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The Fractal Nature of River Networks
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there has been speculation that river networks are

practically space filling with
backed by a theoretical analysis based on long-
similarity of river networks. These results advance

our understanding of the geometry and composition of river networks,

INTRODUCTION
Davis [1899, p. 4957 writes:

Although the river and hill-side waste. do not resemble each
other at first sight, they are only the extreme members of a
continuous series, and when this generalization is appreciated,
one may fairly extend the “river” all over its basin and up to its
very divides. Ordinarily treated, the river is like-the veins of a
leaf; broadly viewed it is like the entire leaf, ’

We see that the idea of river networks being generalized or
extended to cover the whole basin is not new. In this paper we
give some substance to these ideas by expressing them quanti-
tatively, using notions of scaling and fractal dimension that
have been recently suggested [Mandelbrot, 1975, 1983]. Frac-
tals provide a mathematical framework for treatment of ir-
regular, seemingly complex shapes that display similar pat-
terns over a range of scales. Many objects in nature possess a
property called statistical self-similarity. This may be defined
as invariance of the probability distributions describing the
object’s composition under simple geometric transformations
or change of scale. We argue that river networks fall into this
class of geometric objects and that the fractal dimension
characterizing the self-similarity of river networks is close to 2.
For precise mathematical definitions of the notion of fractal
dimension see Voss [1986] or Mandelbrot [1985]). Wheatcraft
and Tyler [1988] give a concise summary of the important
ideas.

Horton {1945] found that natural channels, when ordered a
certain way, have bifurcation and length ratios that are ap-
proximately constant. These describe the scaling properties of
river networks and have been important in river basin hydrol-
ogy [Rodriguez-Iturbe and Valdes, 1979] and other disciplines
like biology, where tree patterns occur [Horsfield, 1980; Mac-
donald, 1983].

Indirect empirical evidence gathered by hydrologists and
geomorphologists has fueled speculation on the possible frac-
tal nature of river basins. For example, Gray [1961] has re-
ported relationships between mainstream length and basin
area of the form

L = 1.440568 (1

Based on (1), Mandelbrot [1983] has speculated that rivers are
fractals with fractal dimension D = 1.2 (Mandelbrot took the
exponent in (1) as 0.6; a better estimate is D =2 x
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0.568 =~ 1.1). This applies to individual rivers, rather than net-
works as a whole. Mandelbrot [1983] describes some fractal
geometric patterns that resemble river networks where the
fractal dimension of individual lines is 1.1, but the complete
network pattern is space filling with D = 2. He suggests that
these patterns are models of river networks.

The recent availability of Digital Elevation Models (DEM)
of river basins (from the U.S. Geological Survey) and the con-
tinuously increasing power of computers permit a more care-
ful study of the fractal dimension issue. Channels with varying
resolution, or detail, can be defined from the DEM. Band
[1986] discusses methods for obtaining channel networks
from DEMs. The technique we use, suggested by L. E. Band
(personal communication, 1987), is based on work of 0’Calla-
ghan and Mark [1984]. DEM data is supplied on a rectangu-
lar grid with each point representing the elevation of a 30 m
by 30 m area or pixel. A drainage direction is assigned from
each pixel toward one of its eight neighbors, based on the
steepest slope. This effectively defines a drainage path or flow
field. The number of pixels draining through each pixel is then
counted to give the accumulated area that drains into each
pixel. Channel networks are then defined as those pixels that
have accumulated drainage area greater than a threshold sup-
port area. Decreasing the support area results in a finer net-
work of channels and is tantamount to increasing the resolu-
tion used to study the basin. The limit to this refinement is the
30 m by 30 m pixel size of the US. Geological Survey’s
DEMs. Figure 1 shows networks in a river basin defined with
varying support area. From the figure we can pose two
questions: (1) is the process fractal? (implying that finer struc-
tures are statistically indistinguishable from grosser repre-
sentations and hence there is no dominating scale) and (2) if
so, what is the fractal dimension? The fact that by definition a
river network drains its entire basin suggests the hypothesis
that the fractal dimension of river networks (if it exists) should
approach 2 (space filling). In the next section we show results
that indicate that this is indeed the case. We then show a
theoretical relationship between the scaling laws of network
composition [Horton, 1945] and fractal dimension.

