\qquad
GIS in Water Resources Midterm Exam
Fall 2009
There are 4 questions on this exam. Please do all 4.

1. Basic Concepts

i) The NHDPlus contains the synthesis of three large national geospatial datasets. What are they?
ii) Explain the difference between a geodatabase and a feature dataset.
iii) If you were drawing the following features in ArcMap, which type of data type would you most likely use? (A) Vector, (B) Raster, (C) Triangulated Irregular Network, and (D) vector and time series graph (E) NetCDF file. Also indicate the data source (i.e. organization) that provides datasets for each of these information types.
a. stream \qquad
b. well \qquad
c. stream gauging station \qquad
d. rainfall \qquad
e. landuse \qquad
f. elevation \qquad
iv) A set of points and lines are used to form a geometric network. Explain how the network has additional information beyond what the points and lines possessed by themselves.

2. Digital Elevation Models and Projections

a) Two SRTM 3' DEMs have been downloaded from the seamless data server (http://seamless.usgs.gov), one from Northern Canada and the other from Central America. In ArcCatalog the spatial metadata reports the following information

Grid A

Description \mid Spatial \mid Attributes
Horizontal coordinate system
Geographic coordinate system name: GCS_WGS_1984
Details
Geographic Coordinate System
Latitude Resolution: 0.000000
Longitude Resolution: 0.000000
Geographic Coordinate Units: Decimal degrees
Planar Coordinate Information
Coordinate Encoding Method: row and column
Coordinate Representation
Abscissa Resolution: 0.000833
Ordinate Resolution: 0.000833
Geodetic Model
Horizontal Datum Name: D_WGS_1984
Ellipsoid Name: WGS_1984
Semi-major Axis: 6378137.000000
Denominator of Flattening Ratio: 298.257224

Bounding coordinates Horizontal

In decimal degrees
West: -72.772917
East: -72.364583
North: - 0.128750
South: - 0.740417
In projected or local coordinates
Left: -72.772917
Right: -72.364583
Top: -0.128750
Bottom: - 0.740417

Spatial data description Raster dataset information

Raster format: GRID SDTS raster type: Grid Cell
Number of raster bands: 1
Raster properties
Cell information
Number of cells on x-axis: 490
Number of cells on y-axis: 734
Number of cells on z-axis: 1
Number of bits per cell: 32
Cell Size
X distance: 0.000833
Y distance: 0.000833

Grid B

Bounding coordinates Horizontal

In decimal degrees
West: -73.587917
East: -73.077917
North: 58.932083
South: 58.422083
In projected or local coordinates
Left: -73.587917
Right: -73.077917
Top: 58.932083
Bottom: 58.422083

Spatial data description Raster dataset information Raster format: GRID SDTS raster type: Grid Cell Number of raster bands: 1 Raster properties Cell information

Number of cells on x-axis: 612
Number of cells on y-axis: 612
Number of cells on z-axis: 1
Number of bits per cell: 32
Cell Size
X distance: 0.000833
Y distance: 0.000833
b) For Grid B shown on the previous page, determine the lengths of its outer edges ab, bc, cd, and ad, in km, assuming that the radius of the earth is 6371 km .

Distance ab

Distance bc

Distance cd

Distance ad

c) Determine the surface area of the earth covered by this grid in km^{2}.

3. Hydrology and Digital Elevation Models

Following is a grid of elevations in a 30 m digital elevation model.

29	31	34	58	37
41	28	35	A_{39}	42
36	34	37	36	43
58	33	32	50	55
52	50	45	50	53

a) On the above grid, determine which grid cells are pits and indicate the elevation to which they need to be raised to fill them.
b) For the grid cell labeled A determine the slope and flow direction using the 8 direction pour point model
c) Given the following flow direction grid for a 30 m DEM calculate the contributing area and demarcate the watershed draining to grid cell B.

d) Given the same 30 m resolution flow direction grid as above and the 75 m resolution precipitation grid shown below, with precipitation values in cm, compute the volume of runoff in \underline{m}^{3} from grid cell B and its contributing grid cells assuming a runoff ratio of 0.3. The top left corners of these grids align. State any assumptions.

4. Precipitation in Space and Time

41	42	43	44
31			34
21			24
11	12	13	14

$T=1$

91			94
61			64

$\mathrm{T}=2$

51			54
21			24

$T=3$

Zone A

The grids shown above are for precipitation over a region in mm and the time steps are in hours. The spatial gradient of the precipitation in the x - y plane is linear in the x-direction and in the y direction in all three grids. The box highlighted over the 4 cells in the center of each grid is a study area, Zone A.
(a) Determine the precipitation in the cells having missing values in each of the three grids. Fill the values in the cell grid shown above.
(b) Determine the average precipitation (mm) in Zone A for $\mathrm{T}=1, \mathrm{~T}=2, \mathrm{~T}=3$ and plot a graph of this precipitation as a function of time.
(c) Determine the total precipitation (mm) in Zone A over the three hours of this storm.

