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Abstract

The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of
variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input
data spatial aggregation on model response. The semi-variogram and the characteristic length calculated from the spatial
autocorrelation were used to determine the scale of variability of the remotely sensed and GIS-generated model input data.
The data were collected from two hillsides at Upper Sheep Creek, a sub-basin of the Reynolds Creek Experimental Watershed,
in southwest Idaho. The data were analyzed in terms of the semivariance and the integral of the autocorrelation. The minimum
characteristic length associated with the variability of the data used in the analysis was 15 m. Simulated and observed radio-
metric surface temperature fields at different spatial resolutions were compared. The correlation between agreement simulated
and observed fields sharply declined after a 10× 10 m2 modeling grid size. A modeling grid size of about 10× 10 m2 was
deemed to be the best compromise to achieve: (a) reduction of computation time and the size of the support data; and (b) a
reproduction of the observed radiometric surface temperature.q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Spatially distributed hydrologic models are often
point process models with distributed parameters
that require large amounts of data for setting up
model parameters. These data can be obtained from
digitized maps or/and from remotely sensed imagery
(Band et al., 1991; Bathurst and O’Connell, 1992).
The spatial resolution of the input data and desired
modeling grid size seldom coincide. And since there

are no accepted objective methods for data aggrega-
tion, the spatial aggregation of model parameters is
done ad hoc. Model parameters are then represented
by one value at every grid cell, which is often the
average value of the aggregated sub-pixels of the digi-
tized/remote-sensed data. However, using the mean
value of the model-input parameters does not
necessarily yield the mean value of the model
response variables (Bresler and Dagan, 1988a; Band
et al., 1991).

The characteristic length of an image has been
suggested as the appropriate scale of aggregation for
data reduction by some researchers (Bian and Walsh,
1993; Brown et al., 1993). The characteristic length of
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an image is defined as the distance at which, on
average, two pixels no longer experience the same
surface condition (Simmons et al., 1992). Simmons
et al. (1992) used a plot of correlation to estimate
the scale of variability of vegetation cover derived
from SPOT and Thematic Mapper images of the
shrub-steppe area of southeastern Washington with
vegetation of blue bunch wheatgrass. They reported
a scale of the order of 100 m. Bian and Walsh (1993)
used the semi-variogram to determine the scale of
vegetation and topography using data from a portion
of Glacier National Park in Montana. The site had a
complex terrain with a vegetation of Douglas fir
(Pseudotsuga menziesii) and subalpine fir (Abies
lasiocarpa) forests at lower elevations and tundra
vegetation occupying the area above 2000 m. To
identify the characteristic length, Bian and Walsh
(1993) used images with different resolution produced
by degrading Landsat images with an averaging
window. They postulated that the scale of the NDVI
was between 70 and 75 pixels, or 2100 and 2250 m.

Both, Simmons et al. (1992) and Bian and Walsh
(1993), used sample transects to calculate the scale of
variation from the images. A semi-variogram calcu-
lated from digital images of a Douglas-fir forest was
employed by Cohen et al. (1990) to distinguish among
stands. They found a range of 5–18 m that corre-
sponded to the mean crown diameter of the trees.
Curran (1988) used the semi-variogram to determine
the minimum spatial resolution required for remotely
sensed data. The semi-variogram has also been used to
aid in simulating scenes (Woodcock et al., 1988a,b).

In this research, we investigated the scale of varia-
bility associated with a remotely sensed and GIS-
generated high-resolution data set collected from a
semi-arid complex terrain basin and how the response
of a distributed energy balance model (Artan, 1996) of
the basin is effected by the aggregation level of the
input data. The remotely sensed data used in the
analysis were images of the normalized difference
vegetation index (NDVI) and the radiative surface
temperature (RST). The NDVI was selected because
it is highly correlated with LAI (Lulla et al., 1987;
Artan and Neale, 1991). Latent heat fluxes from a
land surface–atmosphere exchange model are sensitive
to subgrid leaf area index (LAI) heterogeneity (Band
et al., 1991; Bonan et al., 1993). On the other hand, the
distribution of RST should be related to the distri-

bution of the sensible heat flux. The GIS-generated
data used in the analysis were the terrain slope and
aspect angle, two parameters that influence the
fraction of solar radiation received by the terrain.
The data were analyzed in terms of the semivariance
function, as well as the integral of the autocorrelation
function (Vanmarcke, 1983).