Empirical Evidence

In this section we estimate fractal dimension of a river net-
work using the Richardson method, functional box counting,
and the distribution of stream length exceedances.

Mandelbrot [1983] describes how the following technique
due to Richardson [1961] (in the study of the length of coast-
lines) provides an estimate of fractal dimension. Here it is
applied to streams extracted from a DEM. Consider a line
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Fig. 1. W15 River network on a DEM square located in Walnut
Gulch, Arizona. Channels defined with varying support areas (a) 20
pixels, (b) 50 pixels, (c) 100 pixels, (d) 200 pixels.

shape (e.g., coastline or stream) and measure its length, by
stepping along it with dividers or a ruler of length r. The
length is approximately L = Nr, where N is the number of
divider steps. By taking r— 0 we should be able to converge
to the exact length, i.e.,

L =1im Nr (#)]
r—0
or
N=~Lr! 3)

as r approaches zero. However, Richardson found that the
above limit often did not converge. The problem is in the
implied exponent on r in (2) being one. By allowing the ex-
ponent to be a fraction D, a measure F, independent of r, is
obtained

F = NrP = const )

with D > 1. Mandelbrot called this D the fractal dimension.
The above implies

N~prP (5)
or equivalently,
L~r~? 6)

Equation (6) indicates that on a log-log plot of length versus
ruler size the fractal dimension is one minus the slope.

In applying the stepping procedure to river networks, rules
are required to deal with bifurcations. Here we measured the
length of each Strahler stream (defined according to Strahler’s
[1952] network-ordering convention) separately. At the end of
streams there is, generally, a leftover piece of stream shorter
than r. If the distance from the last stepping point to the end
was greater than 1/2 r, it was counted in N; otherwise, it was
not included in the length. Figure 2 gives results for several
different networks. The Souhegan is a 440-km? basin in south-
ern New Hampshire that was digitized by hand from 1:24,000
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U.S. Geological Survey maps. The Hubbard (area 75 km?) in
Conneticut, and W15 (area 23 km?) in Walnut Gulch, Ari-
zona, were extracted from DEMs. The eight networks in the
sum consisted of two hand-digitized networks in New Hamp-
shire, and six networks obtained from three DEM basins with
support area’s of 50 and 20 pixels. The DEM basins used were
the Hubbard, W15, and W7 (also Walnut Gulch, Arizona).
The pattern for all of these is the same, a gently sloping line
with slope about 0.05 for small ruler lengths, followed by an
abrupt change to slope of about one for large ruler lengths.
This clearly indicates two distinct regions of scaling. The first,
with D ~ 1.05, is due to the sinuosity of individual rivers and
corresponds to the scaling implied by (1). The second, with D
near 2, is due to the branching characteristic of networks.
More precisely, it is due to streams shorter than 1/2 r not
being counted at all, reflecting the fact that at coarse resolu-
tion we see fewer streams.

Another technique to estimate the fractal dimension of
channel networks is functional box counting as described by
Lovejoy et al. [1987]. This works on a set of points (in this
case 30 x 30 m pixels on a stream) embedded in a d-
dimensional (here d = 2) space. Cover the space with a mesh
of d-dimensional cubes of size r%. Let N(r) be the number of
cubes that contain elements of the set considered. A relation-
ship of the form

Ny ~r~? )

indicated by a straight line on a log-log plot gives D. Note
that this is based on a definition of fractal dimension given by
Hentschel and Procaccia [1983] as

log N(r)

D = —lim lim
log r

r=0 m~ow

®)

where m is the number of points in the set. Results are given in
Figure 3 for a river network defined for two different channel
support areas. We see that there are basically two asymptotic
slopes, a slope close to —1 for small box size, implying that at
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Fig. 2. Richardson method results for typical river networks. The
numbers give slope of the fitted straight lines.
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Fig. 3. Functional box counting results from square in Walnut
Gulch, Arizona. The numbers give slope of the fitted straight lines.

scales small relative to the resolution of the map, channels
have dimensions close to that of the line. At the large box-size
end of the scale the slope is —2, indicating that practically all
boxes are intersected by a channel. At this scale the network is
space filling with D = 2. Note that the more detailed the net-
work (smaller support area) the smaller the scale above which
the network is space filling.

