Exercise 4. Watershed and Stream Network Delineation
GIS in Water Resources, Fall 2016
Prepared by David G Tarboton and David R. Maidment
Updated to ArcGIS Pro by Paul Ruess
[9/29/16 Further updated to work around geoprocessing portal group not being in ArcGIS Pro 1.2]

Purpose
The purpose of this exercise is to illustrate watershed and stream network delineation based on digital elevation models using the Hydrology tools in ArcGIS and online services for Hydrology and Hydrologic data. In this exercise, you will select a stream gage location and use online tools to delineate the watershed draining to the gage. National Hydrography and Digital Elevation Model data will be retrieved for this area (Logan River Basin) from online services. You will then perform drainage analysis on a terrain model for this area. The Hydrology tools are used to derive several data sets that collectively describe the drainage patterns of the basin. Geoprocessing analysis is performed to fill sinks and generate data on flow direction, flow accumulation, streams, stream segments, and watersheds. These data are then used to develop a vector representation of catchments and drainage lines from selected points. This exercise shows how detailed information on the connectivity of the landscape and watersheds can be developed starting from raw digital elevation data, and that this enriched information can be used to compute watershed attributes commonly used in hydrologic and water resources analyses.

Learning objectives
- Do an online watershed delineation and then extract the data for that watershed to perform a more detailed analysis.
- Identify and properly execute the sequence of Hydrology tools required to delineate streams, catchments and watersheds from a DEM.
- Evaluate and interpret drainage area and stream length properties from Terrain Analysis results.

Computer and Data Requirements
To carry out this exercise, you need to have a computer which runs ArcGIS Pro and includes the Spatial Analyst extension. No data is required to start this exercise. All the necessary data will be extracted from ArcGIS.com services. To use these services you need an ArcGIS.com account that has been linked to an ArcGIS license.

The exercise is divided into the following activities that each comprise a sequence of steps

1. Online Watershed Delineation and Data Retrieval.
2. Hydrologic Terrain Analysis
Before we start
The USGS NWIS website for the Logan River:
http://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=10109000 gives the following information about the Logan River Stream Site.

USGS 10109000 LOGAN RIVER ABOVE STATE DAM, NEAR LOGAN, UT

Stream Site

<table>
<thead>
<tr>
<th>DESCRIPTION:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude 41°44′36″, Longitude 111°46′55″ NAD27</td>
</tr>
<tr>
<td>Cache County, Utah, Hydrologic Unit 16010203</td>
</tr>
<tr>
<td>Drainage area: 214 square miles</td>
</tr>
<tr>
<td>Datum of gage: 4,680.00 feet above NGVD29.</td>
</tr>
</tbody>
</table>

Note the Latitude, Longitude and geographic coordinate system (NAD27). Note also the drainage Area.

Compute the latitude and longitude in decimal degrees in an Excel Spreadsheet and save it.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SiteID</td>
<td>LatDeg</td>
<td>LatMin</td>
<td>LatSec</td>
<td>LongDeg</td>
<td>LongMin</td>
<td>LongSec</td>
<td>LatDD</td>
</tr>
<tr>
<td>2</td>
<td>10109000</td>
<td>41</td>
<td>44</td>
<td>36</td>
<td>111</td>
<td>46</td>
<td>55</td>
<td>41.74333</td>
</tr>
</tbody>
</table>

Online Watershed Delineation and Data Retrieval

1. **Watershed Draining to a Stream Gage & Extracting a Digital Elevation Model**
 Open ArcGIS Pro and create a new project (I named it Ex4). Insert a New Map. This should open with the Topographic basemap. (If the basemap is not automatically Topographic, select the Topographic basemap).

 Click on the 📚 icon to Add Data and add the sheet from the spreadsheet with latitude and longitude of the Logan River Stream Gage.

 Right click on this spreadsheet layer and select Display XY data.
Set the X and Y fields. Recall that the USGS NWIS website indicated a NAD27 coordinate system. Click **Select Coordinate System** to set the coordinate system.

Locate **Geographic Coordinate Systems** → **North America** → **NAD1927** in the Coordinate System window and click OK.
Click **Run** again to Make XY Event Layer data. A dot should appear on your map showing you where the Logan River stream site is.

