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ABSTRACT 

Channel networks with artibtrary drainage density or resolution can be extracted from digital elevation data. However, 
for digital elevation data derived networks to be useful they have to be extracted at the correct length scale or drainage 
density. Here we suggest a criterion for determining the appropriate drainage density at which to extract networks from 
digital elevation data. The criterion is basically to extract the highest resolution (highest drainage density) network that 
satisfies scaling laws that have traditionally been found to hold for channel networks. Procedures that use this criterion 
are presented and tested on 21 digital elevation data sets well distributed throughout the US.  
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INTRODUCTION 

The advent of digital elevation models (DEMs) has resulted in the evolution of procedures to automatically 
map or derive channel networks from DEMs. This has obvious applications in cartography, geographic 
information systems, hydrologic modelling, and geomorphology where analysis and use of channel networks 
can now be achieved using computers instead of tediously digitizing or measuring from topographic maps. 
Some procedures using DEMs allow for the extraction of networks with arbitrary drainage density, i.e. 
resolution of networks to an arbitrary scale. Care needs to be exercised to ensure that networks are extracted 
from DEMs at an appropriate scale. This scale should correspond to the networks obtained by more 
traditional methods, such as from high resolution topographic maps or field work. However the drawing of 
blue lines on maps usually involves some subjective judgement by the cartographer. 

Here methods for extracting networks from DEMs that produce networks that have properties consistent 
with those traditionally attributed to channel networks are suggested. In particular, we will extract the 
highest resolution channel network consistent with these traditional properties. In the next section we first 
review some of the properties attributed to channel networks and then review procedures for extracting 
networks from DEMs. Following this we propose two complementary procedures to rationally select the 
scale at which to extract channel networks. We then describe each of these procedures in detail and give 
results that compare the drainage density obtained from these procedures and other procedures in the 
literature. 

REVIEW 

The quantitative description of river networks was pioneered by workers such as Horton (1932, 1945), 
Strahler (1952, 1957), and Shreve (1966). The terminology we use summarized below is due to them. A river 
network is idealized as a trivalent planted tree, the root of which is the outlet or point farthest downstream. 
Sources are points farthest upstream, and a point at which two upstream channels join to form one 
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downstream channel is called a junction or node. Exterior links are the segments of channel between a source 
and the first junction downstream and interior links are the segments of channel between two successive 
nodes or a node and the outlet. Each link has certain properties: length along the stream; height, the elevation 
difference between upstream and downstream nodes; average slope, height divided by length; conrributing 
area, the total area draining through the link measured at the downstream end, and local area, the area 
draining directly into a link, i.e. not through any other links. 

Ordering systems are used to group or categorize links or segments of channels. A major contribution of 
Horton (1932, 1945) was the introduction of a downstream ordering system. Strahler (1952, 1957) revised 
Horton’s scheme to avoid some ambiguities. The revised Horton/Strahler ordering system is as follows. All 
exterior links have order 1. When two upstream links of the same order joint the downstream link has order 
increased by 1 .  When two upstream links of different order join the downstream link takes the higher order 
or the two incoming upstream links. Strahler streams are segments of channel consisting of links of the same 
order. 

Horton/Strahler ordering is usually used in characterizing a river network according to the Horton ratios. 
The ratio of number of streams, length of streams, area of streams, and slope of streams between successive 
orders is approximately constant. A semilog plot of the number, length, area, and slope of streams against 
order plots as a straight line. The ratio or ‘Horton number’ is obtained from the slope of the straight line fit to 
such plots, the procedure being called a ‘Horton analysis’. Mathematically the ratios are 

where N, is the number of streams of order w,  L, is the mean length of streams of order w, A, is the mean 
area contributing to streams of order w, and S ,  is the mean slope of streams of order w. R,, R,, R,, and R, are 
bifurcation, length, area, and slope ratios, respectively. Since the ratios are approximately constant, the above 
geometric descriptors are called ‘Horton’s laws’. The area law above was not explicitly stated by Horton, and 
is due to Schumm (1956). 

Leopold and Miller (1956) extended Horton’s ideas by showing that the log of many hydraulic variables 
are approximate linear functions of basin order. This behaviour is due to the fact that most quantities depend 
strongly on the size of the drainage basin. A common measure of size or scale is basin area and the 
dependence of a general variable on area is often expressed by a power law 

X oc Ab (2) 

with b a constant. This implies 

log X a log A (3) 

and since order is proportional to log A (area law) the linear relationships with order follow. 
HortonJStrahler stream order is a topological, dimensionless measure of size or scale of a channel segment 

or network. A physical scale associated with the dissection of the landscape by a river network is drainage 
density, defined by Horton (1932, 1945) as 

where L, is the total length of streams and A is contributing area. 
I t  is widely recognized that elevation, related to potential energy, is an important part of the network and 

we need to understand the structure and scaling of river networks with the third dimension, elevation, 
included. Qualitatively, streams are steep near their sources and flatter downstream. This is quantified by 
Horton’s slope law which implies an exponential decrease of slope with order. 
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S ,  = ( R J , ) R ; W  = R S S l e - W ’ n R a  ( 5 )  

Broscoe (1959) noted that the average drop H, along Strahler streams of order w was approximately 
constant, i.e. independent of order. This ‘constant drop law’ is sometimes added to Horton’s laws and Yang 
(1971) claims that it is due to a variational principle, equal distribution of stream power. Recognize that on 
average H, = S,L,, so H ,  constant implies 

i.e., R ,  = R, .  Typically R ,  is close to R ,  but it is not evident whether this coincidence is responsible for the 
constant drop law or is due to the constant drop law. 