The objective of this research is to attempt to
advance an objective method for determining the
optimum grid size for data aggregation, when setting
up input data for distributed hydrologic models. In
order to determine the optimum grid size when parti-
tioning the watershed to model the hydrologic
processes in a distributed manner, the guiding criteria
should be: (a) minimize the computation time by
reducing the number of grid cells; while (b) at same
the maximizing the variation between grids in order to
capture the significant patterns in the watershed (Band
et al., 1991); and (c) keeping the nonlinear effects of
subgrid heterogeneity on the model output to a
minimum (Band et al., 1991; Bonan et al., 1993).
We will describe how the characteristic length of
the remotely sensed input data relates to the optimal
modeling grid size specified in the above criteria.

2. Concepts and definitions

The prediction of a spatial process is subject to
uncertainty due to the spatial variability and measure-
ment errors of model parameters (Fienerman et al.,
1985; Bresler and Dagan, 1988a; Band, 1989). Bresler
and Dagan (1988a,b) described the effects of
parameter uncertainty on a model of crop yield. In
order to expand a point process model to an area, the
soil and vegetation parameter (pi) of the pixels is aggre-
gated to the grid cell level for each location. Each grid
cell is characterized by a multivariate density function,
f(p1,p2,…,pn) as a result of the aggregation ofpi over the
spaceX (Bresler and Dagan, 1988a; Band, 1989):

E�Y�X��

�
Zp1 Z

…
Zpn

Y�p1;…; pn�f �p1;…; pn;X� dp1
…dpn �1�

where E[Y(X)] is the expected value of the model
response variable. If we assume thatpi are statistically
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independent, then:

f �p1;p2;…;pn� � f �p1�f �p2�…f �pn� �2�
If the variance of the parameters over the unit land-
scape is small, then we can expandY in a Taylor series
(Fienerman et al., 1985; Bresler and Dagan, 1988a;

Band et al., 1991), and Eq. (1) can be simplified to:

E�Y�X�� � y� �p1;…; �pn�1
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Fig. 1. Second derivative of the model output latent heat flux as a function of: (a) canopy resistance; and (b) LAI.



wheres2
i is the variance ofpi, and �pi is the mean value

of the parameterspi. In distributed models at every grid
cell the model parameters�pi are represented by one
value, usually the average. To have E�Y� < Y for
model output usingpi as the only value to describepi

over the spaceX requires that: (1) the model output is
linear over the range ofpi; or/and (2) the variance of the
parameters is small; or/and (3) a small value of
22Y=2p2

i :

Fig. 1a and b shows the effect of the variation of
LAI and canopy resistance (rc) on the latent heat
fluxes (LE) in the context of the model described in
Artan (1996). The second derivative (22Y/2LAI 2)
values, where the second derivative is equal to the
model bias, were obtained from the fit of a cubic
spline function to the model response, produced by
varying LAI or rc while keeping all other model
parameters constant at their mean value. Both curves
tend to zero as LAI andrc are increased, indicating
that at higher values of the two parameters the
dependence is linear, and using a mean value LAI
and rc is appropriate. It is apparent that at low LAI
values, the error introduced by using only the mean
value of LAI can be substantial.

3. Model overview

Since the distributed energy balance model used in
this study has been described in great detail by Artan
(1996), we will only describe the salient points of the
model here. The energy balance model was developed
for semi-arid regions. The canopy is assumed to be
concentrated on a portion of the modeled area equal to
the fraction of vegetation cover. The vegetation is
represented as a block of constant density porous
material for the radiation transmittance and turbu-
lence transfer. Then the model solves separately for
the bare and vegetation-covered part of the grid cell,
the heat and moisture balance equations applied to
one-canopy and two-soil layers by using coupled
sets of five equations. The force-restore method
(Deardorff, 1978) is used to solve the soil heat flux.

