. D - “9

,.yi;p.the case of the Poisson rainfall model and:

', _ PEME(D’

o C(A, D?)
2y + )
. Elv{r - ])]ﬂ'D“ip[E(l:uf:):)]2 F/E 2) C(A D? + %) (47)
1 Ay (1' a0 ! '
-(3)

where:

b (Bl ] :
FIE &) o M3 13 N (48,

(H) 1—(/3/)’( AN )

in the case of the clustered rainfall model. Note that these are process
variances, independent of the sampling strategy. To compare sampling
strategies the variance of the total volume estimation error given a particular
sampling strategy was normalized by dividing by values computed from (46) or
(47). This gives a performance measure between 0 and 1. A possible design
criterion may be the specification of acceptable normalized error variances,for
example 0.01 or 0.25, corresponding to estimation error standard deviations of
10 and 50% of the process standard deviation.

At this point it is convenient to make the parameters dimensionless by
normalizing over time with the cell decay parameter x and over length by the
cell size parameter I). The Poisson rainfall model can then be characterized by
the dimensionless parameter groupings AD?, (B/x). (¢/2) and E (i, /o) {E (G, /0.
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TABLE 1

Dimensionless groups — Typical values

Group Value Source Used here

AP 0.15 Arizona FEW 0.1
0.0767 Assumed* RIE

pE P 0.0767 Assumed* WGR 0.1
0.15-0.55 Assumed* VRIG

fix © o 0.264 Assumed* WGR 0.25
0.23-0.45 Assumed* VRIG

. 10 Assumed* WGR 0.5

; = ml S5uImne! . R
0.06-0.19 Assumed* VRIG

Ef(iy/a)’] | Assumed* WGR, VRIG, corresponds 9

(Elipf2]¥ to ceils with constant intensity

Assumed® RIE, FEW, corresponds
to cells with exponentially distrib-
uted center intensity

12

Elvy = 1
—{—‘_(}JT]—-)—] 4 Assumed* RIE 4
Assumed* VRIG Note that v is

often assumed Poisson distributed

in which case this parameter is

equal to Efr]

10-15

=1

1+ (i) T7.27 Assumed* RIE

510 Assumed* VRIG

* Assumed means the parameter value given was used as & typical value, without fitting to data.
FEW = Fennessey et al. (1986); RIE = Rodriguez-Iturbe and Eagleson (1987); WGR = Waymireet
al. (1984}, and VRIG = Valdes et al. (1983).

The basin is characterized by m and zk, while the sampling strategy is charac-
terized by xAt,, 2At, and the rainfall sampling error to process variance ratio
6 =1 - CA,DD/[N CA, D*). The cluster rainfall model has the above
dimensionless groups, with pEG)D® = 2D?, and the following additional
groups:

E{v(v — 1)] o\
B -w Lo |

6, = [1 — C(A,IF + o®)lJINC(A,D* + ¢°)] is required in addition to the above
parameters to parameterize the sampling strategy.

There have been very few studies which have estimated parameters for the
sort of rainfall model used here. Table 1 gives values that have been reported -
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‘or used in the literature, together with representative values chosen for use -
here as a basis for sampling strategy design.
Tarboton (1987) shows that with these parameter values the approximation .
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g, = 0.158 is good for a wide range of basins, so for both models a sampling
strategy is characterized by ¢Af,, xAf_and 6. Figures 2 and 3 show the sampling
strategies which provide nominal acceptable levels of normalized error
-variance of 0.01 or 0.25 in the estimation of fiow volume for different combina-
tions of basin parameters m and ak = 2. Figure 2 corresponds to the poisson
rainfall model, and Fig. 3 to the clustered rainfall model. These sampling
strategy selection figures were obtained as follows. For a large number of
sampling strategies (0, zAt,, aAt,) the variance of estimation error was
computed by numerically propagating the error variance part of the filter
described in the state space formulation above. Each result was normalized by
dividing by results from eqns. (46) and (47). The lines on the figures were then
obtained by drawing contours of the appropriate error variances through the
arrays of results obtained.

In developing these results the climate parameters at the right of Table 1
have been used. A set of figures like this for a range of parameter xk would
provide a quasigeneral design aid for the selection of sampling strategies. They
are quasigeneral since they can be used over a range of basin parameters, but
only with the specific climate parameters from Table 1 unless other results are
obtained.