Flint (1974), building on the power law relationships of Wolman (1955), Leopold and Maddock (1953), 
Leopold and Miller (1956), and Leopold, et al. (1964) finds slope empirically related to contributing area by 

s = (7) 

with 8 ranging from 0.37 to 0.83 with a mean of 0.6. Substituting in Horton’s area and slope laws Flint (1974) 
gets 

In R ,  e=-- 
In R ,  

again showing the connections between power law scaling with area and exponential scaling with order 
(Horton’s slope law). 

Gupta and Waymire (1989) point out the close connection between power law scaling and notions of 
statistical self-similarity and suggest that link slopes may be statistically self-similar. However Tarboton et al. 
(1989) show that the second moment properties of channel slopes do not support this simple self similarity, 
but a more general multiscaling. 

There has over the last decade been a growing interest in the use of digital elevation data in 
geomorphology and hydrology, specifically including the analysis of channel networks. This has resulted in 
the development of procedures for processing digital elevation data and extracting channel networks. 
O’Callaghan and Mark (1984) provide a good review of the early development in this field, as well as 
suggesting the algorithms on which much of this work is based. 

OCallaghan and Mark (1984) define a digital elevation model (DEM) as any numeric or digital 
representation of the elevations of all or part of a planetary surface. They restrict themselves to the most 
commonly used data structure for DEMs: the regular square grid. In such a grid elevations are available as a 
matrix of points equally spaced in two orthogonal directions. Other data structures have been used for 
DEMs in hydrological analysis. OCallaghan and Mark (1 984) suggest that triangular irregular networks 
(TIN) which include channels directly as triangle edges may have substantial advantages. Palacios-Velez and 
Cuevas-Renaud (1986) develop procedures using TIN networks. Contour based DEMs have been used with 
some success by OLoughlin (1986) and Moore, et al. (1988). These have the advantage of dividing the 
catchment into natural units related to water flow, i.e. polygons formed by equipotential lines and their 
orthogonals, streamlines but are more demanding computationally, requiring at least an order of magnitude 
more points in contour line form than in regular grid form to adequately describe an elevation surface 
(Moore et al., 1988). Carrara (1988) discusses schemes for interpolation of a grid-based DEM from contour 
data. These schemes range from general (moving average, splines, etc.) to morphology dependent algorithms 
that endeavour to interpolate the way a skilful reader would interpolate contour maps. 

We used grid-based DEM data structures because the majority of United States Geological Survey 
(U.S.G.S.) DEM data sets are grid-based and grid-based procedures are simple and unambiguous. Many of 
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the important concepts in grid based DEM work are defined by O’Callaghan and Mark (1984), Mark (1988), 
and Jenson and Domingue (1988). Elevations are stored in an elevation matrix arranged in a grid with each 
entry giving the elevation of a point. The location within the matrix implies the spatial location of the point, 
so only elevation values need to be stored (as opposed to TIN networks that have to store x and y location 
and elevation data for each point and contour-based structures that store strings of x and y locations along a 
contour). 

At this point it is useful to define some terminology appearing in the analysis of DEMs. A pic is defined as a 
point or set of adjacent points surrounded by neighbours that have higher elevations. A drainage direction 
matrix contains a set of pointers from each grid cell or pixel to one of its neighbours. Usually pointers are in 
the direction of steepest slope. The drainage direction matrix defines a drainage direction network as a forest 
of rooted subtrees. A drainage accumulation function is defined as an operator which given the drainage 
direction matrix and a weight matrix determines an accumulated area matrix such that each element in the 
area matrix represents the sum of the weight of all elements in the matrix which drain to that element. If the 
weights are all set at one, then the area matrix gives the total contributing area in number of elements or 
pixels. 

O’Callaghan and Mark (1984) suggest defining channels on a DEM as all points with accumulated area 
above some threshold. Mark (1988) notes that at horizontal scales of 10 m or greater true pits or closed 
depressions are rare in natural earth topography, being restricted to a few special geomorphic environments 
( e g  glaciated or karst). Pits occur frequently in DEMs due to data errors and sampling effects (e.g. a narrow 
channel may pass between grid points). Mark (1988) suggests pit removal based on actual drainage patterns 
(in the form of digitized stream channels) or by a local ‘flooding’ procedure where pits are made to drain 
towards the point at which water would overflow from the pit. Jenson and Domingue (1988) describe an 
algorithm that does this. 