The resulting sets of equations are then solved for
the prognostic variables of canopy temperature, air
temperature at canopy source height, water vapor
pressure at canopy source height, average temperature
of the first soil layer, and average temperature of the

second soil layer, by stepping in time from a known
initial condition. The various fluxes (latent, sensible,
and net radiation) are then calculated from the
prognostic variables.

To run the model in distributed fashion, the basin
under consideration should be subdivided into grid
cells and meteorological, vegetation, and soil data
defined for every grid cell, the state variables also
should be initialized. The state variables that need
initialization are the soil moisture content and
temperature for the two soil layers. The model also
requires that at each time step the following meteor-
ological variables: air temperature, air vapor pressure,
horizontal wind speed, and incoming solar radiation
as a forcing input data. The vegetation parameters
data expected by the model are the unstressed canopy
conductance, leaf area index; average vegetation
height, and the leaf reflection coefficients for the
solar radiation. Finally, the soil parameters that are
assigned a value prior to model run are the soil
reflection coefficient for shortwave radiation and the
soil bulk density. The distributed model uses a raster
data structure. The model solution generally
converges between three to five iterations for most
of the runs we have conducted.

4. Site and data sources

4.1. The study area

The Upper Sheep Creek is a semiarid, high-altitude
sub-basin, with an area of 26 Ha, of the Reynolds
Creek Experimental Watershed. The basin is located
in the Owyhee Mountains of southwestern Idaho
about 80 km west of Boise. The basin is divided by
a creek running in a southeast to northwest course.
Vegetation communities on the site can be subdivided
into three types: low sage/grass (Artemisia arbuscula/
Agropyron spicatum), mountain big sage/grass
(Artemisia tridentata/Festuca idahoensis), and an
area occupied by aspen/willow (Populus tremu-
loides/Salix spp.) (Flerchinger et al., 1994). The
vegetation on the southwest (SW)-facing side of the
sub-basin was primarily composed of sparse sage/
grass. The main ecosystem on the northeast (NE)
part of the sub-basin used for this analysis was a
mountain big sage/grass community composed of
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patches of high-density vegetation area interspersed
with gaps of low-density vegetation.

4.2. Remotely sensed and GIS-generated data

Airborne multi-spectral digital video imagery was
collected twice during the summer of 1993 at different
spatial resolutions using the airborne video/radio-
meter system (Neale, 1991) for the visible and near-
infrared (NIR) imagery, and an Inframetrics 760
scanner for thermal infrared imagery. The multi-
spectral video system consisted of three Cohu 4810
high-resolution video cameras (525 horizontal lines)
with narrow band (10 nm) filters centered in the green
(550 nm), red (650 nm), and NIR (850 nm) part of the
spectrum. The cameras were set at the factory to over-
ride the automatic gain control (agc). The thermal
imagery of energy emitted at 10–12mm was used to
obtain the RST. Images used in this analysis were
acquired on day of year (DOY) 156 and 230 (June 5
and August 18) and had different nominal pixel size
(see Table 1). All imagery was acquired close to solar
noon, under cloudless skies.

The images were digitized at an 8-bit radiometric
resolution and corrected for lens vignetting and effects
of image motion. The individual band images of the
visible and NIR bands were registered to a common
image base and combined into three band images. The
3-band images were combined along the flight lines.
NDVI images were prepared from the 3-band images
using the red and NIR bands. Where the thermal
imagery was corrected for the vegetation and soil
substrate emissivity using a value of 0.96, which
was the average measured for three sites at basin
using a method described by Hipps (1989).

The data of the NDVI were normally distributed
within the low sage/grass and mountain big sage/
grass/aspen/willow vegetation communities area due
to their diversity, but when the NDVI data of the

whole basin were combined and plotted, the data
had a bimodal distribution. The data from the two
sites were analyzed separately; subset areas were
extracted from the NDVI and thermal images to
represent the vegetation communities of low sage
and mountain big sage. In order to keep the pixel
size constant in every image, the subset areas were
kept between an elevation of 1860 and 1890 m.

