CEE6110 Probabilistic and Statistical Methods in Engineering

Homework 1.  Preliminary data analysis
Solution
Assignment

Problem 1. (Based on Helsel and Hirsch 1.1, 2.1 and Kottegoda and Rosso 1.2). Annual peak discharges for the Saddle River in New Jersey are given in Appendix C1 of Helsel and Hirsch (online at http://pubs.usgs.gov/twri/twri4a3/html/pdf_new.html, download either the Excel or Txt file of appendix C datasets.) Compute the following quantities:

q=data(:,2);   % Annual peak discharge.  Data contains two columns, date and annual peak discharge
a) Central tendency.  Compute the

i. Mean

xbar = mean(q)  

xbar =

  1.6772e+003 

Mean of annual peak flow = 1677.2 ft3/s

ii. Trimmed mean (25% trimmed mean) (Helsel and Hirsch, p7).

n=length(q) % gives the size of the data

trimmedMean =  trimmean(q,50)  
n =

    65

trimmedMean =

  1.5004e+003 

Trimmed mean of annual peak flow = 1500.4 ft3/s

iii. Geometric mean
gMean = geomean(q) 

gMean =

  1.4421e+003  

Geometric mean of annual peak flow = 1442.1 ft3/s

iv. Median

med =median(q)  

med =

        1540  

Median of annual peak flow = 1540 ft3/s

	The central tendency measures
	Annual peak flow, ft3/s

	Mean
	1677.2

	Trimmed mean
	1500.4

	Geometric mean 
	1442.1

	Median 
	1540


All the four statistics are measures of central tendencies and if the sample data represents a symmetric distribution, all of them would be similar.  The annual peak flow data is not symmetric and these values differ.  
b) Compute the following:

i. Standard deviation

qstd = std(q)  

qstd =

  925.9071  

ii.  Interquartile range

iqrange=iqr(q)%matlab function for the interquartile range OR

iqrange = prctile(q, 75) - prctile(q, 25)   

iqrange =

  1.3703e+003

iqrange =

  1.3703e+003  

iii.  Mean absoulte deviation

di=abs(q-median(q));%from HH based on median
madQ_=median(di)

madQ=mad(q,1) %Matlab function that returnd Mad based on median

madQ=mad(q) %or mad(q,0) returns the MAD value based on mean  

madQ_ =

   690

madQ =

   690

madQ =

  746.0914  

	Standard deviattion (ft3/s)
	926

	Interquartile range (ft3/s)
	1370

	Mean absolute deviation, MAD (ft3/s)
	690


These measures quantify the spread in the data. Standard deviation and mean absoulte deviation quantify the avearge deviation from the central value, while the interquatile range quantifies the range of central 50 percent of the data. Standard deviation is affected by the outliers while the interquartile range is resistant to it.  MAD if defined using median is also resistant to the outliers.  MAD differs from the standard deviation in that it measures the average of the absolute differences while standard deviation measure the average of the squares of the deviations.
C)  Compute the skew and quartile skew (Helsel and Hirsch, p10)
Skew

n=length(q)

s=sum((q-mean(q)) .^3) * (n/((n-1)*(n-2)*std(q) ^3))

skew=skewness(q,0) % adjusts skewness for bias and is Eqnn 1.1 in HH
skew=skewness(q,1) %same as skew(q) and does not adjust for bias  
n =

    65

s =

    0.8846

skew =

    0.8846

skew =

    0.8641  

Quartile skew

p75=prctile(q, 75); %90th percentile value of q

p50=prctile(q, 50);
p25=prctile(q, 25);
qskew = ((p75-p50) – (p50-p25) )/(p75-p25) %Eqn 1.11 in HH  
qskew =

    0.0509  
Skew = 0.8846

Quartile skew = 0.0509
d)  Sketch a histogram and the cumulative relative frequency diagram.
hist(q)
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n=length(q);

qrtl = [ 0:1:n-1] ./n;

plot (qsort,qrtl)
xlabel('Q ft^3/s, Annual peak flow')

ylabel ('Cumulative relative frequency')
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e)  Compute the quartiles and draw a box and whiskers plot. Comment on the distribution. Flood embankments along the banks of the river can withstand a flow of 3300 cfs. What is the probability that this will be exceeded during a 12-month period?
Quartiles

q25 = prctile(q, 25) %25th quartile

q50=prctile(q, 50) %50th quatile

q75=prctile(q, 75)

h=boxplot(q);

line([0 1],[q25 q25],'LineStyle',':')%25th quartile line

text(0.75,q25+80,num2str(q25))

line([0 1],[q50 q50],'LineStyle',':')%50th quartile line

text(0.75,q50+80,num2str(q50))

line([0 1],[q75 q75],'LineStyle',':')%50th quartile line

text(0.75,q75+80,num2str(q75))

q25 =

  889.7500

q50 =

        1540

q75 =

        2260

[image: image3.emf]1

500

1000

1500

2000

2500

3000

3500

4000

4500

Values

Column Number

889.75

1540

2260

  
25th quartile = 889.75 ft3/s
50th quartile = 1540 ft3/s

75th quartile = 2260 ft3/s
From the Cumulative distribution plot, the probability of non-exceedence of 3300 cfs is about 0.92.  Then the probability of exceedence would be 1-0.92 = 0.8 or 8%.

f)  Plot a time series of this data.  Calculate the mean prior to and post 1968.  Based on data post 1968 comment on whether your answer to (e) is a valid estimate of the probability that the flow will exceed the flood embankment capacity looking to the future.