The procedure for identifying channels suggested by OCallaghan and Mark (1984) and Mark (1988) is 
basically: 

1. Pit removal and calculation of drainage direction matrix. 
2. Calculation of the accumulated area matrix. 
3. Define channels as pixels exceeding an accumulated area threshold. 

This is the procedure used here. We focus on obtaining a physically justifiable accumulation area threshold. 
Band ( 1  986), following Peuker and Douglas (1975) has suggested the use of local operators to flag upward 

concave pixels as potential stream points. The Peuker and Douglas (1975) algorithm flags the pixel of highest 
elevation from each possible square of four adjacent pixels. After one sweep of the matrix the unmarked 
pixels represent drainage courses. The set of points obtained is not necessarily connected so Band (1986) 
describes several thinning and connection procedures. This approach has the advantage that no arbitrarily 
chosen support area has to be specified, however, there is no physical basis for it and to work properly it 
requires smoothing of the data. Below we will compare drainage density estimated from the Peuker and 
Douglas algorithm with that from the procedures we are suggesting. 

DATA 

Table I gives a list of all the digital elevation model data sets used in this work and their exact location, 
identified by their outlet pixel. Figure 1 shows their location in the United States. Table I1 gives statistics of 
the adjustments to the elevation data required to fill in pits for some typical data sets. We believe that the 
effect of these adjustments is relatively minor and in any case the pit filling procedure is the only automatic 
pit removal option we know of. 

A RATIONAL CRITERIA FOR SELECTION OF SUPPORT AREA 

In extracting channel networks from digital elevation models it is important that the networks extracted be 
close to what traditional workers using maps or fieldwork would regard as channel networks. The question 
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Table I. Digital elevation model data sets 

Acroym Name 

Outlet location 
Easting/ Northing/ Pixel 

Map quadrangles used longitude latitude Size 

w 7  

WI5 

W15A2S 

CALD 

SPOKBC 
NELK 

STJOE 

STJOEUP 

STREGIS 

STREGISDMA 
HAK 
HAKA2S 
SCHO 
EDEL 
RACOON 

RACONDMA 
BEAVER 
BUCK 

BRUSHY 

MOSHANNON 

TVA 

Subbasin no. 7 in 
Walnut Gulch 
Experimental watershed 
Subbasin no. 15 in 
Walnut Gulch 
Experimental watershed 
Subbasin no. 15 in 
Walnut Gulch 
Experimental watershed 
Big Creek 

Big Creek 
North Fork Cour d'Alene 
river 
St. Joe River 

St. Joe River 

St. Regis River 

St. Regis River 
Schoharie Creek Headwaters 
Schoharie Creek Headwaters 
Schoharie Creek 
East Deleware River 
Racoon Creek 

Racoon Creek 
Beaver Creek 
Buck Creek 

Brushy Creek 

Moshannon Creek 

Montgomery Fork 

Hay Mtn. (AZ) 

Hay Mtn., Tombstone 
(AZ) 

(AZ) 
Hay Mtn., Tombstone 

Calder NW, NE, SW and 
SE (ID) 
Spokane E (ID) 
Spokane E (ID) 

Spokane E, Hamilton W, 
Wallace W (ID) 
Simmons Peak SE and 
SW, Pole Mtn., Bacon Peak, 
Chamberlain Mtn., Illinois 
Peak SE and SW (1D.MO) 
Wallace NE. Slatese NW, 
NE and SE, Haughan NE, 
NW, SE and SW, Simmons 
Peak NE, Illinois 
Peak NW (MO) 
Wallace W (MO) 
Hunter, Kaaterskill (NY) 
Hunter, Kaaterskill (NY) 
Binghampton (NY) 
Binghampton (NY) 
Hookstown, Midway, 
Burgettstown, Clinton, 
Alquippa, Avella (PA) 
Canton E (PA.OH,MN) 
Canton E (PA,OH,MN) 
Gasquet SW and SE, Ship 
Mtn. NW, NE, SW and SE, 
Dillon Mtn. NW and SW, 
Preston Peak SW (CA) 
Upshaw, Houston, Grayson, 
Massey, Moulton, Addison 
(AL) 
Ramey, Blandburg, 
Wallaceton, Houtzdale. 
Tipton, Philipsburg 
Sandy Ridge (PA) 
Block (TE) 

585360111 

59094om 

590895m 

567330111 

116'06'39 
116"14'27" 

116"1615" 

62304Om 

61 1670m 

1 15"0806" 
56439om 
5644651x1 
74" 1 7'06" 
74"57'24 
558270111 

80"21'24 
8O03CY54 
418350111 

43323Om 

73542Om 

24922Oo'ft 

351 114om 

35o9040m 

3508965rn 

52353OOm 

47" 1 6  18" 
47"35'5 I"  