A digital elevation model (DEM) with grid cell size
of 2.5× 2.5 m2 was used to calculate the aspect and
slope angle images. The DEM was produced by digi-
tizing a contour map of the basin with a scale of
1:1200 and contour interval of 0.604 m. From these
images a subset of the NE-facing and SW-facing hill-
side was extracted. The aspect angle varies from 0 to
3608, with the north being both 0 and 3608. To have a
data set of remotely sensed and GIS data of compar-
able support size of about 200× 200 points, a bigger
area was extracted for the aspect and slope angle
images than the images of NDVI and RST used in
the analysis.

Semi-variograms and spatial autocorrelation were
calculated from the digital brightness of the Upper
Sheep Creek imagery. Since the one-dimensional
semi-variogram could be described more easily than
the two-dimensional semi-variogram (Woodcock et al.,
1988b), the one-dimensional was used. The semi-
variogram from the images was calculated for all the
rows and columns of the images and then averaged by
using as a weight the number of observations in each
lag (Cohen et al., 1990). The maximum lag used in
this study was one-third of the numbers of rows and
columns (Webster and Oliver, 1990).

4.3. Model runs

The response of the distributed energy flux model
described in Artan (1996) to variation in the input
spatial data was examined. A high spatial resolution
data set of vegetation, soil, and terrain parameters
derived from remote sensing and GIS were used as
model input. Since a map of surface temperature was
available only on DOY 230, a distributed model run
was produced for this day only. The model was
initiated at 14:20 MST DOY 229 with an output
time of 11:00 MST DOY 230, that corresponded to
about 20 h of model spin sufficient to lessen any initi-
alization error effects on model response.
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Table 1
Resolution of remotely sensed data

DOY NE SW

NDVI (m) RST (m) NDVI (m) RST (m)

156 0.20 0.39 0.20 –
230 0.28 0.55 0.28 0.55



The model forcing meteorological variables (air
temperature and humidity, horizontal wind speed,
and incoming solar radiation) were from a 7-m
tower installed in the NE-facing side of the basin,
and two Bowen ratio energy balance systems installed
in the NE-facing and SW-facing sides. Four R.M.
Young anemometers (Model 12102 Gill 3 cup) and
four Vaisala temperature/humidity probes installed on
the tower at heights of 1.0, 1.8, 3.3, and 7.0 m from
the ground. The incoming shortwave radiation was
measured with two LI-COR pyranometers, installed
with the Bowen ratio systems with one at each hill-
side. The horizontal wind speed, air temperature, and
air vapor pressure used for model input were
measured at 1.8 m above ground level. No variation
was done for the horizontal wind speed and air vapor
pressure between the grids. In regard to air tempera-
ture however, an adjustment was made for LAI of
each grid cell using a method described by Running
et al. (1987). Finally, the amount of incoming solar
radiation on every grid cell was corrected for each
grid according to the grid aspect and slope value.
Because of the temporal resolution of the meteor-
ological input data, the modeling time step was set
to 20 min.

To simulate the changes in cell resolution, the
model input data were aggregated to coarse resolution
by using a nonmoving window. For example, an
image of 4× 4 pixels aggregated to the next level
becomes a 2× 2 pixels image. An aggregation was
done by averaging all cells within a unit for
parameters with numeric value (e.g. LAI, aspect and
slope) and a generalization was implemented by
recoding the grid cells with the class value occupying
the majority of the cells of that grid (e.g. soil type data
and vegetation class type). The model was run using
different grid sizes (2.5, 5, 10, 15, 20, and 30 m).

5. Results and discussions

5.1. Video data

June 5 imagery. Due to the pattern of the snow and
radiation distribution on the basin, the vegetation on
the SW-facing side of the basin at that time of the year
was close to peak greenness condition, whereas on the
NE-facing side, the grasses, mostly composed of

Festuca idahoensis, were green and the shrubs were
just starting to green-up. The RST imagery of the SW-
facing side was dropped from the analysis because of
temperature saturation. The SW-facing side had much
lower vegetation cover than the NE-facing side.

