
CEE3430 Engineering Hydrology

Homework 4. Groundwater and Well Hydraulics

Date: 1/29/14 Due: 2/7/14

Objective. Gain experience applying solving problems related to groundwater flow and to wells.

- 1. A sandy loam has Brooks and Corey parameters (Mays Table 3.7.1 of λ =0.35, h_b=21 cm, θ_r =0.10, ϕ =0.4, K_s =14.5 cm/hr.
 - a) Plot graphs of matric potential and hydraulic conductivity for moisture content ranging between 0.2 and its upper bound.
 - b) Consider the following field situation. A and B are vertical tensiometers that measure pore water pressure (tension) relative to atmospheric pressure, at depths 30 and 50 cm below the ground.

Both tensiometers record a pressure of -3500 Pa (negative denoting suction here). Calculate the head gradient from A to B and the flux (infiltration rate).

- c) Now consider the following pressure measurements recorded at A and B. Negative denotes suction.
 - Pressure at A (Pa) -4000
 - Pressure at B (Pa) -3000

Evaluate the following

- Pressure head (ψ) at A (cm)
- Pressure head (ψ) at B (cm)
- Total head at A (cm)
- Total head at B (cm)
- The direction of flow (i.e. is it downwards into the ground from A to B, or upwards from B to A)

- 2. Mays 4.1.1
- 3. Mays 4.1.2. This problem needs porosity for the confining layer. Use α =0.5.
- 4. Mays 4.1.5
- 5. Mays 4.1.8
- 6. Mays 4.2.1
- 7. Mays 4.2.2
- 8. Mays 4.2.7
- 9. Mays 4.2.8