47" 18'36 

521 736om 

5239860111 

47" 17'51" 
4673430m 
4673415m 
4T55'48" 
42"04'30 
449565Om 

W3927" 
W 3 8 4 2  
462066om 

4591290111 

453258Om 

7072002ft 

3om 

3om 

6om 

3om 

3"(62.6 x 92.67111) 
3"(62.6 x 92.67111) 

3"(62.6 x 92.67111) 

3om 

3om 

3"(62.6 x 92,67111) 
3om 
6om 

3"(68.3 x 92.67m) 
3"(68.3 x 92.67~~1) 

3om 

3"(70.5 x 92,67111) 
3"(70.5 x 92.671~1) 

3om 

3om 

3om 

looft 

Notes: 
1. Obtained courtesy of the Tennessee Valley Authority, Maps and Surveys Department 
2. Tennessee State plane coordinates in ft 

of what support area to use is therefore important. Figure 2 shows networks extracted from a DEM with 
three different support areas (S,) compared to the network inferred from contour crenulations and digitized 
from a topographic map. By specifying S, the drainage density can be chosen arbitrarily for networks 
extracted from DEMs. In fact from dimensional analysis we expect the relationship 

1 
D d a z  

This in fact holds approximately, with slightly different proportionality constants for each DEM. 
(9) 
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Figure I .  Location map. 7.5 min datasets are black, 1" DMA Quadrangles are shaded and labelled with italics 

In extracting networks from DEMs we suggest that the networks extracted should have properties 
traditionally ascribed to channel networks and have as high resolution as possible. The procedures consist of 
looking for the smallest scale, measured in terms of support area, where the key elevation scaling laws 
(Constant drop property and power law scaling of slope with area) break. We argue elsewhere (Tarboton, 
1989; Tarboton et al. in preparation) that this break point represents a physical transition from channel 
erosion and transport mechanisms at large scale to hillslope erosion and transport mechanisms at small 
scale. The hillslope transport processes are diffusive in nature whereas the channel mechanisms rely on the 
power of concentrated flow in channels. 

Tarboton et al. (1988) showed that it was possible for the bifurcation and length laws to hold down to 
infinitely small scale in which case the channel network can be regarded as Fractal. The same can be said of 
the area law and any other empirical description of the planform structure of a river network. However, the 

Table 11. Statistics of adjustments required to fill pits 

Number and percentage of pixels adjusted by 
Total Mean amount 

Number of adjustment % of pixels 1-5 6-10 11-20 20 + Max 
Data Set Pixels (m) adjusted (m) (m) (m) (m) (m) 

CALD 600270 4.8 1.6 6656 1839 896 136 35 

STREGIS 200951 I 4.9 0.9 12382 3424 1768 315 44 
(1.1%) (0.31%) (0.15%) (0.02%) 

(0.6%) (0.17%) (0.08%) (0.02%) 

(4.2%) (0.4%) (0.05%) (0.007%) 

(1.4%) (0.47%) (0.47%) (1.3%) 

MOSHANNON 1522962 2.6 4.7 64535 5554 786 109 89 

Spokane E Quad. 1442401 11.2 3.7 20769 6731 6732 19013 61 
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a 

C d 

Figure 2. Channel Networks from DEM with varying support area compared to Blue Lines for the W15 dataset: (a) 50 pixels 
(Da = 3.4 km- '), (b) 100 pixels (Dd = 2.7 km-I), (c) 200 pixels (Da = 2.0 km-I), (d) 'Blue Lines' (D,, = 1.7 km-')  

power law scaling of slope with area represented as 

SIX A-' 

cannot hold over all ranges of scale in the landscape. In particular as A approaches zero, near the hilltops this 
would predict infinite slopes, a nonsensical result. The same can be said of the constant drop property and 
Hortons slope law in the limit of small order. After all, these are all elevation related scaling properties that 
describe the general concavity of channel profiles. We therefore suggest that a rational support area to use to 
extract channel networks is the smallest S, for which these elevation related scaling properties still hold. 

CONSTANT DROP PROCEDURES 

Figure 3 shows the drops of all 142 streams in the magnitude 107, order 5 network extracted from the W15 
data set with support area threshold of 50 (30 m x 30 m) pixels. Stream drops are highly variable and we 
need to test whether the constant drop property is valid in the sense that the mean drop is independent of 
stream order. The t statistic for the comparison of means of different populations (Beyer, 1984) is used to 
compare the mean drop for streams of different order. 

2 - v  

I . I - + -  
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Figure 3. Stream drops in W15 network extracted using a support area of 50 pixels 

where X and j are the sample means, S: and Sg the sample variance, and n, and ny the sample sizes of the two 
populations x and y. The t for the difference between successive orders is given in Figure 3. That the t statistic 
has magnitude no larger than 2 indicates that the null hypothesis of no difference in the means cannot be 
rejected at the 95 per cent confidence level. This is also seen graphically in terms of 95 per cent confidence 
limits on the sample mean assuming it is t distributed. A horizontal line that passes through all the error bars 
could be drawn, indicating constant mean drop that is not significantly different from the sample mean drops 
at any order. In contrast, Figure 4 gives the case where a support area of 20 pixels has been used to define 
channel networks in the W 15 catchment. Notice that the mean drop of first order streams is significantly less 
than the other mean drops. According to the t statistics, the break in scaling occurs between support areas of 
20 and 50 pixels. 

