CEE6110 Probabilistic and Statistical Methods in Engineering

Homework 5.  Probability Distributions
Fall 2006, Solution

1.  KR 4.3.

Let p denote the probability that the flood raises above the high-level mark each year.  Then the probability the flow is less than the high-level mark in any given year is 1-p.  
On the assumption that flood magnitudes each year are independent the probability of n (=25) years with flood less than the high-leverl mark is = (1-p)n = (1-p)25.  
And, the probability of the flood raising above the high level mark once (x=1) in 25 years 

= n. px(1-p)n-x =25. p1(1-p)25-1 
It is given that,

Pn =0.1=1-[(1-p)n + n. px(1-p)n-1]

i.e (1-p)25 + 25. p1(1-p)24 = 0.9

Solving for p implicitly using Excel solver, we get p = 0.0215
The return period, T= 1/p = 1/00215 = 46.6 ~47 days.

2.  KR 4.3

Here, p =1/100 =0.01 is the probability that the design flood is exceeded and (1-p)= (1-0.01) =0.99 is the probability that the flood is not exceeded in any given year.

a) The probability that the flood does not exceed the design flood during a 100 year period 
= (1-p)n = 0.99100 = 0.0366
b) Let A be the event that flood exceeds the design flood in the any given year and B be the event that the flood is not exceeded in ten years.
Probability of A = P(A) = 1/100 = 0.01

Probability of B = P(B) = (1-p)n = (1-0.01)10 = 0.9044
The probability that the flood is not exceeded in the first ten years and is exceeded in the eleventh

= P(AB)

=P(A).P(B)  [flood magnitudes each year are independent]

=0.001*0.9044 = 0.00904
3.  KR 4.20

Following are the flows specified in the problem
q=[2.78 2.47 1.64 3.91 1.95 1.61 2.72 3.48 0.85 2.29 1.72 2.41 1.84 2.52 4.45 1.93 5.32 2.55 1.36 1.47 1.02 1.73];
%Use the built in matlab function to fit parameters
parms=wblfit(q)
lambda=parms(1);

betap=parms(2);  
parms =

    2.6774    2.3287  
Alternatively we can use the procedure in the text, page 215.  Equation 4.2.17c gives.
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mu=mean(q)

sd=std(q)

V=sd/mu

1/(1+V^2)  

mu =

    2.3645

sd =

    1.1031

V =

    0.4665

ans =

    0.8213  

Interpolating in Table C.6 I get for 1/(1+V2)=0.8213
k=0.479
gamma(1+k)^2/gamma(1+2*k)  % This expression evaluated to check the table
betap2=1/k

lambda2=mu/gamma(1+1/betap2)  % Equation 4.2.17a  
k =

    0.4790

ans =

    0.7981

betap2 =

    2.0877

lambda2 =

    2.6696  
We see that ans above is not equal to 0.821 indicating that there is an error in KR table C.6.  The estimate using parameters betap2 and lambda2 is as a consequence incorrect, but retained to illustrate the method.
Plot histograms to verify fit
bin=0.5;

x=0:bin:6;

xh=x+.25;

[n]=histc(q,x);

bar(xh,n/length(q)/bin,1,'w')   % Density
x2=0:0.1:7;

pdf=betap/lambda .*(x2 ./lambda).^(betap-1).*exp(-((x2 ./lambda).^betap));

line(x2,pdf,'color','red')
pdf2=wblpdf(x2,lambda2,betap2);

line(x2,pdf2)  
The red line is the matlab likelihood fit.  The blue is the method of moments fit using the KR page 215 procedure.   Note that it is equivalent to use the wblpdf function or evaluate the Weibull density function formula explicitly.  
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Check the moments
pmean=lambda*gamma(1+1/betap)
pmean2=lambda2*gamma(1+1/betap2)

mean(q)  
pmean =

    2.3723

pmean2 =

    2.3645

ans =

    2.3645  
pvar=lambda^2*(gamma(1+2/betap)-(gamma(1+1/betap))^2)
pvar2=lambda2^2*(gamma(1+2/betap2)-(gamma(1+1/betap2))^2)
var(q)  
pvar =

    1.1702

pvar2 =

    1.4143

ans =

    1.2168  
The maximum likelihood comparisons are close, but not perfect as expected from a maximum likelihood fit.  The method of moments mean is reproduced, but not the variance due to the error from table C.6.  

The CDF is given by wblcdf

F2=wblcdf(2,lambda,betap)  
F2 =

    0.3977  

Check using the formula
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F2=1-exp(-(2/lambda)^betap)  
F2 =

    0.3977  

This is Pr[Q < 2 m3/s] in any one year.  1-F2 gives the probability of flow greater than 2 m3/s in any 1 year.  1-(1-F2)2 gives the probability of flow less than 2 m3/s over (some time in) a two year period.