Variance in prediction of peak flow

Unlike the total flow volume, the peak flow rate and variance are basin
dependent. Of interest to use is the variance of the peak flow rate. This cannot
be determined in a simple way since the time of the flow peak is random. An
approximation is obtained by considering the variance of the flow rate at the
time of the peak mean flow rate (denote this time ¢, ). Convoluting the basin
response function, eqn. (23), with the mean rainfall rate, eqns. (3) or {(6), we can
find the dependence of i, on basin parameters, Fig. 4. The dependence of the
variance of flow rate at ¢, on basin parameters is given in Fig. 5. Note that the
variance on the vertical axis of Fig. 5 has been normalized by the area
reduction factor C(A, D?). In Fig. 5b, the clustered case a large area approxi-
mation C(A, IF + 6%) = [I + (g/DY] C(A, D*) given by Tarboton {1987) has
also been used. The performance of a sampling strategy in predicting peak flow
rate can be measured by comparison of the prediction error variance at f,, with
the process variance at this time. In other words, Fig. 5 provides an upper
bound on the error variance we can expect at £,,.

As well as being dependent on the sampling strategy, the variance in our
estimate of peak flow is dependent on the forecast lead time. Denote the
forecast lead time #;, then the time into the storm from which predictions must
be made is ¢, — ¢,. A lower bound on how good we can possibly expect-our
predictions to be is obtained by assuming perfect knowledge of all states at this

_time. Propagation of variance to ¢, then gives the variance of predictions at ¢,
based on perfect knowledge at ¢,, — ;. Figures 6 and 7 show the dependence of
variance at ¢, assuming perfect knowledge at t,, — ¢, for different basin pa- .
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Fig. 4. Dependence of time to peak on basin parameters.

rameterizations. In these the time into the storm has been normalized by the
time to peak. On the horizontal axes are the ratio of time into storm from which
prediction is made, to the time to peak in the mean [{£, — £.)/t,]. The vertical
axes are error variance of the flow at ¢, divided by the process variance at ¢,
(given by Fig. 5). An interesting feature is that with the cluster model, Fig. 7,
_the normalized variance is not 1 for zero lead time. This is because the clusters
result in a nugget component of variance, realized at the beginning of the
storm, when cluster location was determined. Tarboton (1987) gives details of
~how this was accounted for, as an initial condition, when obtaining the results.
-+ Now the design procedure may be as follows. Given basin parameters xk and
- m, Fig. 4 gives the time of peak mean flow. This is regarded as the critical time
for design purposes, and our strategies are selected to meet acceptable levels
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Fig. 5. Dependence of variance in flow rate at time of peak on basin parameters. {a) Poisson rainfall
model; (b) tlustered rainfall model.
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Fig. 6. Poisson rainfall model. Variance of predicted flow rate at {, given perfect knowledge at
t. — f.{a)zk = 1;and (b) ak = 2.

of error at this time. Figure 5 shows the variance of flow rate at this time. The
- best we can possibly do, predicting from time ¢, — ¢, is shown in Figs. 6 and 7.
In practice it may be reasonable to assume some acceptable level of error above
this and find sampling strategies that meet this criterion. Here we have
.obtained detailed results for ¢, — ¢, = 2/31,; i.e., we want to predict the peak
from 2/3 of the way to the peak.-This results in lead time ¢, = 1/3 ¢,,. Figures
6 and 7 show that at this lead time the best achievable normalized error
variances range from 0 to 0.3. We therefore suggest that a reasonable design
criterion may be normalized variance < 0.5. Note that the last available
measurements upon which prediction is based do not necessarily occur at time
t, — L, but may occur anywhere (randomly) in the interval (¢, — t; — Af,
tn — 1), where At is the measurement interval. This was accounted for here by
making the last measurement upon which prediction is based occur at several
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Fig. 7. Clustered rainfall model. Vaﬁance of predicted flow at ¢ given perfect knowledgeatt,, — ¢;.
(a) xk = 1; and (b) xk = 2. )
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Fig. 8 Poisson rainfaill model. Sampling strategy selection according to peak flow variance
criterion with 2k = 2. (a)m = 2, (b)m = 3 and (e} m = 4.

points spaced uniformly over this interval and using the average of the
variances predicted for each of these cases to compare with our criterion. .
Figures 8 and 9 give sampling strategies that meet this criterion, for basin
parameter 2k = 2. Again this type of figure provides a quasigeneral design aid
for the selection of sampling strategies, when prediction of the peak flow is
important.