Dramatic evidence of the break in scaling is given by considering the stream drop probability distribution. 
This is done in Figure 5 for the W 15 basin. Exceedance probabilities are calculated using the Weibull plotting 
position 

where i is the ranking from smallest to largest and N is the number of streams in the sample; 95 per cent 
confidence limits computed from the beta distribution are shown. We see that the distribution of first order 
drops in the support area 20 network stands out from the other distributions which are all intermingled. This 
corroborates the difference between first order drops at support area 20, and other stream drops. Straight line 
fits on this semilog plot suggest the exponential distribution as a good model for stream drops, and that 
Strahler streams of different order have practically the same probability distribution above the point where 
scaling breaks. This is a probabilistic statement of the constant drop property. 
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; 1 -  [ j  
m i  
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Strahler Order 
t for difference between means of drops of adjacent order: -6.7 -0.8 0.5 

Figure 4. Stream drops in W15 network extracted using a support area of 20 pixels 
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2 
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10-2 - I Ortter 2 S.A. = 2 0  
0 Order 3 S.A. = 20 
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0 Ortlsr 2 S A. = 50 
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5 
ii 

8 x 10-5 J ..4 x 
1 o - ~  I I I I I I 

2 0 10 20 30 40 50 60 70 1 
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Figure 5. Stream drop distributions for the W15 network. S.A. in the legend denotes support area. Error bars are 95 per cent confidence 
limits using the Beta distribution 
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Tests for the break in scaling using the constant drop property can be done graphically with several plots 
like Figure 3 and 4 compressed into one plot. Figure 6 illustrates the results for the Big Creek basin. For each 
each support area the stream drops, mean drop, and 95 per cent confidence limits of the mean are plotted 
against order. Within each grouping order increases from left to right. Statistics, including the t statistic for 
the difference between mean first order stream drop and mean of all higher order stream drops are printed 
below the figure. To the left (small support area) of a limit or threshold support area, the constant drop 
property fails whereas to the right (large support area), the constant drop property holds. This limit, the 
smallest support area for which the constant drop property is not rejected, gives a measure of the basic 
horizontal length scale in the landscape, measured in terms of support area or drainage density. The drainage 
density obtained from this type of figure is listed in Table 111 for all the basins analysed, together with results 
from other procedures. A full set of figures similar to Figure 6 for all the basins analysed is given in Tarboton 
( 1989). 

The constant drop property is basically equivalent to R, = R,. Deviations from the constant drop property 
can be expected if R, # R,. Typical values for R, and R, are 2 and 4 respectively so Equation 8 gives 0 = 0.5. 
The test for the break in the constant drop property is roughly equivalent a test for deviation from 0 = 0.5. 
Different R, = R, and R, would result in a different scaling exponent 0 here. The outcome of the constant 
drop analysis is basically two length scales. The horizontal length scale ( l / D d )  and vertical length scale, mean 
stream drop H .  The ratio of these H D ,  gives a form of ruggedness number (see Strahler, 1964), which is a 
dimensionless number that characterizes the steepness of the channel network. We could speculate that i t  is 
related to climate, tectonic uplift, etc. Table 111 includes H D ,  data for the basins we analysed. 

SLOPE SCALING PROCEDURES 

Figure 7 shows slope versus contributing area for links of a network where a small support area was used to 
extract the network. Area is total contributing area measured at  the downstream end of each link and slope is 
mean link slope defined as the link height divided by link length. It is a link average slope at the scale the 

BOO 

700 

600 

E 500 
n e a 

e 
400 

i 
2 300 

200 

100 

0 

Support Area 

Drainage Density (km-l) 

Magnitude 
1 

50 100 200 300 SO0 800 
2.7 1.9 1.4 1.2 0.94 0.78 
846 400 223 139 87 57 
9 6.7 5.4 2.8 0.02 0.3 

Figurc 6. Variation of stream drop with order and support area for the Big Creek (CALD) 7.5 min series dataset 
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Table 111. Summary of landform scale results 
~~ ~~ ~ ~~ 

Peuker 
Constant drop analysis Slope scaling analysis Douglas 

Basin (km') (km') (km-I) (m) (km') (km') (km') (km-') (km- ' )  
Area A D ,  H H D ,  4 A" Dd Dd 

w 7  
W15 
W I5A2S 
CALD 
SPOKBC 
NELK 
STJOE 
STJOEUP 
STREGIS 
STREGISDMA 
HAK 
HAKA2S 
SCHO 
EDEL 
RACOON 
RACONDMA 
BEAVER 
BUCK 
BRUSHY 
MOSHANNON 
TVA 