The semi-variogram calculated from the NDVI and
RST imagery for the NE-facing site and the model
fitted to it are shown in Fig. 2a and b, respectively,
with a line at the top to indicate the variance of the
image. The two semi-variograms exhibit similar
structure. Both semi-variograms appear to pass
through the origin, and to increase rapidly close to
the origin. The range of the semi-variogram for the
NDVI was estimated as 20 m using a double spherical
model (Webster and Oliver, 1990), with anr2 of 0.99.
The range of the RST semi-variogram calculated with
a spherical model was 15.8 m withr2 of 0.97 between
simulated and observed data.

The semi-variogram calculated from the NDVI
imagery of the SW-facing side was unbounded and
did not reach a clear range over the distance it was
calculated. One reason for this was that there were
large homogeneous areas in the imagery that were
longer than the lags for which the semi-variograms
were calculated. The square root of the characteristic
area calculated from the spatial autocorrelation of
each of the three above-mentioned images was
compared with the range of the semi-variogram;
these results are summarized in Table 2. The numbers
were rounded to the nearest integer. The length scales
for all variables were close to what was determined
from the semi-variogram analysis.

August 18 imagery. On this image acquisition date,
the vegetation on the SW-facing site of the basin was
in pre-dormancy quiescence; the grasses on the NE-
facing site were also in pre-dormancy quiescence, and
the shrubs were still in a vegetative stage. The
difference in vegetation density on the two sites of
the basin is discernable from an LAI image (created
from the NDVI image) shown in Fig. 3, with the SW-
facing site vegetation having lesser LAI compared to
the NE-facing site vegetation due to the sparser and
smaller nature of the vegetation on that site. The semi-
variogram for the SW-facing site had an unbounded
exponential shape that did reach a clear still, due to
the large homogeneous area of senescence vegetation
present on the site. The semi-variogram of the NE site
increased linearly, passing the variance of data due to
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the contrast created by the large area dominated by
grass or shrubs.

The semi-variograms resulting from the RST
variable both exhibited the same pattern as the
NDVI semi-variograms of the respective locations,

with the semi-variogram of the NE-facing site having
a range of about 41 m. The plots of the log–log semi-
variogram for the RST variable had a steeper slope
than the NDVI log–log semi-variogram plots. Since
the evapotranspiration was negligible for both sites
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Fig. 2. Semi-variogram, fitted model, and estimated sill of imagery of the NE-facing site collected on June 5, 1993 for: (a) NDVI; and (b)
radiometric surface temperature.



(there was an array of three Bowen ratio energy
balance systems installed in the basins), the tempera-
ture difference between canopy and soil substrata
surface was minimal in both sites making the RST
images more spatially dependent compared to the
NDVI images of the same area.

Table 3 shows the characteristic lengths calculated
with the spatial autocorrelation method for the data
collected on August 18 (DOY 230). Characteristic
length scale was the same on both sides of the basin
for the NDVI, while for the RST image it was slightly
larger on the SW-facing side. It must be noted,
however, that the pixel resolution of images used in
this analysis was not apparently influencing the results
of the characteristic length scale. The thermal image
pixel size is approximately twice the size of the short-

wave image pixels. It should be noted that in the semi-
variograms there were no visible break points at or
near the characteristic length.

5.2. GIS data

Since the semi-variograms for slope angle and
aspect angle for the two sites did not show any clear
range, the break points in the log–log semi-variogram
plot were used to infer the range of the processes
(Bian and Walsh, 1993). The log–log semi-variogram
for slope angle of the NE-facing site exhibits a break
point at about 75 m suggesting a strong spatial depen-
dence for distances less than 75 m. For the SW-facing
site, there was a weak break point at around 75 m in
the semi-variogram and the log–log plots. The break
points in the semi-variogram are due to the nature of
the basin hillsides, with every hillside having two
predominant slopes, more so on the NE-facing site
with a steeper drift area and a flatter area close to
the stream.