Zoom in on this to get a sense for the topography near Logan. I also changed the symbology of the point to make it easier to see.

In the Geoprocessing pane under Portal expand Ready-To-Use Tools to locate and click on the Watershed tool.
[Note that the Geoprocessing portal is a new feature in ArcGIS Pro 1.3. If you have an earlier version you need to use the Watershed tool from the hydro web services.

Under the Insert tab, under Connections, click on New ArcGIS Server

Enter the Server URL http://hydro.arcgis.com/arcgis. Your ArcGIS.com user name and password should not be necessary as you are logged into ArcGIS Pro.
Click OK. You should see arcgis on hydro.arcgis.com displayed in your Project tab under Servers. Expand Tools and Hydrology to locate the Watershed tool. This Watershed tool is equivalent to the one in the Geoprocessing portal.

In the Watershed tool set the Input Points to be the layer from your spreadsheet (Sheet1$_Layer). Set Data Source Resolution to FINEST. Leave all other settings at their defaults and click Run.
When the tool completes you should see the message Watershed completed successfully. You should also see WatershedArea that has been delineated using the online watershed delineation service added to your map. Notice that there is also a SnappedPoints feature class that contains the outlet point "snapped" or moved to be on the streams.

Zoom to layer WatershedArea. Wow, just like that you delineated the stream network of the Logan River. If you like, change the symbology to be more appealing. If you adjust color properties, you can get the watershed to be transparent.
Now let’s get the digital elevation model for this area. Under the Insert tab, under Connections, click on New ArcGIS Server.

Enter the Server URL http://elevation.arcgis.com/arcgis. Your ArcGIS.com user name and password should not be necessary as you are logged into ArcGIS Pro.
Click OK. You should see arcgis on elevation.arcgis.com displayed in your Project tab under Servers.

In elevation.arcgis.com **NED30m** is the USGS National Elevation Dataset digital elevation model. Drag and drop this onto your map to add this data.

After processing for a while you should see the NED DEM in your map. The initial appearance is rather dark, but you can use Symbology to change the color scheme.
Navigate to your Ex4_project geodatabase (automatically created when you create a new ArcGIS Pro project). Note that this has in it the WatershedArea and SnappedPoints feature classes from the watershed delineation. In this geodatabase select New/Feature Dataset to create a feature dataset to hold our work.

Set the name to Basemap.

For the coordinate system select NED30m in the Coordinate System drop down.
This selects the coordinate system of the NED30m DEM layer. Notice that after you have selected this the Coordinate system is displayed as **North_America_Albers_Equal_Area_Conic**, the coordinate system of NED30m.

Click Run. Now you have a feature dataset Basemap in your project geodatabase.

Right click on Sheet1$Layer (the XY events layer from the gage site spreadsheet) and select Data / Export Features.
Set the Output feature class to **Gage** in the Basemap feature dataset and click Save. Click Run in the Geoprocessing pane to copy these features.
This serves to project the geographic coordinates of this site feature class to the North America Albers coordinate system of the Basemap feature dataset, and also to make it a permanent feature class. Remove the spreadsheet and XY Events layer (Sheet1$._Layer).

Similarly use Export Features with the WatershedArea layer to copy it into the Basemap feature dataset with name "Basin".

And likewise use Export Features with the SnappedPoints layer to copy it into the Basemap feature dataset with name "SnappedOutlet". Remove the SnappedPoints and WatershedArea layers. This copying to a single feature dataset serves to project the data to a consistent coordinate system and collect it together in one place in an organized way. It is strictly not necessary for the software, but is a good habit of organization for users.

Now let’s extract and analyze the DEM for this basin. We use a buffer to select an area slightly larger than the basin to avoid edge effects. Go to the Geoprocessing panel. Search for the Buffer (Analysis) tool (in the geoprocessing toolbox).
Set the inputs as follows, and run:

This produces a feature class BasinBuffer that buffers our basin by 1 km.

Next search for the Extract by Mask (Spatial Analyst) tool and set the inputs as follows, saving the output raster in Ex4_project.gdb\dem.
The result is a DEM just over the buffered area. After playing with the symbology for a while, I couldn’t find a color scheme that satisfied my tastes for this basin. Luckily, ArcGIS Pro has an awesome functionality that allows me to easily create my own color schemes! How cool is that?! To create a new color scheme, first navigate to the Project panel and select Styles/New Style.