1-(1-F2)^2  
ans =

    0.6372  
Alternate interpretation.  The probability that the minimum flow is less than 2 m3/s in both the two years is.  
F2^2  
ans =

    0.1582  
(The second interpretation appears to be the interpretation taken by Kottegoda, although I think the first is more meaningful.  Both are correct as long as you state precisely how the event you are calculating the probability for is defined.)
4. KR 4.25

Let Y=6 month rainfall = 
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Y is normally distributed with mean and variance as follows
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Standard normal variate corresponding to 220 mm is
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   z=(220-120)/sqrt(72)  
z =

   11.7851  
1-FY(y) gives the probability that y is exceeded.
1-normcdf(z)  
ans =

     0  

The probability of 220 mm rain in 6 months is essentially 0.

Probability of less than 18 mm in any one month is p=normcdf(18,20,sqrt(12))  
p =

    0.2819  
The probability of this occurring in each month for a period of 6 months is p^6  
ans =

  5.0133e-004  

5.  KR 4.27.

a)  The flows at R are given by R=X+Y-Z

Since X, Y and Z are independent Normal Random variables


[image: image9.wmf]Z

Y

X

R

-

+

=

 = 300+150-100 = 350 * 1000 m3

[image: image10.wmf]2

z

2

y

2

x

2

R

s

+

s

+

s

=

s

=50+75+25 = 150 * 10002 m6
Note that I am interpreting the notation N((,(2) as giving the mean and the variance.  One could also interpret the notation as N((,(), the mean and std deviation which would give different results.  The question is not clear on this so both answers are acceptable.

The distribution of R is N(350, 150).

b) Pr[R>300]

1-normcdf(300,350,sqrt(150))  
ans =

    1.0000  
Note that because the standard deviation sqrt(150)=12.2 is 4 times smaller than the difference 350-300, there is practically a probability 1 that flow is greater than this threshold.

c)  Assume that the 15% reduction applies to both the mean and standard deviation, i.e. X~N(255,6.012), Y~N(127.5,7.362).  Then 
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The new distribution of R is N(282.5, 115.28)
Pr(R>300)

1-normcdf(300,282.5,sqrt(115.28))  
ans =

    0.0516  
It would also be acceptable to make other assumptions about how the variance changes, since the question is not precise on this, or to interpret the numbers given for variance as std deviation.

6.  KR4.28

q=[3.06 1.52 16.6 2.78 1.15 13.39 2.74 6.16 1.21 5.9 4.06 2.66 11.29 8.46 7.04 12.51 10.91 16.09 3.46 4.28 6.92 11.35 6.95 3.23 18.7 3.75 1.25 2.06 3.83 18.02 14.41];
There are three approaches to solving this.  

A. Match the moments of a normal distribution to the moments of the log of the data

B. Match the moments of a lognormal distribution to the moments of the data

C. Use Likelihood as implemented by the matlab lognfit function
These approaches should in principle be similar if the lognormal is a good distribution to fit.

Using approach A.

logq=log(q);

qlbar=mean(logq)
qlstd=std(logq)  
qlbar =

    1.6693

qlstd =

    0.8529  

Normal variates corresponding to the 2 m3/s and 15 m3/s thresholds.

z2= (log(2)-qlbar)/qlstd

z15=(log(15)-qlbar)/qlstd  

z2 =

   -1.1444

z15 =

    1.2178  

Probability of being within this range is F(z15)-F(z2)

normcdf(z15)-normcdf(z2)  

ans =

    0.7621  
Using approach B, following Kottegoda and Rosso page 226.
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  The variance of the log distribution in terms of the coefficient of variation
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V=std(q)/mean(q)

sigy=sqrt(log(V^2+1))
muy=log(mean(q)*exp(-0.5*sigy^2))
muy=log(mean(q)/sqrt(V^2+1))  
V =

    0.7532

sigy =

    0.6703

muy =

    1.7607

muy =

    1.7607  
Probability of being within the specified range is F(z15)-F(z2)
logncdf(15,muy,sigy)-logncdf(2,muy,sigy)  
ans =

    0.8656  
normcdf((log(15)-muy)/sigy)-normcdf((log(2)-muy)/sigy)  
ans =

    0.8656  
C.  Using Likelihood (Matlab built in function)

lnparm=lognfit(q)  
lnparm =

    1.6693    0.8529  
These are maximum likelihood estimates of (y and (y.