12.8 
22.7 
22.7 

146.9 
146.9 
440.2 

384.6 
786.6 
796.2 
98.2 
98.75 

2834 

2408 
933.0 
448.0 
480. I 

606.2 
321.8 
325.4 
36.5 

1223 

0.09 2.5 18 0.045 
0.045 3.4 15 0051 
0.072 2.7 15 0.039 
0.27 1.2 130 0.16 
0.41 0.93 128 0.12 
0.41 0.98 89 GO87 
1.16 0.59 140 0.082 
0.27 1.1 114 0.13 
0.63 0.81 148 0.12 
0.89 0.71 139 0,098 
0.18 1.6 48 0.077 
0.18 1.5 47 0.070 
0.95 0.68 56 0.038 
1.9 0.47 73 0.034 
0.45 1.1 22 0.024 
0.65 0.86 16 0014 
0.18 0 6  19 0011 
0.9 0.69 191 0.013 
0.09 2.3 14.5 0.033 
0.63 095 35.5 0.034 
0.14 1.3 97.5 0.13 

0.00181 
0.0018' 

0.26 
032 
0.2 I 
0.75 
0.30 
0.45 
098 
0044 
0.0 18 
1.51 
0.98 
0 3  I * 
0.077 
0.32 
0.12 
1.6 
0.57 

0.0018' 
0.0024 

0.19 
0.45 
0.30 
0.96 
0.34 
0.53 
1.52 
0.076 
0.027 
2.08 
1.43 
0.43 

0.29 
0.37 
0.18 
2.1 
0.68 

* 
0.0024 
0.0045 

0.24 
0.68 
0.42 
1.18 
0.40 
0.6 I 
2.65 
0.12 
0.04 1 
3.12 
2.07 
0.63 * 
0.89 
0.4 1 
0.26 
2.7 
0.99 

26.3 0.30 5.5 
19.4 0.29 4.7 

* 0.25 3.3 
1.3 0.51 3.19 
0.9 0.48 1.5 
1.1 0.47 1.7 
0.65 0.47 1.45 
1.0 0.56 3.03 
0.88 0.55 3.01 
0.56 0.55 1.45 
2.76 0.48 5.19 
5.6 0.42 2.27 
0.46 0.43 1.21 
0.51 0.55 1.24 
1 . 1  0.51 7.2 
* 0.34 2-14 

1.37 0.34 2.14 
1.1 0.48 4.47 
1.7 0.53 5.73 
0.57 0.58 7.2 
0.79 0.85 4.5 

~~ 

Key: 
A Lowest Support Area for which constant drop property cannot be rejected 
D ,  Drainage density 
H Mean stream drop 
A ,  Switch point lower 95% confidence bound 
A, Switch point with minimum residual sum of squares 
A, Switch point upper 95% confidence bound 
0 

Notes: 
1 At lower limit of range of possible switch points 
* Could not be obtained or  was not significant 

Log(s1ope)-Log(area) scaling exponent above switch point 

network is extracted. Here the scale or support area of extraction of the network serves to define the length of 
averaging for computation of slopes. Figure 7 has significant scatter indicating that slope is highly variable. 
However, when many links with similar area are grouped together and averaged (circles in Figure 7) the 
mean slope is seen to follow a fairly smooth trend. The straight lines are fitted to the circles using two phase 
regression. The line to the right of the switch point, with negative slope, corresponds to the scaling described 
in Equation 7. The switch point gives the scale at which this scaling breaks and is the support area that we are 
suggesting should be used to extract channel networks from DEMs. 

To objectively test for the break in scaling we use two-phase regression (Solow, 1987; Hinkley, 1969). The 
technique is applied to a set of ordered pairs ( x i ,  yi), i = 1,. . . , n, that are assumed to be related by 

yi = a, + b, xi + b(xi - c)I(xi - c )  + ei 

where a,, b,, b, and c are parameters in the regression. I(.) is the indicator function defined 

0 f o r x s 0  
1 forx > 0 

I(x) = 

and ei are the errors, assumed independently and identically distributed. The parameter c gives the switch 
point. The slope for x < c is band for x > c is b, + b. The parameters are estimated by minimizing the sum of 
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Figure 7. CALD (Big Creek, Idaho) Link slopes with support area of 50 pixels used to extract network 

squares (SS) of the difference between yi as observed and predicted by Equation 13. For c fixed SS is a 
quadratic function of a,, b,, and b which upon differentiation and equating to zero leads to the normal 
equations: 

where XI is the sum over all data (n), Z 2  is the sum over points with x i  > c, and n2 is the number of points 
with x i  > c. These can be solved to give values a,, b,, and b that minimize the sum of squares conditional on c. 
A grid search over possible values of c is then used to obtain the set aor b,, b, c that minimizes SS. According 
to the model (13), these are maximum likelihood estimates of the parameters (Solow, 1987). 