Give your new style a name and save in your project folder, to make sure the color style stays with the map (in case you move your data around).
Right-click to **manage** your new style, and select **New Item/Color Scheme** from the new Project panel.

You'll notice that there are also opportunities to customize other styles, such as for points and polygons; feel free to explore these options and get creative with your maps. Let's see some unique cartography!

Click on your color scheme to select it, and go to the **properties** tab on the bottom of the screen. Change the initial green color to a good high-elevation color (I've chosen brown), and proceed to change the red color to a nice low-elevation color (perhaps a blue, for water). To change the red default, make sure you select the small knob below the color bar.
Click **Apply** once you’ve selected a color scheme you like, and select **Save to Style** (with whatever name you would like).
Close the project tab where the style was being managed and navigate back to your symbology selection for your BasinBuffer, and select the color scheme you’ve just created.

Feel free to adjust the Stretch type and Gamma values used for the stretch distribution, in order to improve the display of your map. Being able to add your own color schemes is extremely powerful, and is very exciting! Have fun with this section! Here’s what my map ended up looking like:
Save your project for good measure.

Zoom right in near the outlet.

Note that the SnappedOutlet point is shifted slightly from the Gage point. This is to move it onto the stream flow path in the preprocessed NED30m DEM that underlies the watershed delineation; interestingly, this does not correspond directly to the stream shown in the topographic basemap. Note also that the watershed boundary has a stair step shape as it is based on DEM grid cells but that these are skewed relative to the map display. This is because the coordinate system of the DEM underlying the watershed delineation service is different from the Map coordinate system data frame. Let’s re-orient the Map to the coordinate system of the DEM. Right click on Map ➔ Properties

Select the Coordinate System tab and scroll to the bottom. Under Layers select North_America_Albers_Equal_Area Conic and click OK.
To turn in. The number of columns and rows, grid cell size, minimum and maximum elevation values in the Logan River Basin DEM (just named dem above).

2. National Hydrography Data Service (NHDPlusV2)

Add another New ArcGIS Server connection: http://landscape1.arcgis.com/arcgis as you did before for elevation services.

From the landscape1 services, add USA_NHDPlusV2_1_Flat service layer to see the NHDPlus streams. You may need to expand the display to maximum extent and zoom in for the streams to appear. You may also need to unselect some of the layers (e.g. Sinks) to clean up your map. Note that the GageSnap point seems to be closer to this NHDPlus streamline.
Under “Tools” in the Landscape 1 service, use “Extract Landscape Source Data” (this may take a long while to load; be patient) and choose NHDPlus V2 Flowlines as the Landscape Layer and Basin as the study area.

Run the tool (this also takes quite a while).

Navigate to the Project panel and open the Geoprocessing History folder; this folder contains all information for each time you run a geoprocessing tool. If you open an item in this list, the geoprocessing tool will open up with the same parameter settings you used previously.

In the Geoprocessing History, hover over the Extract Landscape Source Data tool and when a window pops open, click on the pop out symbol.

Then click on the filename next to Output file to open the zip file that this tool wrote into temporary scratch space in your AppData folder.
Drag the Landscape.gdb folder in this zip file into your Exercise 4 folder. (Note that you can also go to this directory directly in your PC by typing the address directly into the top of the Windows Explorer, or viewing hidden folders and navigating there.)

In the ArcGIS Pro Project panel, navigate to Folders/Ex4_project and refresh the folder.
The new Landscape.gdb geodatabase should appear. Right-click and **Add to Project**, and you should see the Landscape.gdb database appear in your Databases section.

Drag NHDPlusV2 onto the map, then right-click on NHDPlusV2 and select **Export Features**.
Set the Output Location to **Ex4_project.gdb\Basemap** and Output Feature Class to **NHDPlusV2**, and run.

This serves to move the NHDPlusV2 features into our Basemap feature class (converting the projection to be *North_America_Albers_Equal_Area_Conic* consistent with the rest of our data).

Symbolize **NHDPlusV2** from **Ex4_project.gdb** using gage adjusted flow E (Q0001E) to give a flow map.

