1. Carefully read Loucks et al. 1981 Chapter 6 sections 6.7 and 6.8 that deal with multi site streamflow models. Write a 1 page abstract summary of these sections. I am looking for you to summarize the key ideas, methods and tests involved in generalizing the single site streamflow modeling methodology to multiple sites.

6.2. Part of New York City's municipal water supply is drawn from three parallel reservoirs in the upper Delaware River basin. The covariance matrix and lag-1 covariance matrix, as defined in equation 6.55, were estimated based on the 50-year flow record to be (in m³/s):

\[S = \begin{bmatrix}
21.436 & 25.141 & 9.798 \\
6.618 & 9.798 & 2.553
\end{bmatrix} \]

\[S_1 = \begin{bmatrix}
6.487 & 6.818 & 1.543 \\
7.500 & 7.625 & 1.815 \\
2.593 & 2.804 & 0.6753
\end{bmatrix} \]

Other statistics of the annual flows are:

<table>
<thead>
<tr>
<th>Site</th>
<th>Reservoir</th>
<th>Mean Flow</th>
<th>Standard Deviation</th>
<th>r_{ij}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Penrose</td>
<td>20.05</td>
<td>4.472</td>
<td>0.3243</td>
</tr>
<tr>
<td>2</td>
<td>Canarsville</td>
<td>23.19</td>
<td>5.014</td>
<td>0.1033</td>
</tr>
<tr>
<td>3</td>
<td>New York</td>
<td>7.12</td>
<td>1.333</td>
<td>0.2693</td>
</tr>
</tbody>
</table>

(a) Using these data, determine the values of the A and B matrices of the lag 1 model defined by equation 6.54. Assume that the flows are adequately modeled by a normal distribution. A lower triangular B matrix that satisfies \(M = BB' \) may be found by equating the elements of \(BB' \) to those of \(M \) as follows:

\[M_{ij} = b_{ij} \rightarrow b_{11} = \sqrt{M_{11}} \]

\[M_{ij} = b_{ij}b_{12} \rightarrow b_{21} = \frac{M_{12}}{b_{11}} = \frac{M_{12}}{\sqrt{M_{11}}} \]

\[M_{ij} = b_{ij}b_{13} \rightarrow b_{31} = \frac{M_{13}}{b_{11}} = \frac{M_{13}}{\sqrt{M_{11}}} \]

\[M_{ii} = b_{11} + b_{12}b_{22} \rightarrow b_{11} = \sqrt{M_{11}} - b_{12}b_{22} = \sqrt{M_{11} - M_{12}b_{22}} \]

and so forth for \(M_{ij} \) and \(M_{ij} \). Note that \(b_{ii} \) for \(i < j \) and \(M \) must be symmetric because \(BB' \) is necessarily symmetric.

(b) Determine A and BB' for the Markov model which would preserve the variances and cross covariances of the flows at all sites at the same time and the lag 1 autocovariance of flows at each site, but not necessarily the lag 1 cross covariance of flows. Calculate the lag-1 cross covariances of flows generated with your calculated A matrix.

(c) Assume that some model has been built to generate the total annual flow into the three reservoirs. Construct and calculate the parameters of a disaggregation model that, given the total annual inflow to all three reservoirs, will generate annual inflows into each of the reservoirs preserving the variance and cross covariances of the flows. [Hint: The necessary statistics of the total flows can be calculated from those of the individual flows.]

6.6 (a) Assume that one wanted to preserve the covariance matrices S_x and S_y of the flows at several sites Z_j by using the multivariate vector ARMA(0, 1) model

$$Z_{t+1} = AV_t - BV_{t-1},$$

where V_t contains n independent standard normal random variables. What is the relationship between the values of S_x and S_y and the matrices A and B?

(b) Derive estimates of the matrices A, B, and C of the multivariate ARMA model

$$Z_{t+1} = A Z_t + B W_{t-1} + C V_t,$$

using the covariance matrices S_x, S_y, and S_z.