This regression should be tested against the null model, normal linear regression without a switch point. 

yi = a, + b, x i  (16) 

with residual sum of squares SS,. Solow (1987) gives the likelihood ratio statistic 

(SS, - SS)/3 
SS/(n - 4) 

R =  
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The test is to reject the null hypothesis, that the two phase regression is not different from linear regression, a t  
the 1 - a level if 

where F3,n-4(l - a) is the 1 - a quantile of the F distribution with 3 and n - 4 degrees of freedom. 
Confidence intervals can be placed on the estimate of the switch point c. Following Solow (1987), the two- 

sided hypothesis that c is not significantly different from a reference value c’ with significance level 1 - a is 
accepted if 

(SS’ - S S ) / [ S S / ( n  - 4)] I F1.n-4(l  - a) (19) 

where SS’ is the sum of squares from fitting model (13) conditional on c = c’. Then the 1 - a confidence 
interval for c is the set of c‘ satisfying (19). For the data in Figure 7, the regression was done using the natural 
logs of the mean data (circles). Figure 8 shows the sum of squares, SS, versus c (switch point area) for this 
data. The minimum SS corresponding to a contributing area of 143 x lo3 m2 is clearly seen: 95 per cent 
confidence limits for the switch point are given by the portion of this graph below the threshold SS’ 
determined from (1 9). 

It is possible to apply this technique to slopes and areas of individual pixels, as well as slopes and areas of 
‘links’ from a channel network with small support area. In principle the individual pixel data is like using a 
support area of 1 pixel to extract a network. The use of higher support areas just means slopes are averaged 
over longer distances thus reducing the effect of DEM data error. The following mean link lengths from the 

1 0” 1 om 10’ 1 om 
2 Switch point Area m 

Figure 8. CALD (Big Creek, Idaho) Residual sum of squares from two phase regression as a function of switch point 
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W 15 data set for different support areas give an idea of the averaging length associated with different support 
areas. 

Support Area (No of Pixels) 1 5 10 20 50 
Mean Link Length (m). 30 84 116 177 365 

We have used both pixels and links as our unit of analysis. Figures 9(a) and 9(b) are typical results. In these 
the minimum number of points (pixels or links) averaged together was chosen large enough to minimize the 
scatter. This number is indicated in parentheses in the legend of each plot. Two phase regression was applied 
to all the points plotted. A full set of plots like these are given in Tarboton (1989). The drainage densities 
determined from using the break point in these figures as a support area to extract channel networks are 
given in Table 111 where they are compared to drainage density estimated from other techniques. 

RESULTS 

The above procedures have used a support area threshold to extract channel networks from DEMs. Scaling 
and breaks in that scaling were used to identify what we believe is the correct support area threshold. This 
section will compare the results to more direct procedures for identifying valleys within DEMs. 

Band (1986) discusses the Peuker and Douglas (1975) algorithm for identifying concave pixels, to extract 
channel networks from DEMs. Figure 10 gives an example of pixels identified by such a procedure for the 
CALD data set. The main drainage paths are apparent, but the problem is that they are not connected, i.e. 
there are gaps. Band (1986) suggests procedures to connect these to form a network. These are not discussed 
here. 

We should point out than in obtaining Figure 10 a moving average smoothing of the data was used. We 
used the simple smoothing kernel 

Without smoothing the Peuker-Douglas algorithm performs poorly, identifying pixels that hardly 
resemble a network at all, presumably due to many adjacent pixels of the same elevation since elevations are 
given in integer metres. 

The density of points in Figure 10 can be used to give an idea of the drainage density. A length (1/2 the 
length of a side + 1/2 the length of a diagonal) is associated with each channel pixel so drainage density is 
estimated from the number of identified pixels x length divided by area. For comparison with Figure 10, 
Figure 11 gives all pixels with accumulation area greater than 300 pixels for the CALD data set, which was 
the support area identified by the constant drop procedure. 

Table 111 summarizes all the landform scale results, comparing drainage density estimated from the 
constant drop and break in scaling technique described previously and the Peuker-Douglas procedure. The 
drainage densities from the different techniques are also compared in Figure 12. The scatter about a straight 
line at 45" measures the degree of agreement between the different estimates of drainage density. Within the 
scatter there appears to be reasonable agreement between drainage densities obtained from slope scaling and 
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Figure 9. (a) W15 Slope versus Area and Two Phase Regression Plot; (b) CALD Slope versus Area and Two Phase Regression Plot 
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Figure 10. Pixels identified by the Peuker and Douglas Algorithm applied to the CALD dataset 

the constant drop analysis. The agreement with the Peuker-Douglas Dd is not as good and there appears to 
be a bias with the Peuker-Douglas procedure consistently over estimating drainage density relative to the 
other two procedures. Perhaps this is due to the Peuker-Douglas procedure being more sensitive to local 
differences and errors in the data or an error in the length associated with each pixel. 