In the **Symbology** panel, click the back arrow and select Graduated Symbols and Q0001E for the field.
Turn off the NHDPlusv2 service. This is now a local set of NHDPlus streamlines for the Logan River Basin.
3. Main Stream Properties

Let's now identify the main stem of the Logan River and determine some of its properties. Open the Select By Attributes geoprocessing tool in the Map tab. Click and configure a query to select where GNIS_NAME is Equal to Logan River. Click Add and Run the geoprocessing tool.

The Logan River main stream should be selected.
Right click NHDPlusv layer and select Data → Export Features and save the selected features as LoganMain in the Logan.gdb\Basemap feature dataset.

This is a feature representing just the Logan River. Let’s examine its length. Open the attribute table of LoganMain. Note that there are multiple columns that give length. LENGTHKM is length in km from the NHD. shape_Length is the far right column and is the length evaluated by ArcGIS when the data was loaded into the geodatabase. All geodatabase features have geometry measures (e.g. length or area). The units of shape_Length are the units of the feature dataset coordinate system, which are meters in this case. You should note consistency between LENGTHKM and shape_Length once units are converted.

Right click on the column header Shape_Length of the far right column and select Summarize.
Add the fields LENGTHKM and shape_Length and the statistic type SUM. Make sure that the Case field is blank and run.

Note the values of Sum. These are the length of LoganMain (the Logan River main stream) from the two length fields. Note that they should be numerically close once the shape_Length is converted to km. They differ due to different approximations and coordinate systems being used here, and by NHDPlus.

Similarly, create a statistical summary of the NHDPlusV2 feature class to determine the total length of streams in the Logan River Basin.
Lastly, open the attribute table for Basin and look for the far right column **Shape_Area**. This is the Basin area in m². Calculate the **drainage density** for the Logan River as $(\text{Total Channel Length})/(\text{Basin Area})$.

You might have noticed that landscape1.arcgis.com also includes a dataset **USA_NHD_HighRes**. This is the high resolution stream layer from 1:24000 US topographic maps. Use a similar procedure to what was done above to add this to your map: use the Extract Landscape Source Data tool to extract this dataset (**NHD High Resolution – Flowlines**) just for the Logan Basin, and add it to the Ex4_project.gdb Basemap feature class (to get it into the same coordinate system). Note that the zip file produced by the Landscape Source Data tool uses the name Landscape.gdb for its geodatabase in both cases so you will need to rename this or put it in a different folder to work with it. Determine the total length of streams from NHD_HighRes and compute the drainage density for the Logan River Basin using NHD_HighRes flowlines.

Note that NHDPlus is derived from what is referred to as the medium resolution national hydrography dataset and is generally used for coarser scale work. NHD_HighRes is the most detailed data available and is used for very detailed work.

At this point you have extracted all the data you need locally and are ready to begin Hydrologic Terrain Analysis.

To turn in. **Prepare a layout showing the topography, Basin Outline, NHDPlusV2 streams, and Logan River Main stem stream for the Logan River Basin. Include a scale bar and North arrow and appropriate title, labeling and legend so that the map is self-describing.**

To turn in. **Report the main stream length, total stream length, basin area and drainage density for the Logan River Basin as determined from NHDPlus flowlines. Report the total stream length and drainage density for the Logan River Basin as determined from NHD_HighRes flowlines. Comment on the differences. For each drainage density calculate the average overland flow distance water originating on a hillslope has to travel before reaching a stream. [Hint: Refer to slide 9 from EnhancedTerrainAnalysis.pptx in lecture 10.] Comment on the differences.**
Hydrologic Terrain Analysis
This activity will guide you through the initial hydrologic terrain analysis steps of Fill Pits, calculate Flow Direction, and calculate Flow Accumulation (steps 1 to 3). The resulting flow accumulation raster then allows you to identify the contributing area at each grid cell in the domain, a very useful quantity fundamental to much hydrologic analysis. Next an outlet point will be used to define a watershed as all points upstream of the outlet (step 4). Focusing on this watershed streams will be defined using a flow accumulation threshold within this watershed (step 5). Hydrology functions will be used to define separate links (stream segments) and the catchments that drain to them (steps 6 and 7). Next the streams will be converted into a vector representation (step 8) and more Hydrology toolbox functionality used to evaluate stream order (step 9) and the subwatersheds draining directly to each of the eight stream gauges in the example dataset (step 10). The result is quite a comprehensive set of information about the hydrology of this watershed, all derived from the DEM.

