CEE6400 Physical Hydrology

Infiltration example problem

Consider a soil of given type (e.g. **silty clay loam**) and given an input rainfall hyetograph, calculate the infiltration and the runoff. Initial soil moisture content 0.3. Rainfall rate 2 cm/hr, for 3 hours.

This is an event based calculation of runoff

Solution outline

1. Determine soil properties from texture (Table 1 p 4:18)

These are the parameters of the problem (time invariant quantities that describe behavior in a particular situation).

Ksat	
n	
Ψa	
b	

2. System state described by initial condition and the depth of water that has infiltrated up to any point in time

 $\theta_0 = 0.3$ F = 0 cm at t=0 cm (will change during course of the event)

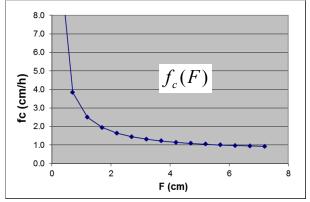
3. Establish Infiltrability – Depth approximation. In Green-Ampt approach this is based on hydraulic gradient over the depth of penetration of wetting front, Darcy's equation and suction in advance of a wetting front (Infiltration18.pptx, slide 13)

$$f_c = K_{sat} \left(1 + \frac{|\Psi_f| \Delta \theta}{F} \right) = K_{sat} \left(1 + \frac{P}{F} \right)$$

$ \psi_f = \frac{2b+3}{2b+6} \psi_a \text{equation } 44$	
$\Delta \theta = n - \theta_0$	
Р	

F cm		
f _c cm/h		

fc(F) relationship serves as foundation for calculations that follow



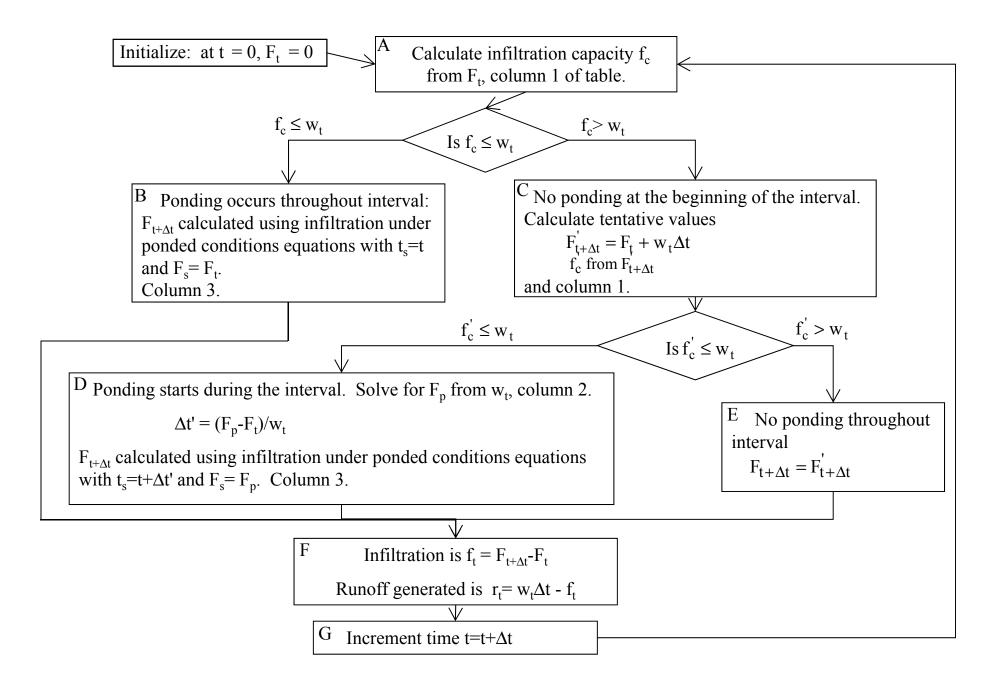
4. Ponding (saturation at the surface) first occurs when f_c=W (water input rate or rainfall rate) This idea lets you solve for the depth of water that has to infiltrate before ponding occurs, F_p, and the time to ponding t_p for a particular input rate W.

F _p cm	
t _p h	

5. After ponding the rate of increase in F (remember, this is a state variable describing the state of the system) is limited by the infiltration capacity

$$\frac{dF}{dt} = f_c(F) = K_{sat} \left(1 + \frac{P}{F} \right)$$

Solving this gives an equation relating F and t for ponded conditions



Equations for variable surface water input intensity infiltration calculation.

	Infiltration capacity	Cumulative infiltration at ponding	Cumulative infiltration under ponded conditions
Green-Ampt	$f_c = K_{sat} \left(1 + \frac{P}{F} \right)$	$F_{p} = \frac{K_{sat}P}{(w - K_{sat})}$	$t - t_{s} = \frac{F - F_{s}}{K_{sat}} + \frac{P}{K_{sat}} ln\left(\frac{F_{s} + P}{F + P}\right)$
Parameters K _{sat} and P		$w > K_{sat}$	Solve implicitly for F
Horton	$F = \frac{f_o - f_c}{k} - \frac{f_1}{k} ln \left(\frac{f_c - f_1}{f_o - f_1}\right)$	$F_p = \frac{f_o - w}{k} - \frac{f_1}{k} ln \left(\frac{w - f_1}{f_o - f_1}\right)$	Solve first for time offset t_0 in $F_S = f_1(t_S - t_0) + \frac{(f_0 - f_1)}{k} (1 - e^{-k(t_S - t_0)})$
Parameters k, f ₀ , f ₁ .	Solve implicitly for f _c given F	$f_c \le w \le f_o$	then
			F = f ₁ (t-t ₀) + $\frac{(f_0 - f_1)}{k}(1 - e^{-k(t-t_0)})$
Philip	$f_{c}(F) = K_{p} + \frac{K_{p}S_{p}}{\sqrt{S_{p}^{2} + 4K_{p}F} - S_{p}}$	$F_{p} = \frac{S_{p}^{2}(w - K_{p}/2)}{2(w - K_{p})^{2}}$	Solve first for time offset to in $t_{0} = t_{s} - \frac{1}{4K_{p}^{2}} \left(\sqrt{S_{p}^{2} + 4K_{p}F_{s}} - S_{p} \right)^{2}$
Parameters K_p and S_p		$W > K_p$	$4K_p^2 \left(\sqrt{5p + 11pr_s + 5p} \right)$
			then
			$F = S_p(t - t_0)^{1/2} + K_p(t - t_0)$