Name: \qquad
GIS in Water Resources Midterm Exam
Fall 2010
There are 3 questions on this exam. Please do all 3.

1. Basic Concepts and Geodesy

(a) Provide an example for each GIS data type that was used in our exercises. Give the name of a standard GIS data set or data source that provides information using this data type.

- Raster
- Polygon
- Polyline
- Point
- Geometric network
- Imagery

The remaining parts of this question refer to the specification below that shows the parameters of the State Plane coordinate system for Nebraska.

Name: \quad NAD_1983_StatePlane_Nebraska_FIPS_2600_Feet
Details:
Projection: Lambert_Conformal_Conic
False_Easting: 1640416.666667
False_Northing: 0.000000
Central_Meridian: -100.000000
Standard_Parallel_1: 40.000000
Standard_Parallel_2: 43.000000
Latitude_Of_Origin: 39.833333
Linear Unit: Foot_US (0.304801)
Geographic Coordinate System: GCS_North_American_1983
Angular Unit: Degree (0.017453292519943295)
Prime Meridian: Greenwich (0.000000000000000000)
Datum: D_North_American_1983
Spheroid: GRS_1980

(b) What map projection and earth datum is used in this coordinate system?

Projection:

Earth Datum:

(c) Sketch on the diagram below the locations of the Standard Parallels, the Central Meridian and the Latitude of Origin. What is the significance of the standard parallels? Put a large dot at the location of the origin of this coordinate system and label it with its (latitude, longitude coordinates)

(d) The map below shows same map of Nebraska redrawn in its state plane coordinate system. Redraw the dot in this map that you drew in Part (c) and label it with its Easting and Northing coordinates. Draw the Easting-Northing, or X-Y, axes of this coordinate system. Label the (0,0) point.

(e) The National Elevation Dataset has grid cells that are 1" x 1" in size. Suppose that this grid is projected into the Nebraska State Plane coordinate system. If a DEM cell is located at Lincoln, NE, whose lat-long coordinates in decimal degrees are (40.8144, -96.7078), determine the surface area $\left(\mathbf{f t}^{2}\right)$ of the earth (square feet) that a 1 " x 1 " cell would cover. Assume that the radius of the earth is $20,925,392$ feet. What would be the cell size (ft) of an equivalent square DEM cell that covers the same area?

2. Hydrology and Digital Elevation Models

Following is a grid of elevations in a 100 m digital elevation model.

44	46	51	57	58
45	45	52	50	55
46	47	56	48	58
52	54	55	56	54
51	53	52	54	53

a) On the above grid, for the cells within the boldface highlighted box, determine which grid cells are pits and indicate the elevation to which they need to be raised to fill them.
b) For the inner block of 3×3 grid cells indicated by the bold box determine the D8 flow direction and indicate this using an arrow on the diagram below.

Calculate the D8 slope for each cell within the bold box and label it by its flow direction arrow. Circle the cell with the highest slope.
d) Calculate the flow accumulation for all grid cells in the inner 3×3 block indicated by the bold box. Write your answers (reported in terms of the number of grid cells flowing into each grid cell) in the diagram below. In this calculation do not consider inflow from any cells outside the boldface box.

Circle the cells whose flow accumulation values reported above are uncertain due to the possibility of being impacted by flow from outside the boldface box.

3. Stream Networks

The image below shows a stream network and catchments delineated from a digital elevation model. Each edge in the stream network has been labeled with the grid_code. Also shown are attribute tables for the stream and catchment feature classes. Map units are meters.

Stream attribute table

| Stream |
| :--- | ---: | :--- | ---: | ---: | ---: | ---: |
| OBJECTID * Shape * grid_code from_node
 to_node Shape_Length
 1 Polyline 241 239
 2 Polyline 236 236 247
 3 Polyline 250 209.558441
 4 Polyline 258 2609.92424
 5 Polyline 260 263
 26396.761902 |

Catchment attribute table

Catchment				\times	
	OBJECTID *	Shape *	grid_code	Shape_Length	Shape_Area
-	1	Polygon	236	19860	9269999.9999
	2	Polygon	241	13560	5024700.0000
	3	Polygon	250	19380	7711200
	4	Polygon	258	24360	14699700.000
	5	Polygon	263	20160	11446199.999

Note. In the data presented above from ArcGIS data is displayed with many significant figures. In the calculations you are asked for below you do not need to retain more than 3 significant figures of precision.

An edge flag has been placed on edge 250 as indicated.
a) Indicate (with arrows on the diagram above) the direction of flow along each stream edge
b) List below the grid_code attribute of the edges that would be selected by a Trace Upstream operation and calculate the total drainage area $\left(\mathbf{m}^{2}\right)$ of the network so selected. Remember that a trace operation always includes the edge on which the edge flag is located.
c) List below the grid_code attribute edges that would be selected by a Trace Downstream operation and calculate the total length (m) of the flow path selected
d) Assume a mean annual rainfall of $30 \mathrm{in} / \mathrm{yr}$ over these watersheds and a runoff coefficient of 0.15 , calculate the mean annual flow rate ($\mathbf{f t}^{3} / \mathbf{s}$) at the downstream end of edge 250 . Note that $1 \mathrm{~m}^{2}=10.763 \mathrm{ft}^{2}$.