The semi-variogram of the NE-facing site had a
peculiar form with points that were close, having a
bigger difference than points apart, which is an artifact
of the way the aspect angle was calculated. Grid cells
facing the south direction had an aspect of 1808,
whereas the aspect value of a grid cell facing the
north direction could be at the same time 08 (if the
cell is approached from the east) or 3608 (if
approached from the west). The aspect data for
the NE-facing site were dropped from the analysis
for the semi-variogram. The plots for the SW-facing
site did not have a clear range, but had two break
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Table 3
Characteristic length scale from imagery of DOY 230

Site NDVI (m) RST (m)

NE 24 24
SW 24 27

Table 4
Characteristic length scale from imagery of the slope and aspect
angle

Site Slope (m) Aspect (m)

NE 65 87
SW 76 85

Fig. 3. The NDVI image of the whole Upper Sheep Creek sub-basin,
NDVI prepared from the multi-spectral video imagery taken on 18
August, 1993.

Table 2
Characteristic length scale for imagery of DOY 156

Site NDVI (m) RST (m)

NE 15 25
SW 22 –



points at about 12 and 110 m. The characteristic
length scales calculated with the integral of the auto-
correlation for the slope of both sites and aspect of the
SW-facing site are shown in Table 4.

5.3. Simulation results

The model presented in Artan (1996) was tested for
the sensitivity of input data aggregation and general-
ization by comparing simulated and observed surface
temperature for different levels of data resolution. The
model uses a raster data format. An observed surface
composite (canopy and soil) temperature image was
used to assess the sensitivity of the model for data
spatial aggregation resolution. This surface tempera-
ture was produced by simulating an instrument with a
nadir viewing angle. The observed temperature for the
different resolutions was made by aggregating the
observed RST image with the pixel resolution of
0.55× 0.55 m2. The simulated and observed tempera-
tures for a modeling grid size of 5 m are shown in
Figs. 4 and 5. The simulated surface temperatures
captured most of the spatial pattern of the observed

surface temperature for this modeling grid size.
Worthy of notice is that there is a minor geographical
misregistration of about one pixel between the two
temperature maps. Due to the complex nature of the
topography of the basin, it was difficult to register all
the maps to the state plane.

However, Fig. 6 shows that there is less agreement
between the simulated and observed values of tempera-
ture, as the grid size increases. The decrease of the
correlation between simulated and observed is signifi-
cant between a grid cell size of 10 and 15 m. Beyond
the 15 m grid cell, the changes in correlation between
the simulated and observed surface temperatures were
minimal. The disagreement between the simulated and
observed RST, as the grid size was increased, is an
indication of the effects of subgrid variability on the
RST derived from the distributed model. From
the analysis of both the autocorrelation lengths and
the semi-variograms of the model input data, the short-
est characteristic length observed was 15 m.

From this modeling exercise, it is apparent that the
optimal grid size for input data aggregation in the
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of 5 × 5 m2. Fig. 5. Basin observed radiometric surface temperature for grid size

of 5 × 5 m2.



context of a distributed energy flux model and the data
from a complex terrain semi-arid basin was around
10× 10 m2, somewhat smaller than the characteristic
length estimated for the input data. This model
inadequacy with increased modeling grid size is a
manifestation of the effects of increased value of the
variance on the model parameters. The model inability
to simulate the observed surface temperature was also
due in part to the correlation between some model input
variables, that were understandably high, since they
were derived from the same data set. Table 5 shows
the correlation between some of the vegetation, terrain,
and soil parameters at a grid size of 5× 5 m2.

6. Summary and conclusions

Most of the sample semi-variograms exhibit the

absence of a sill because of spatial trend in the data,
making it impossible to predict the range of the
processes from the semi-variograms. The semi-vario-
grams of the NDVI and RST differed only slightly.
From the break points in the semi-variograms of the
aspect and the slope angle it was possible to infer
scale of variability much longer than the scales asso-
ciated with the NDVI and RST. Despite the differ-
ences in vegetation cover present at the two sites, the
pattern of spatial dependence was the same for
both sites. The double-logarithmic plot of the
semi-variograms reveals one degree of spatial
dependence for scales up to about 2 m, and
another for greater lengths.