1. Fill
This function fills the sinks in a grid. If cells with higher elevation surround a cell, the water is trapped in that cell and cannot flow. The Fill function modifies the elevation value to eliminate these problems.

Select Spatial Analyst Tools → Hydrology → Fill. Set the input surface raster as dem and output surface raster as fil in Ex4_project.gdb.

Press Run. Upon successful completion of the process, the “fil” layer is added to the map.

Let’s examine the impact of Fill on the DEM. Select Spatial Analyst Tools → Map Algebra → Raster Calculator and evaluate fil - dem.
Select Spatial Analyst Tools → Surface → Contour. Set the inputs as follows to determine 20 m contours of the original DEM, dem.

Symbolize the fil - dem and contour layers similar to:
Zoom in on the deepest Sink; you should see something similar to the image below.

This is Peter Sink. It is a real topographic feature, not an artifact, so it is a bit erroneous to fill it. Nevertheless for the sake of a complete watershed we fill it. The website http://twdef.usu.edu/Peter_Sinks/Sinks.html gives details on the record low temperatures that have been recorded here.
To turn in. A layout showing the deepest sink in the Logan River basin. Report the depth of the deepest sink as determined by fil-dem.

2. Flow Direction

This function computes the flow direction for a given grid. The values in the cells of the flow direction grid indicate the direction of the steepest descent from that cell.

Select Spatial Analyst Tools → Hydrology → Flow Direction.

Set the inputs as follows, with output "fdr" and "drp".

Press OK. Upon successful completion of the process, the flow direction grid "fdr" and percentage drop grid "drp" are added to the map.
To turn in: Make a screen capture of the attribute table of fdr and give an interpretation for the values in the Value field using a sketch.

3. **Flow Accumulation**

This function computes the flow accumulation grid that contains the accumulated number of cells upstream of a cell, for each cell in the input grid.

Select **Spatial Analyst Tools** → **Hydrology** → **Flow Accumulation**.

Set the inputs as follows...
Press Run.

Upon successful completion of the process, the flow accumulation grid “fac” is added to the map. This process may take several minutes for a large grid, so take a break while it runs!

Adjust the symbology of the Flow Accumulation layer "fac" to a classified scale with multiplicatively increasing breaks that you type in, to illustrate the increase of flow accumulation as one descends into the grid flow network. Use 8 classes and hit the “Classify” Button to enable you to select “Manual” method and to type in your class breaks into the window in the lower right hand corner.
After applying this layer symbology you may right click on the "fac" layer and **Save As Layer File**

The saved Layer File may be imported to retrieve the symbology definition and apply it to other data.
Pan and zoom to the outlet where the river leaves the watershed. Turn off unnecessary layers and arrange layer order so that you can see the Basin feature class on top of the fac layer. Use the identify tool to determine the value of "fac" at the point where the main stream exits the area defined by the Basin polygon. This location is indicated in the following figure.

The value obtained represents the drainage area in number of 30.92 x 30.92 m grid cells. Calculate the drainage area in km². Compare this drainage area to the drainage area reported by the USGS at the Logan River stream site (214 mi²) and to the area of the Basin feature class obtained from the online service watershed delineation.

To turn in: Report the drainage area of the Logan River basin in both number of 30.92 m grid cells and km² as estimated by flow accumulation. Report the area of the Logan River basin in km² as calculated by the arcgis.com watershed function. Report the area of the Logan River basin in km² as reported by the USGS for the Logan River stream site. Discuss reasons for any differences.

4. Stream Definition
Let's define streams based on a flow accumulation threshold within this watershed.

Select Spatial Analyst Tools → Map Algebra → Raster Calculator and enter the following expression, using the name Str for the output raster.
The result is a raster representing the streams delineated over our watershed.
This extends across the buffer area at the downstream end. To ensure that our streams are within the watershed we want let's clip this. Locate the Extract by Mask (Spatial Analyst) tool and set the inputs as follows:

The result is a stream raster entirely within the Logan River Basin.

5. **Stream Links**
This function creates a grid of stream links (or segments) that have a unique identification. Either a link may be a head link, or it may be defined as a link between two junctions. All the cells in a particular link have the same grid code that is specific to that link.
Select **Spatial Analyst Tools → Hydrology → Stream Link**. Set the inputs as follows and click OK.