Probability of being within the specified range is F(z15)-F(z2)
logncdf(15,lnparm(1),lnparm(2))-logncdf(2,lnparm(1),lnparm(2))  
ans =

    0.7621  
It is curious that the results from A and C are identical.  Let's plot the distributions from each.

%  Histogram

bin=2;   % This sets the bin size for the histogram to be plotted

x=0:bin:22;

xh=x+bin/2;

n=length(q);
nq=hist(q,x);

bar(xh,nq/(n*bin),1,'w')  

x=0:(bin/5):22;  % a denser set of points for plotting

pdfa=lognpdf(x,qlbar,qlstd);
line(x,pdfa)

pdfb=lognpdf(x,muy,sigy);

line(x,pdfb,'color','red')

pdfc=lognpdf(x,lnparm(1),lnparm(2));

line(x,pdfc,'color','green')

legend('Histogram','A – moments of logs','B – moments of data','C - Likelihood') 
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Of the moments approaches, the moments of the data, approach B is preferable because it is better to fit to the data than a transform of it, but curiously the matlab likelihood approach (C) is giving exactly the same answers as fitting to moments of the logs, and in principle likelihood is a theoretically better approach.
7.  Bear rainfall distribution fitting for June (my birthday month)

tt=textread('Bear_datasets_month.txt','','headerlines',6);
q=tt(find(tt(:,2)==6),4);  % This finds the contents of column 4, precipitation, when the contents of column 2, month are 6 (June).
bin=10;   % This sets the bin size for the histogram to be plotted
x=0:bin:120;

xh=x+bin/2;

[n]=histc(q,x);

bar(xh,n/length(q)/bin,1,'w')   % Density
xlabel('mm')

title('June Precipitation')
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The built in matlab functions **fit **pdf are used to fit each of the distributions, obtain parameters, and add a line to the histogram density estimate.

x2=0:130;

% Exponential distribution

mu=expfit(q)

line(x2,exppdf(x2,mu),'color','red')
% Gamma distribution

pgam=gamfit(q)

line(x2,gampdf(x2,pgam(1),pgam(2)),'color','green')  
% Weibull distribution
pwbl=wblfit(q)

line(x2,wblpdf(x2,pwbl(1),pwbl(2)),'color','cyan')    
% Normal distribution
[pnorm(1),pnorm(2)]=normfit(q)

line(x2,normpdf(x2,pnorm(1),pnorm(2)),'color','blue')    
% Normal distribution
[plogn]=lognfit(q)

line(x2,lognpdf(x2,plogn(1),plogn(2)),'color','black')  
legend('Histogram','Exponential','Gamma','Weibull','Normal','Log Normal') 

mu =

   40.5437

pgam =

    2.4055   16.8544

pwbl =

   45.5229    1.6385

pnorm =

   40.5437   26.3330

pnorm =

   40.5437   26.3330

plogn =

    3.4804    0.7063

[image: image17.emf]5 15 25 35 45 55 65 75 85 95 105 115 125

0

0.005

0.01

0.015

0.02

0.025

mm

June Precipitation

Histogram

Exponential

Gamma

Weibull

Normal

Log Normal

  
b, c) Q-Q Plots

qs=sort(q);

n=length(qs);
p=(1:n)/(n+1);

qhat=expinv(p,mu);
plot(qs,qhat,'.')
line(qs,qs,'color','black')

xlabel('Observed')

ylabel('Fitted')

title(['Exponential: R=' num2str(corr(qs,qhat'))])  
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qhat=gaminv(p,pgam(1),pgam(2));

plot(qs,qhat,'.')
line(qs,qs,'color','black')
xlabel('Observed')

ylabel('Fitted')

title(['Gamma: R=' num2str(corr(qs,qhat'))])  
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qhat=wblinv(p,pwbl(1),pwbl(2));

plot(qs,qhat,'.')
line(qs,qs,'color','black')

xlabel('Observed')

ylabel('Fitted')

title(['Weibull: R=' num2str(corr(qs,qhat'))])  
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qhat=norminv(p,pnorm(1),pnorm(2));

plot(qs,qhat,'.')
line(qs,qs,'color','black')

xlabel('Observed')

ylabel('Fitted')

title(['Normal: R=' num2str(corr(qs,qhat'))])  
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qhat=logninv(p,plogn(1),plogn(2));

plot(qs,qhat,'.')
line(qs,qs,'color','black')

xlabel('Observed')

ylabel('Fitted')

title(['LogNormal: R=' num2str(corr(qs,qhat'))])  
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d)  The best Filleben correlation, or Probability Plot Correlation Coefficient (PPCC)  is from the Gamma distribution (0.996) followed by the Weibull (0.993).  This is consistent with the histogram fits in (a), so the best parametric distribution fits for this data are these distributions.  The Gamma distribution is slightly better than the Weibull distribution.  Note that in these probability plots the correlation coefficient does not measure departures from the 1:1 line shown, rather it measures the linear association of the fitted and observed data.  This is a shortcoming of this method that is evidenced in the exponential case.  The exponential linear association is quite good but the fit to the 1:1 line is poor.
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