Ex.dmp!e

Use of Figs. 2, 3, 8 and 9 is illustrated in the following example. A hypotheti-
cal river basin has Horton numbers Ry = 3.5, R, = 4, R, = 2.5, length of
highest order stream L = 7 km and stream peak flow velocity is estimated to be
v =4kmh™}. This basin can be approximated by a rectangle 15km x 10km
and is situated in a region where rain cells have properties D = 1.5km and
x = 2h7'. Using (24) and (25) we compute m = 3.16 and k = 0.84 h therefore
‘xk = 1.7, '

la ) {z
i v 1
& a Ga.2
J [SI-) < S5
&t B=1.
ez 8.2
b & = 5. b Guld.
o 4 10 K= 8=10.
<1 <<
o o =
= =
Ly i
p 2
o .
T T T T U Q H T T o] T T T T T
G100 200G 300 400G 300 &0C Q 100 200 300 400 o} L{») 20C 300
tadty 1073 1/astg 1077 Vabdtg 1073 .

Fig. 9. Clustered rainfall model. Sampling strategy selection according to peak flow variance
criterion with 2k = 2. (a&}m = 2: () m = 3;and () m = 4. .
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TABLE 2

Exampie of selection of sampling strategy for total discharge error variance using the clustered
rainfall model

Point @ Rainfall Discharge Rainfall Discharge Number of
sampling sampling sampling sampling rain gages
frequency frequency interval interval N
1/=AtL,) 1/(adt,} (h) (h)
Al, At,
A - 0 0.13 o, none 3.8 0
B 2 0.3 0.125 1.67 4 28=~3
C 0.1 (0.3 .08 1.67 3.6 57
D 0.5 0.3 0.115 1.67 4.3 11
E 0.1 0.6 . 0.08 0.83 (.25 57

The nearest approximation to these in a set of design aid figures may be Figs.
2. 3.8 and 9 corresponding to m = 3, ak = 2. Suppose we wish the normalized
wvariance of our total flow estimates not to exceed 0.01; i.e., Figs. 2b and 3b
apply. Strategies for points marked A through E on Fig. 3b and F through J on
2b are given in Tables 2 and 3. The value C(4,D*) = 0.15 obtained from Fig. 1
has been usedin § = [1 — C(A4, D*)/[N C(A, D*)] to obtain the number of rain
gages required for each strategy. .

If we wish to be able to predict the peak flow, from 2/3 of the way into the
flow hydrograph and our estimation error variance is not to exceed 0.5 of the
peak flow variance, then Figs. 8 and 9 are appropriate. From Fig. 4 correspond-
ingtoak = 1.7andm = 3wereadaf, = 7.5 whichresultsint, = 3.8h,i.e., we
are selecting strategies to predict a peak that occurs 3.8h after the start of the
storm from 2.5 h into the storm. Strategies for points K through O on Fig. 8 and
P through T on Fig. 9 are given in Tables 4 and 5. In these tables the trade-off
between rainfall measurement and flow measurement is evident. These

TABLE 3

Example of selection of sampling strategy for tota) discharge error variance with the Poisson
rainfall model

Paint @ Rainfall Discharge Rainfall Discharge Number of
sampiing sampling sampling sampling rain gages
frequency frequency interval interval N
1f{aht,) 1i(zAL,) (h} (h)
At, At
F 0 0 0.153 ¢, none 3.27 .0
G 2 0.4 0.145 1.25 345 28~ 3
H 0.1 04 0.105 1.25 4.76 57
1 0.5 04 0.132 1.25 3.79 11
dJ 0.1 1 0.094 0.53 5.32 87
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TABLE 4

Example of selection of sampling strategy for prediction of peak error variance. with Poisson
rainfall model

Point f Rainfall Discharge Rainfali Discharge Number of
sampling sampling sampiing sampling rain gages
frequency frequency interval © interval N
1AL, ) i) {h) {h
At i,
K - 0 0.33 7 , hone 1.5 &)
L 2 1.0 0.18 0.5 2.k 28 =3
M 2 0.4 028 1.3 22 28 > 3
N Q.5 0.34 0.0 1.5 % . none 1.4 = 1]
¢} 0.1 0.22 .0 23 7., none 37

strategies all provide information with the same error variance in each case,
so from these the cheapest, or most convenient should be selected. Comparing -
tables we see that the Poisson model generally requires more sampling. The
clustering introduces correlation into the model which allows uncertainty to
be reduced to the same level by fewer, or less frequent observations.

CONCLUSIONS

Parametenzat:ons of rainfall and basin response which are simple and allow
the use of linear systems theory for analyzing the problem of combined rainfall
and runoff measurement have been given. To provide a minimum variance
linear estimate of flow from a rainfall event using rainfall and runoff measure-
ments combined, a state space approach has been developed.