DISCUSSION 

Evaluation of these results raises the following concerns: Are the scales (drainage density) obtained 
dependent on data resolution and data set size? What is the effect of data errors? To address the first concern, 
five pairs of data sets are actually the same river basin with DEMs of different pixel size. These are (WIS, 
W 15A2S), (HAK, HAKA2S), (CALD, SPOKBC), (STREGIS, STREGISDMA), and (RACOON, RA- 
COONDMA). In the first two of these the low resolution DEM was formed from the high resolution DEM 
by averaging together the elevations of four adjacent pixels. In the other three the low resolution data set is a 
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Figure 11. Pixels that exceed accumulation area threshold of 300 pixels in the CALD dataset 

defense mapping agency data set on three arc second grid while the high resolution data set is a U.S.G.S. data 
set on 30 m grid. We see that the drainage densities obtained from the constant drop analysis agree fairly well 
for all five of these data sets. The comparison of slope scaling drainage densities for the (CALD, SPOKBC) 
and (STREGIS, STREGISDMA) pairs is also good. For the (HAK, HAKAZS) pair the slope scaling 
drainage density comparison is not good and also differs from the constant drop drainage density. For the 
RACOONDMA and W 15A2S data sets the slope scaling does not give a detectable break so the comparison 
cannot be made. 

Some of the data sets are also nested. CALD and STJOEUP are subbasins within STJOE and HAK is a 
subbasin within SCHO. Analysis of these suggests a higher drainage density for the subbasin, possibly some 
indication of a data set size or scale effect. In principle if the drainage density was uniform, Dd of the subbasins 
should be the same as the Dd of the larger enclosing basin. This is not the case. STJOE has Dd z 0.5 km- ' 
while CALD and STJOEUP have D, z 1 km-'. SCHO has Dd x 0.7 km-' while the subbasin HAK has 
D, z 1.7 km-'. The subbasins are from higher resolution data, but the comparisons in the previous 
paragraphs suggest this should not have an effect. 
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Figure 12. Comparison of drainage density from dimerent techniques 

A possible explanation is that larger basins imply more streams and a larger sample size for detection of 
trends or breaks in scaling, so for larger basins our scale detection threshold may be lower, an undesirable 
basin size effect in the results. Another explanation is that drainage density may be variable within the basins, 
due to variation of geologic or climatic factors. The large basins (SCHO and STJOE) have Iengths of the 
order of 50-100 km, in which it is entirely plausible that D ,  could vary considerably. The scale at which a 
break occurs then becomes a range of scales, corresponding to a range of drainage densities within the data 
set. If there is a lot of data statistical rejection of constant drops or slope scaling may occur at the low 
drainage density end of the range of drainage densities present. This range is expected to be wider for larger 
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data sets, hence the scale effect. It is not possible with the information at hand to resolve this issue and further 
research on this point may be warranted. 

Random errors and the fact that DEM data is reported in integer metres has a large effect on the 
estimation of local slope, perhaps one reason for the scatter in Figure 7. At the scale of a single (30 m) pixel 
the integer data does not allow us to resolve slopes between 1/30 = 0.033 and 0. We attempt to avoid this 
effect by averaging over larger lengths using higher support areas. This had the effect of smoothing slope 
estimates at the expense of some resolution of areas. Areas smaller than the support area threshold used 
cannot be resolved. This results in a scale effect, apparent in Figure 9(b), where the break in slope is much 
more marked for the higher support areas and also appears to occur at a higher area for higher support areas. 
The two phase regression on all the data is a form of compromise between wanting accurate slope estimates 
and good area resolution. 

Tarboton (1989) provides an analysis of the effect of random errors and shows that they can result in a bias 
in the gradient measured in slope area plots. This is most marked for single pixels where there is no benefit of 
averaging. To understand this effect consider an error in the elevation of a single pixel. If the error reduces the 
apparent elevation of a pixel, the apparent slope is reduced. This is because the slope of a pixel is measured as 
the difference in elevation between the pixel in consideration and its downslope neighbour, divided by the 
distance between pixels. Also adjacent pixels are more likely to drain towards the pixel in consideration due 
to its reduced elevation, thus increasing the apparent area that it drains. Similarly, an error that increases the 
apparent elevation increases slope and reduces area so the net effect is that errors result in a negative 
correlation between slope and area or negative slope in slope-area plots. 

Despite the effect of errors we are able to detect fundamental or basic scales where the constant drop and 
slope-area scalings break. Since practically all channel networks have these properties it is sensible that they 
should be present in networks extracted from DEMs. This places a limit on how finely the network should be 
resolved and suggests a support area that should be used to extract channel networks from DEMs. The 
agreement between constant drop analysis and slope-area scaling shows that they are consistent and 
therefore complementary techniques for estimating drainage density. The drainage density obtained from 
these techniques corresponds fairly well to drainage density estimated from the altogether different local 
Peuker and Douglas (1975) procedures for detecting upward concave pixels in DEMs. The procedures 
proposed have justification in terms of network properties and are therefore preferable to procedures based 
on local curvature. Of the two procedures proposed, the analysis of stream drops seemed more robust than 
the analysis of slope scaling which was more susceptible to data errors. 
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