The result is a grid with unique values for each stream segment or link. Symbolize **strlink** with unique values so you can see how each link has a separate value.

6. **Catchments**

The Watershed function provides the capability to delineate catchments upstream of discrete links in the stream network.

Select **Spatial Analyst Tools → Hydrology → Watershed**. Set the inputs as follows. Notice that the Input raster or feature pour point data is the strlink grid. This results in the identification of catchments draining to each stream link. Click OK.
The result is a catchment grid where the grid cells in the area draining directly to each link are assigned a unique value the same as the link it drains to. This allows a relational association between lines in the strlink grid and area’s in the catchment grid. Symbolize the catchment grid with unique values so you can see how each catchment has a separate value.
7. Conversion to Vector

Let's convert this raster representation of streams derived from the DEM to a vector representation.

Select Spatial Analyst Tools → Hydrology → Stream to Feature. Set the inputs as follows. Note that I named the output drainageline in the Ex4_project.gdb\BaseMap feature class.

![Stream to Feature tool](image)

Note here that we uncheck the Simplify polylines option. The simplification can cause streams to "cut corners" that can result in errors.

The result is a linear feature class "drainageline" that has a unique identifier associated with each link.

Select Conversion Tools → From Raster → Raster to Polygon. Set the inputs as follows again avoiding simplification of polygons

![Raster to Polygon tool](image)

The result is a Polygon Feature Class of the catchments draining to each link.

Due to the geometry of grid cells in catchment, you may get multiple polygons for a single catchment grid code value. Locate the Dissolve (Data Management) tool (in the geoprocessing toolbox) and set the following inputs.
This merges all polygons with the same gridcode value and results in a one to one association between DrainageLine features and CatchPolyDissolve features.

The feature classes drainageline and catchpolydissolve represent the connectivity of flow in this watershed in vector form and will be used later for Network Analysis, enabled by having this data in vector form.
To turn in: Describe (with simple illustrations) the relationship between strlink, drainageline, catchment and catchpoly attribute and grid values. What is the unique identifier in each that allows them to be relationally associated?

To turn in. Prepare a layout showing the stream network and catchments delineated directly from the DEM.

To turn in. Report the total stream length, basin area and drainage density for the Logan River Basin as determined from the DEM delineated streams. Comment on the differences between this drainage density and the NHD/NHDPlus drainage densities.

OK. You are done!
Summary of Items to turn in.

1. Report the main stream length, total stream length, basin area and drainage density for the Logan River Basin as determined from NHDPlus flowlines. Report the total stream length and drainage density for the Logan River Basin as determined from NHD_HighRes flowlines. Comment on the differences. For each drainage density calculate the average overland flow distance water originating on a hillslope has to travel before reaching a stream. [Hint: Refer to slide 24 from TauDemWatershedDelineation.pptx in lecture 10.] Comment on the differences.

2. Prepare a layout showing the topography, Basin Outline, NHDPlus v streams and Logan River Main stem stream for the Logan River Basin. Include a scale bar and North arrow and appropriate title, labeling and legend so that the map is self-describing.

3. The number of columns and rows, grid cell size, minimum and maximum elevation values in the Logan DEM.

4. A layout showing the deepest sink in the Logan River basin. Report the depth of the deepest sink as determined by fi-l-dem.

5. Make a screen capture of the attribute table of fdr and give an interpretation for the values in the Value field using a sketch.

6. Report the drainage area of the Logan River basin in both number of 30.92 m grid cells and km² as estimated by flow accumulation. Report the area of the Logan River basin in km² as calculated by the arcgis.com watershed function. Report the area of the Logan River basin in km² as reported by the USGS for the Logan River stream site. Discuss reasons for any differences.

7. Describe (with simple illustrations) the relationship between StrLnk, DrainageLine, Catchment and CatchPoly attribute and grid values. What is the unique identifier in each that allows them to be relationally associated?

8. Prepare a layout showing the stream network and catchments delineated directly from the DEM.

9. Report the total stream length, basin area and drainage density for the Logan River Basin as determined from the DEM delineated streams. Comment on the differences between this drainage density and the NHD/NHDPlus drainage densities.