Both characteristic length scale and semi-vario-
gram range were functions of the vegetation con-
ditions and, to a lesser extent, influenced by the
pixel size of the imagery and the remotely sensed
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Fig. 6. Ther2s between the simulated and observed radiometric surface temperature.

Table 5
Correlation between model input parameters for an aggregation level of 5× 5 m2

Parameter Aspect angle gp
c Elevation LAI Soil albedo

Aspect angle 1
gp

c 0.42 1
Elevation 20.06 0.15 1
LAI 20.48 0.93 0.07 1
Soil albedo 20.513 20.39 0.04 20.48 1



variable used in the calculation, with the semi-vario-
gram range usually greater than the characteristic
length.

The characteristic length associated with the varia-
bility of radiometric surface temperature (RST)
calculated from the integral of the autocorrelation
was greater than 20 m for both SW- and NE-facing
sites. Whereas the minimum associated with the varia-
bility of the NDVI was 15 m. From the semi-vario-
gram analysis of the NDVI and RST images, the
shortest length of variability was determined as
15.8 m for RST and 20 m for NDVI. These results
would suggest that for the basin under study,
modeling at a 15-m grid cell resolution is sufficient
to capture the variability of NDVI and radiometric
surface temperature, or their surrogate latent and
sensible heat flux.

To see if the characteristic length scale calculated
from the remotely sensed and GIS-generated imagery
(some of the imagery was used as model input data)
corresponded to the optimal modeling scale, accord-
ing the rules outlined in the introduction, the spatially
distributed model was run using input data that were
aggregated to a different grid size, and the simulated
RST was compared with an observed surface RST
field. A model grid size of around 10× 10 m2 was
the best compromise because: (a) the reduction of
computation time and the size of the support data;
and (b) a reproduction of the observed RST. In
conclusion, the characteristic length scale of input
for a distributed model gives an idea of the best
modeling scale.

Acknowledgements

This research could not have been completed with-
out the assistance and cooperation of the USDA-ARS
Northwest Watershed Research Center field personal.
We also thank Padinare V. Unnikrishna and Thomas
H. Jackson for their assistance during the data
collection period. Thanks are also due to Konstantine
P. Georgakakos and two anonymous reviewers for
insightful criticism of an earlier draft of this work.
This work was funded in part by the USGS Depart-
ment of the Interior, grant number 14-08-0001-
G2110, and US EPA, award number R 824784-01-0.
Also the senior author received some support from the

Hydrologic Research Centre, San Diego. The view
and conclusions are those of the authors and should
not be interpreted as necessarily representing the offi-
cial policies, either expressed or implied, of the US
government.

References

Artan, G.A., Neale, C.M.U., 1991. An assessment of video-based
vegetation indices for the retrieval of biophysical properties. In:
Blazquez, C.H. (Ed.). Proceedings of the 14th Biennial Work-
shop on Color Aerial Photography and Videography in Plant
Sciences, American Society of Photogrammetry and Remote
Sensing, Orlando, FL, pp. 135–146.

Artan, G.A., 1996. A spatially distributed energy flux model based
on remotely sensed and point-measured data. Thesis, Utah State
University, Logan, p. 159.

Band, L.E., 1989. Spatial aggregation of complex terrain. Geogr.
Anal. 21, 279–293.

Band, L.E., Peterson, D.L., Running, S.W., Coughlan, J., Lammers,
R., Dungan, J., Nemani, R., 1991. Forest ecosystem processes at
the watershed scale: basis for distributed simulation. Ecol. Mod.
56, 171–196.

Bathurst, J.C., O’Connell, P.E., 1992. Future of distributed
modeling: the systeme hydrologique Europeen. Hydr. Proc. 6,
265–277.

