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This document explains how to estimate P values for a significance test using the bootstrap.  This is written in the context of testing the difference between means, but could be generalized to other statistics.
Suppose you have two sample sets, X and Y each with a number of values.

X={x1, x2, …}

Y={y1, y2, …}

The objective is to determine whether the means, 
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 and 
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, are significantly different.
The classic hypothesis testing methodology involves the following steps.

1.  Pose null hypothesis.  H0: μX = μY.  Here 

Let ( = μX - μY , then the hypothesis is restated H0: ( = 0.
2.  Pose alternative hypothesis.   

H1: μX ≠ μY, or in terms of (, ( ≠ 0.  With the alternative hypothesis posed this way, this test is a two sided test.
3.  Define a test statistic.  This is a sample estimate of (

T=
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4.  Determine the sampling distribution for ( under the null hypothesis.  This distribution is obtained theoretically making a number of assumptions about the variability of X and Y.  Typically we may assume that they are normally distributed and either have a known variance, or variance estimated from the samples that may be the same or different for X and Y.  Depending on the assumptions made the distribution for the test statistic is different. 

[image: image5]
5.  Use the sampling distribution for T to define a rejection region R, relative to a preassigned level of significance (, such that Pr[T(R|H0]=(.  Two sided rejection regions are shown below and are denoted by |T| > (c.    

[image: image6]
6.  Evaluate T and reject the null hypothesis if T(R, i.e. if |T| > (c. 
p-Value.  The observed significance level (or p value) is the smallest fixed level at which the null hypothesis can be rejected.  The p value is obtained by solving for the probability associated with a rejection region where the observed T is at the threshold, i.e. |T|=(c.
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Solutions for p using a two sided test are obtained from the cumulative distribution F(()
if F(T) < 0.5, p=2 F(T)

if F(T) > 0.5, p=2(1-F(T))

One sided tests.  

If instead the alternative hypothesis had been H1: μX > μY, then the rejection region would be defined as T= 
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> (c, and the p value obtained from p=1-F(T).  
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Equivalently if the alternative hypothesis had been H1: μX < μY, then the rejection region would be defined as T= 
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< (c, and the p value obtained from p=F(T).  
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Boostrap p values

The above is the classical hypothesis testing recipe.  Now to put this in a bootstrap context, bootstrap samples are used to estimate the sampling distribution of T.  The bootstrap samples for T are obtained by sampling with replacement from X and Y and calculating 
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.  The distribution of T obtained in this fashion is not conditioned on the null hypothesis because we do not know whether the samples are consistent with the null hypothesis.  Rather the distribution of T* is centered around the sample value T, as illustrated below.
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We can define bootstrap confidence limits associated with a significance level ( based on the bootstrap estimate of the sampling distribution for T.  These may be one or two sided.  Two sided confidence limits are shown below.  If the null hypothesis value, T=0, falls in the rejection region associated with these confidence limits then we reject the null hypothesis.  
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The p value associated with this test is the smallest significance level at which the null hypothesis can be rejected.  This is obtained by solving for the probability associated with a rejection region where 0 is at the threshold level.

[image: image17]
Solutions for p using a two sided test are obtained from the bootstrap estimate of the cumulative distribution F(T*)

if F(0) < 0.5, p=2 F(0)

if F(0 > 0.5, p=2(1-F(0))
One sided bootstrap tests.  

If instead the alternative hypothesis had been H1: μX > μY, then the single sided confidence interval would be defined by T= 
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> T*L, and the p value obtained from p=F(0).  
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Similarly if the alternative hypothesis had been H1: μX < μY, the p value is obtained from p=1-F(0).
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Note that this is a simplified bootstrap approach that is not completely consistent with the hypothesis testing recipe, because it uses the bootstrap estimated distribution of the sample statistic T, rather than the distribution of T conditioned on the null hypothesis.  Nevertheless it is consistent with the logic used in Efron and Tibshirani (1993, page 4) where a hypothesis is accepted or rejected depending on whether the neutral value is within or outside the bootstrap confidence limits.  
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