Name: \qquad Solution \qquad

GIS in Water Resources Midterm Exam

Fall 2017
There are five questions on this exam. Please do all five. They are of equal credit.

Question 1

(a) The National Water Model is built using a foundational geospatial dataset called NHDPlus, formed from the National Elevation Dataset and National Hydrography Dataset.

Briefly describe the National Elevation Dataset.
A raster dataset from the USGS/National map giving gridded elevation values across the US. $1 / 3 \mathrm{arc}$ sec $(10 \mathrm{~m})$ and $1 \mathrm{arcsec}(30 \mathrm{~m})$ resolution is available nationally, with $1 / 9 \mathrm{arcsec}(3 \mathrm{~m})$ available in some places.

Briefly describe the National Hydrography Dataset.
A vector dataset of streams and water bodies and their attributes. This is available at medium (nominally 1:100,000) and high (nominally 1:24,000) scales.

How are the land and water systems of the nation connected in the NHDPlus dataset?
The NHDPlus dataset groups together streams and their catchments derived from NED, together with watershed boundaries and stream attributes beyond those in NHD and including watershed attribute based flow estimates
(b) Houston is located at the following location in geographic coordinates ($95^{\circ} 22^{\prime} 11^{\prime \prime} \mathrm{W}, 29^{\circ} 45^{\prime} 38^{\prime \prime} \mathrm{N}$) Determine the location of Houston in Decimal Degrees

$95+22 / 60+11 / 3600=95.369722$
$29+45 / 60+38 / 3600=29.760556$
Houston is at longitude -95.369722, latitude 29.760566, or 95.369722 W, 29.760655 N

Question 2

For flood inundation mapping during Hurricane Harvey, FEMA used the following coordinate system:

Projected Coordinate System	NAD 1983 UTM Zone 15N
Projection	Transverse Mercator
WKID	26915
Authority	EPSG
Linear Unit	Meter (1.0)
False Easting	500000.0
False Northing	0.0
Central Meridian	-93.0
Scale Factor	0.9996
Latitude Of Origin	0.0

Geographic coordinate system	GCS North American 1983
WKID	4269
Authority	EPSG
Angular Unit	Degree (0.0174532925199433)
Prime Meridian	Greenwich (0.0)
Datum	D North American 1983
Spheroid	GRS 1980
Semimajor Axis	6378137.0
Semiminor Axis	298.257222101
Inverse Flattening	

(a) What Earth Datum is used?

North American datum of 1983.
(b) What spheroid is used?

GRS 1980
(c) What is the difference in length between the earth's equatorial radius and polar radius on this spheroid (km)?

6378137-6356752=21385 m = 21.385 km
(d) What map projection is used?

Transverse Mercator
(e) Is this a conical, cylindrical or azimuthal projection?

Draw on this map the location of the Central Meridian of the projection.
Where is the Latitude of Origin of this projection?
At the equator
The coordinates of Houston in this projection are $(X, Y)=(270870,3294609)$.

How far is Houston from the Latitude of Origin (m)?
3,294,609 m
How far is Houston from the Central Meridian (m)?
$500000-270870=\mathbf{2 2 9}, 130 \mathrm{~mW}$ of the central meridian. Note Central meridian has false easting value of 500000 m

Question 3

Following is a grid of elevation values in meters in a digital elevation model with 25 m cell size

9	8	10	10
11	9	11	12
14	10	13	15
10	12	13	12

a) For the four inner grid cells determine their D8 flow direction. Indicate D8 flow directions in the diagram above to the right. Also indicate the numerical values of the flow direction encoding as used by ArcGIS.

$$
\begin{aligned}
& \frac{11-8}{25 \sqrt{2}}=0.0849 \quad \frac{11-9}{25}=0.08 \\
& \frac{13-10}{25}=0.12 \quad \frac{13-9}{25 \sqrt{2}}=0.11
\end{aligned}
$$

b) For the four inner grid cells determine their D8 flow accumulation. Indicate flow accumulation values in the diagram below. In evaluating these flow accumulation values you may disregard any flow from outside the bold box of four inner grid cells.

c) Calculate the Hydrologic (D8) slope of the grid cell with the steepest slope among the four inner grid cells.

$$
\begin{aligned}
& \text { STRKNET } 15 \quad 10 \\
& \frac{13-10}{25}=0
\end{aligned}
$$

$$
10
$$

d) Following is a grid of elevations in meters in a digital elevation model identify any pits and indicate the elevation they would need to be raised to, for them to be filled.

16	17	15	15	15	16
14	15	14	13	12	13
11	15	12	10	11	12
15	18	12	12	13	9
14	17	15	11	10	8
15	16	15	15	8	7

$$
\begin{gathered}
\text { Raise TO } \\
\text { \|l }
\end{gathered}
$$

Question 4.

Consider the map of streams derived from a digital elevation model with attribute tables for the drainage lines and catchments shown.

Units on Shape_Length attributes are meters and units on Shape_Area attributes are square meters.
a) Determine the drainage area of this watershed $\left(\mathrm{km}^{2}\right)$

$$
\begin{aligned}
& 12.307+8.882+4.271 \\
& =25.46 \mathrm{~km}^{2}
\end{aligned}
$$

b) Determine the length of channels in this watershed (km)

$$
\begin{aligned}
& 4.348+2.447+2.743 \\
& =\xrightarrow{9.538 \mathrm{~km}}
\end{aligned}
$$

c) Determine the drainage density of this watershed $\left(\mathrm{km} / \mathrm{km}^{2}\right)$

$$
D_{d}=\frac{L}{A}=\frac{9.538}{25.46}=\frac{0.375 \mathrm{~km}_{4}^{-1}}{?}
$$

d) For location A in the watershed determine the distance to the nearest stream (km). Approximate this using the scale information given.

e) For location A in the watershed determine the height above the nearest drainage (m). Note contour interval is 20 m .

$$
\xrightarrow{80 \mathrm{~m}}\left(\begin{array}{ll}
4 & \text { rom contour } \\
\text { intervals }
\end{array}\right)
$$

Question 5

The map below shows the Upper San Marcos River HUC 10 subwatershed (1210020303) and nearby precipitation stations from data used in exercises 2 and 3. Also shown are selected columns from the table obtained from intersecting the Thiessen polygons with the HUC 10 Subwatersheds.

Thiessen Polygon HUC 10 intersection table. The units of attribute AnnPrecip_in are inches, and of attribute Shape_area are square meters.

(a) Which station influencing this HUC 10 subwatershed has the highest mean annual precipitation?

$$
\text { いいMpecky } 1+\cdots \quad 40-48
$$

(b) Calculate the Area and Annual Precipitation in Inches for the Upper San Marcos River HUC 10 subwatershed and enter them in the table below. A blank table is also provided to help you organize your computations.

HUC 10	Area $\left(\mathrm{Km}^{2}\right)$	Annual Precipitation (in)
1210020303 (Upper San Marcos)	1105,7	37.57

$$
\frac{41536.8}{1105.7}=37.57
$$