As previously mentioned, the region with slopes near —1 in
Figure 2 is due to short streams being excluded as r increases.
In the region with slope of —1, (4) can be interpreted as giving
the number of streams with length greater than r proportional
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to r~2 Mandelbrot [1983] notes that the probabilistic
counterpart to this is a hyperbolic distribution:

Prob[length >~1° )

where D is again the fractal dimension and ! refers to stream
length. Hyperbolic distributions have the desired property
that they are self-similar.

Figures 4 and 5 give the exceedance probability of stream
length aggregated from several river basins. Points were plot-
ted using

P=mfn+1) (10)

where m is the ranking from longest to shortest stream length,
and n is the number of streams in the sample. The figures
indicates a hyperbolic tail with D ~ 2. Figure 4 uses geometric
length, defined as the straight-line distance between endpoints
of a stream. Figure 5 uses length measured along the stream,
naturally limited by the resolution of the map or DEM from
which the network is obtained. The slight difference in slope
between these figures may be due to length along the stream
itself being a fractal measure with dimension D slightly in
excess of 1. As an example, suppose we have, from (9), fitted to
Figure 5,

Prob[length > ] ~ |-* (11)
Now if / is itself a fractal with dimension D), we get, from 4),
I~ P (12)

where r is a linear (D = 1) measure or length scale. Combin-
ing, we get

Prob(length > [] ~ r= 42 (13)

Thus the fractal dimension of the whole network is D = AD,.
The result D = 2 is therefore consistent with slope 2 = 1.8 seen
in Figure 5 and D, = 1.1 as suggested by (1) and the flatter
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Fig. 4. Geometric stream length exceedence probability. The DEM data is based on 2178 streams from three networks
with support area of 20 pixels. The digitized data is based on two networks with 409 streams digitized by hand from

1:24,000 maps.
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Fig. 5. Stream length (along stream) exceedance probability. The DEM data is based on 2178 streams from three
networks with support area of 20 pixels. The digitized data is based on two networks with 409 streams digitized by hand

from 1:24,000 maps.

slopes of Figure 2. We interpret these figures as strong evi-
dence that the network is space filling with D = 2.

Theory and Explanantion

In this section we will show how fractal dimension is related
to Horton [1945] laws of network composition and hence put
the previous empirical evidence in the framework of classical
fluvial geomorphology.

Horton’s laws, in particular, the length and bifurcation
ratios, are usually stated in terms of Strahler’s [1952] ordering
scheme. Source streams are of order one. When two first-order
streams join, they become second order, and, in general, when
two streams of equal order merge, a stream one order higher
is formed. When low- and high-order streams join, the con-
tinuing stream retains the order of the higher-order stream.

The set of empirical laws collectively referred to as Horton’s
laws include: ‘

Bifurcation

R, = No-s (14)
b T Nu)
Length
R, = Lo as)
! Lw-l

where N is the number of streams of order w, and L, is the
mean length of stream of order w. R, and R, can be obtained
from the slopes of the straight lines resulting from plots of log
N, and L, versus order w.

The above are geometric-scaling relationships, since they
hold no matter at what order or resolution we view the net-
work. If we regard a channel network as paths where water
flows, it is possible to imagine [after Davis, 1899], with higher
and higher resolution, getting lower and lower orders of
streams until we are literally looking at flows among the grass

roots. Viewed this way, the limiting channel network is a frac-
tal, with properties governed by R, and R,.