Bian, L., Walsh, S., 1993. Scale dependencies of vegetation and
topography in a mountainuous environment in Montana. Prof.
Geogr. 45, 1–11.

Bonan, G.B., Pollard, D., Thompson, S.L., 1993. Influence of
subgrid-scale heterogeneity in leaf area index, stomatal
resistance, and moisture on grid-scale land-atmosphere
interactions. J. Clim. 6, 1882–1897.

Bresler, E., Dagan, G., 1998a. Variability of yield of an irrigated
crop and its causes 1. Statement of the problem and methodol-
ogy. Water Resour. Res. 24, 381–387.

Bresler, E., Dagan, G., 1988b. Variability of yield of an irrigated
crop and its causes 2. Input data and illustration of results. Water
Resour. Res. 24, 389–394.

Brown, D.G., Bian, L., Walsh, S., 1993. Response of a distributed
watershed erosion model to variation in input data aggregation
levels. Commmun. Geosci. 19, 499–509.

Cohen, W.B., Spies, T.A., Bradshaw, G.A., 1990. Semivariograms
of digital imagery for analysis of conifer structure. Rem. Sen.
Environ. 34, 167–178.

Curran, P.J., 1988. The semivariogram in remote sensing: an
introduction. Rem. Sen. Environ. 24, 493–507.

Deardorff, J.W., 1978. Efficient prediction of ground surface
temperature and moisture, with inclusion of a layer of
vegetation. J. Geophy. Res. 83, 1889–1903.

Fienerman, E., Bresler, E., Dagan, G., 1985. Optimization of a
spatially variable resource: an illustration for irrigated crops.
Water Resour. Res. 21, 793–800.

Flerchinger, G.N., Cooley, K.R., Seyfried, M.S., Wright, J.R., 1994.
A lumped parameter water balance of a semi-arid watershed,

G.A. Artan et al. / Journal of Hydrology 227 (2000) 128–139138



paper presented at the ASEA International Summer Meeting,
ASEA, Kansas City, MO, June.

Hipps, L.E., 1989. The infrared emissivities of soil andArtemisia
tridentataand subsequent temperature corrections in a shrub–
steppe ecosystem. Rem. Sen. Environ. 27, 337–342.

Lulla, K., Mausel, P., Skelton, D., Kramber, W., 1987. An
evaluation of video-band-based vegetation indices. In: Everitt,
J.H. (Ed.). Proceedings of the 11th Biennial Workshop on Color
Aerial Photography and Videography in Plant Sciences,
American Society of Photogrammetry and Remote Sensing,
Weslaco, TX, pp. 270–279.

Neale, C.M.U., 1991. An airborne multi-spectral video/radiometer
remote sensing system for agricultural and environmental
monitoring, paper presented at the ASAE Symposium on
Automated Agriculture for the 21st Century, Chicago, IL.

Running, S.W., Nemani, R.R., Hungerford, R.D., 1987. Extrapola-
tion of synoptic meteorological data in mountainous terrain and

its use for simulating forest evapotranspiration and photosynth-
esis. Canad. J. For. Res. 17, 472–483.

Simmons, M.A., Cullinan, V.I., Thomas, J.M., 1992. Satellite
imagery as a tool to evaluate ecological scale. Land. Ecol. 7,
77–85.

Vanmarcke, E., 1983. Random Fields: Analysis and Synthesis, MIT
Press, Cambridge, MA, p. 190.

Webster, R., Oliver, M.A., 1990. Statistical Methods in Soil and
Land Resource Survey, Oxford University Press, New York,
p. 316.

Woodcock, C.E., Strahler, A.H., Jupp, D.L.B., 1988a. The use of
variograms in remote sensing: I. Scene models and simulated
images. Rem. Sen. Environ. 25, 349–379.

Woodcock, C.E., Strahler, A.H., Jupp, D.L.B., 1988b. The use of
variograms in remote sensing: II. Real digital images. Rem. Sen.
Environ. 25, 349–379.

G.A. Artan et al. / Journal of Hydrology 227 (2000) 128–139 139