plot(data(:,1), q)
xlabel('Time in years')

ylabel('Annual peak discahrges, ft^3/s')

title('Time series plot of the annual peak flows')  
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i68 = find(data(:,1) == 1968) %ind1968 will have the postion of the year 1968

premean = mean(q(1:i68)) %mean of flows pre 1968

postmean=mean(q(i68+1 : length(q))) %mean of flows post 1968

line([1920 1968],[premean premean],'LineStyle',':')%pre-1968 line

text((1920 +1968)/2,premean+80,num2str(premean))

line([1968 1990],[postmean postmean],'LineStyle',':')%post-1968 line

text((1968 +1990)/2,postmean+80,num2str(postmean))  
i68 =

    44

premean =

  1.2491e+003

postmean =

  2.5743e+003
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1249.0682

2574.2857

  
Pre 1968 mean = 1249.1 ft3/s

Post 1968 mean = 2574.3 ft3/s

The change in the magnitude of flows will affect the cumulative proability distrubution. The old distribution will underestiamte the probability of the flow to exceed the flood embankment.
Problem 2.  
c=[64.0, 66.0, 64.0, 62.0, 65.0, 64.0, 64.0, 65.0, 65.0, 67.0, 67.0, 74.0, 69.0, 68.0, 68.0, 69.0, 63.0, 68.0, 66.0, 66.0, 65.0, 64.0, 63.0, 66.0, 55.0,69.0, 65.0, 61.0, 62.0, 62.0];

p=[1.31,1.39,1.59,1.68,1.89,1.98,1.97,1.99,1.98, 2.15, 2.12, 1.90, 1.92, 2.00, 1.90, 1.74, 1.81, 1.86, 1.86, 1.65, 1.58, 1.74, 1.89, 1.94, 2.07, 1.58, 1.93, 1.72, 1.73,1.82 ];

plot(c,p,'.')

xlabel('Chloride, mg/L')

ylabel('Phosphate, mg/L')
covC = std(c)/mean(c)  %Coefficient of variation of chloride

covP= std(p)/mean(p) %Coefficient of variation of phosphate

cofc=corrcoef(c,p) %coefficient of correlation  
covC =

    0.0512

covP =

    0.1093

cofc =

    1.0000    0.0271

    0.0271    1.0000
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Coefficient of variation (cov) of chloride (0.0512) is lesse than the cov of phosphate (0.1093).  The correlation coefficient, r is only 0.028 which makes the relationship between chloride and phosphate not so useful for predictive purposes.
Problem 3. 

dur=[5
10
20
30
40
50
60
120 180];%duration data
dataD=[1974
12.1
19.5
28.8
30.5
32.4
35.5
38.7
48
51.6

1975
10.1
14.9
26.7
31.2
34.7
38.2
40.2
55
56

1976
17.9
20
31.1
37.2
41.1
51
55.7
67.1
80.6

1977
20
32.6
52.6
72.4
90.1
108.8
118.9
146.5
157.3

1978
5.1
13.6
16
21.3
24.1
24.6
25
40.7
49.9

1979
20.5
26.1
36.3
46.1
49.3
50.3
55.6
65.2
90.1

1980
10
15.7
20.9
25
30.5
38
40.1
58
63.8

1981
12
27.9
47.9
56
70
80
89.4
106.9
114.2

1982
10
14.4
20
23.3
25.1
26.4
27.2
34.3
41.2

1983
10
12.1
17.3
19.2
22.1
27.3
32.7
54.4
66.5

1984
20.1
32.8
60
65.7
76.1
92.8
105.7
122.3
122.3

1985
7.6
8.1
13
16.5
21.6
25.3
25.3
27
32.3

1986
8.7
11.7
20
22.9
26.1
26.3
27.6
41.1
56.7

1987
24.6
36.7
56.7
73.9
93.9
110.1
128.5
180.8
188.7

]; 

xbar=mean(dataD(:,2:10)) % Mean-leave out the year data in the computation of %the statistics
xmedian = median(dataD(:,2:10)) %median

xstd = std(dataD(:,2:10)) %Standard deviation

xskew=skewness(dataD(:,2:10),0)
plot(dur, xbar, 'color','blue')

xlabel('Duration in min')

ylabel('Maximum rainfall depth in mm')

hold on

plot(dur, xmedian, 'color','red')

hold on

plot(dur, xstd, 'color','black')

legend('Mean','Median','Standard deviation')  
xbar =

   13.4786   20.4357   31.9500   38.6571   45.5071   52.4714   57.9000   74.8071   83.6571

xmedian =

   11.0500   17.6000   27.7500   30.8500   33.5500   38.1000   40.1500   56.5000   65.1500

xstd =

    5.9375    9.1502   16.1082   20.4447   25.9950   31.7436   36.8282   46.2828   46.1785

xskew =

    0.5594    0.5448    0.6706    0.7675    0.9518    0.9888    1.0026    1.2710    1.1919
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hold off
plot(dur, xskew, 'color','black')

xlabel('Duration in min')

ylabel('Skewness')  
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All the statistics show an increasing trend.  The mean and median are expected to increase, because there will be more rainfall with increasing durartrion.  The standard deviation increases initially and seems to level off after 120 min but there is no suffiicent data (data at higher duarations than 180 min) to test this.   The increase in skewness is not monotonous as in other cases.  The change in skewness suggests that the distribution of the random variable (rainfall depth) will have different shape at different duration. 
PAGE  
11