Based on Horton’s laws, LaBarbera and Rosso [1987]
report that the fractal dimension of river networks should be

D = max (log R", l)
log R,

A derivation of the above given in Appendix A requires that
Horton’s bifurcation and length ratios hold exactly at all
scales in the network. Then the total length of streams in the
network is the sum of a geometric series with multiplier R,/R,.
The result is obtained by considering the limit of this series
which converges for R, < R,, implying D = 1. However, when
R, > R, the series diverges, and we show in Appendix A that
the total length of channel networks follows

(16)

L~ Sl —(log Rp/log R

17

where the resolution of observation of the network s is taken
as the length’s of first-order streams. By analogy to 6),

D= log R,
log R,

(18)

In Appendix B we show that Horton’s laws can be used to
give the stream length exceedance probability distribution as

Prob(length > I} ~ |~ (log Ry/log Ri) (19)

Comparing this with (9), we again get (18).

Table 1 gives Horton ratios for several river basins, indicat-
ing that D estimated by (18) are scattered around 2. The re-
sults presented seem to indicate that river networks are scaling
and have fractal dimension near 2.

CONCLUSIONS

We have shown that river networks can be viewed as frac-
tal, and estimates of the fractal dimension using three different
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TABLE 1. Network Geometry Data for Several River Networks
Magni- log R,
Basin tude R, R, log R,
Souhegan, New Hampshire 177 35 2.0 1.8
Squanacook, New Hampshire 133 35 1.7 2.5
WIS Support A 20 329 42 2.1 1.9
WIS Support A 50 107 33 1.6 2.4
Hubbard Support A 20 1217 4.1 2.1 1.9
Hubbard Support A 50 486 4.7 23 1.8
Youghiogheny River, 1798 46 22 1.9
Maryland*
Daddys Creek, Tennessee 1181 4.1 22 1.8
Allegheny River, Pennsylvania 5966 45 24 1.7

*Based on data from Morisawa [1962).

techniques all tend to indicate that the fractal dimension D is
2. This is consistent with the fact that rivers drain the entire
catchment basin and are thus space filling. We have shown
how the fractal dimension of rivers is related to Horton’s
[1945] classical laws of network composition. If the result
D = 2 is accepted, it implies R, = R,?, thus providing a funda-
mental link between Horton’s ratios. This appears to be borne
out in practice within the scatter in estimation of R, and R,
R, and R, appear to both describe the same scaling property
evident in river basins. It is also worth noting that the random
topology model of Shreve [1967] gave average values R, = 4
and R; = 2. It is therefore consistent with D = 2. The view of
river networks as fracta] with D = 2 therefore provides a de-

APPENDIX A

Let a network of order Q have main stream length L,
Then, using the Horton’s length ratio, the mean length of a
stream of order w(w < Q) is Lo/(R)®~“. By Horton’s bifurca-
tion law there are R,®7% of these streams, so that the total
length of stream of order « js Lo(R,/R) e, Adding over all o
to get the length of the whole network L, we get the geometric
series

Q
L= Zl Lo(Ry/R)~

(GNY)
L= Lot — (R/R)V/[1 — (R,/R)]

Strahler [1964] gives this result. If R,/R, < 1, the series con-
verges to a finite L as Q approaches infinity and we have
D = 1. Remember that this is a limit process where Ly, is held
constant and Q increases as the resolution is refined. However,
if R/R, =1 as is most often the case in river channel net-
works, the series diverges and for large Q we get

L ~(R,/R)2~1 (A2)
Now the first-order streams have average length
s =(1/R)* ! (A3)

wte pp e Cocf
This is rﬂteg&ted as the resolution used to measure the length
of the network. From (A3), write
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Q— 1= —(log s/log R) (A4)

which in (A2) gives
L ~ s1—(og Re/log Ry (AS)

APPENDIX B

In a river network with Horton’s bifurcation and length
ratio laws holding exactly, we have from Appendix A, that
there are R,®~“ order o streams of length Lo,/R,%~© So the
total number of streams exceeding a length | = Lo/R}* is

K = log (Lo/l)

™M=~

2z R)'=(R*""' — /(R — 1) log R, . (B1)
If the total number of streams is N, we can write
Prob(length > 1) = [(R,**! — DAR, — DN, (B2
For k large so that R,**+1 dominates 1 this becomes
Prob(length > ) ~ ]~ tlog Reftog Ry (B3)
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