The results obtained relate the variance of estimation error to the measure-
ment strategy plus basin and rainfall parameters. Estunatmn error occurs due

TABLE 5

Example of selection of sampling strategy for prediction of peak error variance with clustered
rainfall model :

Point # Rainfall . Discharge Rainfall Discharge Number of
sampling sampling sampling sampling rain gages
frequency frequency interval interval N
1/(xAL,} 1/{zAL) {h) (hi
At, At,
P - 0 0.26 =, none ’ 1.9 0.
Q 2 0.4 0.1 1.25 F 28 =3
R 2 0.55 0 0.91 ' *., none 2.8 =3
s 0.5 0.25 0 2 o, none 113 = 11
T 10 0.5 0.23 1 2.2 057 ~1
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to process variability, sampling scarcity and measurement errors. Although
the procedure includes measurement error the results presented had meastre-
ment error set to zero to maintain generality and reduce the number of
parameters being considered. These results could be useful in the design of
measurement networks. .

This work has limitations in that it assumes linearity in basin response and
is dependent on the accuracy of the model and parameters, While the basin
response parameters may be obtained from the basin geomorphology, the
choice of elimate parameter values is not easy. Another deficiency is that the
effect of uncertainty in the infiltration, thus runoff, has not been accounted for.
We are investigating ways of doing this through incorporation of the contribut-
ing area concept into the state space formuiation.

ACKNOWLEDGMENT

This work is part of a continuing effort sponsored by the U.S. Geological
Survey (Grant No, 14-08-0001-G1143) as authorized by Public Law 98-242 and
the National Science Foundation {Grant No. ECE-8513556). The authors want
to acknowledge the help of Ms. Carole Solomon in preparing the final
document.

REFERENCES

Austin, P.M. and Hougze, R.A., 1972, Analysis of the structure of precipitation patterns in New
England. J. Appl. Meteorol., 11: 926-935.

Bras. R.L. and Redriguez-fturbe, 1., 1975. Rainfall runoff as spatial stochastic processes: data
collection and synthesis. Ralph M. Parsons Lab., Tech. Rép. No. 196. Dep. Civ. Eng., MIT,
Cambridge, Mass.

Brown. R.G.. 1983. Introduction to Random Signal Analvsis and Kalman Filtering. Wiley, New
York. N.Y.. 356 pp.

Fernessey, N.. Eagleson, P.S., Wang. Q. and Rodriguez-Irurbe, 1., 1986. Spatial analysis of storm
depths from an Arizona raingauge network, Ralph M. Parsons Lab., Tech. Rep. No. 306, Dep.
Civ. Eng., MIT, Cambridge, Mass.

Harrold. T.W.. 1973. Mechanisms infiuencing the distribution of precipitation within baroclinic
disturbances. @. J. R. Metearel. Soc., 59; 232-251.

Lenton, R.L. and Rodriguez-Iturbe, |.. 1974. On the collection, the analysis, and the synthesis of
spatial rainfall data. Ralph M. Parsons Lab., Tech. Rep. No. 194, Dep. Civ. Eng., MIT,
Cambridge, Mass.

Nash, J.E.. 1957. The form of the instantaneous unit kydrograph. IAHS-AISH Publ., (42): 114-118,

Rodriguez-Iturbe, I. and Eagleson, P.S., 1987. Mathematical models of rainstorm events in space
and time. Water Resour. Res., 23(1): 181-190. :

Rodriguez-Iturbe. . and Mejia. J. M., 1974. The design of rainfail networks in time and space. Water
Resour. Res., 10(3): 713-795. '

Rodriguez-Iturbe, 1. and Valdes, J.B., 1979. The geomorphologic structure of hvdrologic response.
Water Resour. Res,, 15(3): 1409-1420.

Rosso, R.. 1984. Nash model relation to Horton order ratios. Water Resour, Res., 20(7): 414-920.

Strahler. A.N., 1964. Quantitative geomorphology of drainage basins and channel networks. In:
V.T. Chow (Editor), Handbook of Applied Hydrology, MeGraw-Hill, New York, N.Y., Sect. 4-IT.

Tarboton, D.G., 1987 Hydrologieal sampling: A characterization in terms of rainfall and basin
properties. M.3. Thesis, submitted to the Dep. Civ. Eng., MIT, Cambridge. Mass.

B Elaie i kbl L




1356

. Tarboton, D.G., Bras, R.L. and Puente. C.E,, 1987. Combined hydrologic sampling criteria for
rainfall and streamflow. d. Hydrol., 95: 323-339.
Valdes, J.B.. Rodriguez-Tturbe, I and Gupta, V.K_. 1985. Approximations of temporal rainfall from
a multidimensional model. Water Resour. Res., 21(8): 1259-1270.
Wayiire, E., Gupta, V.K. and Rodriguez-Iturbe, 1., 1954. A spectral theory of rainfall intensity at
the Meso-f scale. Water Resour. Res., 20(10): 1453-1465.






