Name:_____

GIS in Water Resources Midterm Quiz

Fall 2005

There are 5 questions on this exam. Please do all 5.

1. [25 points] Data representation

(a) Consider the following geographic features relevant to water resources. Briefly explain, illustrating your explanation with sketches, how each could be represented using either **a vector and a raster data** representation, or as a **vector and time series graph** representation. For each attribute indicate which representation (raster or vector) is preferable?

(i) River

(ii) Lake

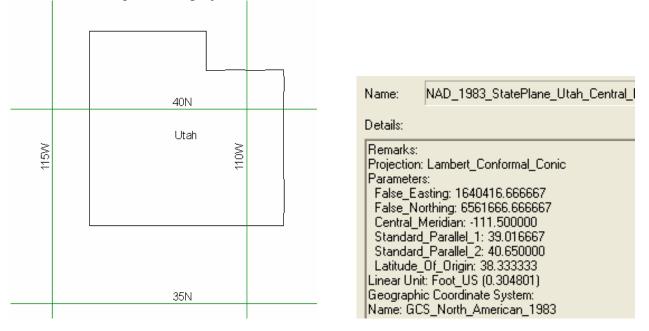
(iii) Stream gage

(iv) Topographic elevation

(v) Streamflow

(vi) Rainfall.

(b). The National Elevation Dataset (NED) provides nationwide digital elevation model coverage in geographic coordinates at 1 arc second resolution. You are working at a location with latitude 41 degrees north and longitude 111 degrees west. You need to perform some calculations from a NED digital elevation model and need to know the cell size on the earth's surface. Calculate the size of each NED grid cell assuming a spherical earth with radius 6370 km. To completely quantify size you need to report the following:

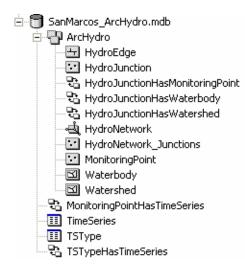

(i) N-S grid cell length (in meters)

(ii) E-W grid cell width (in meters)

(iii) Grid cell area (in square meters)

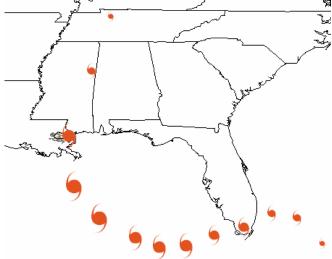
2. [20 points] Geodesy

(a) The map below shows Utah and the display parameters of the State Plane coordinate system for the Utah Central Zone. Sketch on the map the standard parallels, the central meridian and the latitude of origin of this projection.



(b) For this projection, the coordinates of the origin $(\phi_0, \lambda_0) =$

and the corresponding $(X_o, Y_o) =$


- (c) What earth datum is used in this coordinate system?
- (d) What map projection is used in this coordinate system?

(e) The image below shows the Arc Hydro geodatabase that you created for the San Marcos basin. In the space to the right, briefly describe each row in this geodatabase description

3. [15 points] Hurricane Katrina

The map and attribute table below show the path of hurricane Katrina.

Day_	Latitude	Longitude	WindMPH	CenterMB	Direction	SpeedMPH
Wed Aug 24 10AM	24.7	-76.7	40	1006	NNW	8
Wed Aug 24 10PM	26	-78	50	1001	W	8
Thur Aug 25 10AM	26.2	-79.3	60	997	W	6
Thur Aug 25 10PM	25.5	-80.7	75	984	SW	8
Fri Aug 26 10AM	25.1	-82.2	80	981	W	7
Fri Aug 26 10PM	24.6	-83.6	105	965	WSW	8
Sat Aug 27 10AM	24.5	-85	115	940	W	7
Sat Aug 27 10PM	25	-86.2	115	939	WNW	7
Sun Aug 28 10AM	26	-88.1	175	907	WNW	12
Sun Aug 28 10PM	27.6	-89.4	160	904	NNW	10
Mon Aug 29 10AM	30.2	-89.6	125	927	N	16
Mon Aug 29 10PM	33.5	-88.5	60	973	NNE	22
Tues Aug 30 10AM	36.3	-87.5	35	985	NNE	21

(1) Mark on the map and in the attribute table the period for which Katrina was a Category 3 hurricane or higher (Wind > 110 mph).

(2) For what period of time (in hours) was Katrina a category 3 hurricane or higher?

(3) Approximately how far (in miles) did hurricane Katrina travel in this condition?

4. [20 points] Terrain Analysis

The grid below shows a mesh of terrain elevations

67	56	49
53	44	37
58	55	22

(1) Determine the flow direction in each cell and label it using the ESRI 8-direction pour point method (1, 2, 4, 8, 16, 32, 64, 128)

(2) Draw the flow network showing lines from the center of each cell to the center of the cell to which it flows.

•	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	\bigcirc

(3) Label each cell in the grid above with its flow accumulation (number of upstream cells).

5. [20 points] Spatial Analysis of Inundation

The grid below is a rough approximation of the ground elevations in an area exposed to flooding from failure of a dyke separating a lake from a city, such as occurred recently in New Orleans. Elevations are given in meters above sea level. The grid size is 100 m. The lake is mapped as being at sea level (elevation 0 m). Suppose the enclosed area is flooded due to the lake level increasing to an elevation of 3 m and overtopping the protective dyke.

0	0	0	0	0	0	0
4	3	3	3	0	0	0
3	3	2	3	3	0	0
3	2	2	2	3	3	3
3	2	1	-1	2	3	4
3	3	1	0	3	3	4
4	4	3	3	3	4	4
5	4	5	4	5	5	5

(a) Based on the elevations and information given, **identify on the grid above** (i) the lake, (ii) the dyke at 3m elevation, and (iii) the outline of the depressed region protected by the dyke.

(b) Assume that the 3 m dyke is overtopped and that water at 3 m above sea level floods the depressed region. Answer the following questions:

(i) What is the **maximum depth** of flooding in the depressed region (meters)

(ii) What is the **average depth** of flooding in the depressed region (meters)

(iii) What is the **area** of the depressed region that is flooded (m^2)

(iv) What is the **volume** of floodwater within the depressed region. (m^3)