
1

Parallel Flow-Direction and Contributing Area Calculation for
Hydrology Analysis in Digital Elevation Models

Chase Wallis Dan Watson David Tarboton Robert Wallace
Computer Science Computer Science Civil and Environmental Engineering US Army Engineer Research and

Utah State University Utah State University Utah Water Research Laboratory Development Center
chase.wallis@aggiemail.usu.edu dan.watson@usu.edu Utah State University Information Technology Lab

david.tarboton@usu.edu Robert.M.Wallace@erdc.usace.army.mil

Abstract— This paper introduces a set of parallel algorithms
to determine the hydrological flow direction and contributing
area of each cell in a digital elevation model (DEM) using
cluster computers in an MPI programming model. DEMs are
partitioned across processes relevant to the physical layout of
the terrain such that processes with adjacent ranks calculate
flow direction and contributing areas for physically adjacent
partitions of the DEM. The contributing area algorithm makes
use of a queue to order the consideration of cells such that
each cell is visited only once for calculation and cross-partition
calculations are handled in an efficient and order-independent
manner. This algorithm replaces a serial recursive algorithm
included as part of the TauDEM hydrology analysis package.

I. INTRODUCTION
Digital Elevation Models (DEMs) are data structures rep-

resenting rectangular grids of terrain data composed of cells
arranged as a raster, where each cell is composed of a floating
point value equivalent to the elevation of that geographic
point above some base value (usually, sea level) [15]. Cells
are typically arranged in row-major order when stored in
memory, analogous to 2-dimensional data arrays. DEMs are
commonly constructed with remote sensing techniques, are
the basis from which digital relief maps are produced.

As remote sensing precisions and accuracies have im-
proved DEMs have gone from 30-100 meter resolutions 5-
10 years ago to 1-5 meter resolutions today for much of
the Earth’s land surface. As a result, many of the analysis
techniques for coarser resolutions and smaller DEMs become
prohibitively time consuming when being applied to high-
resolution data.

Detailed land surface topography is used in hydrology for
a number of purposes, including the analysis and prediction
of soil moisture based on specific catchment area and wetness
index [4], [12], [5]; the determination of terrain instability
based on slope and specific catchment area [3]; erosion based
on slope, specific catchment area and shear stress or stream
power [11], [8], [7].

Hydrologic information derived from DEMs is based on
a model for representation of flow across the surface and
between grid cells. The D∞ flow model [13], quantifies the
amount of flow from each grid cell to one or more of the

This research was supported by the US Army Research and Development
Center under contract number W9124Z-08-P-0420

neighboring cells based on topographic slope. Once a flow
model is specified, it provides a basis for calculating many
of the derivative surfaces mentioned above, that enrich the
content of information in the DEM.

Developing a flow model and mapping channel networks
from grid digital elevation models follows a now well-
rehearsed procedure [2], [15], [14], [9] of (1) filling sinks, (2)
computing flow direction, and (3) computing the contributing
area draining to each grid cell. For this study, the process of
filling sinks (i.e., spurious, typically small DEM depressions)
is assumed to have already been completed.

With the increase of scope and resolution of DEMs,
the process of determining the flow direction of each cell
scales roughly linearly with the number of cells in the
region; however, calculating the contributing area of these
large DEMs has become increasingly difficult to perform
on serial processors and in some cases, impossible given
today’s hardware limitations for single-processor systems.
The memory required to store these DEMs is now on the
order of gigabytes and is steadily growing. Processing these
DEMs on a single machine requires too much memory and
often results in computer thrashing – excessive swapping
of data between memory and the hard disk – resulting in
unacceptably slow performance.

This paper presents a set of parallel algorithms for cal-
culating for each cell in a DEM the flow direction (i.e., the
direction in which water drains from a cell) and contributing
area (i.e., the number of cells that contribute drainage water
to a particular cell). For clarity and without loss of generality,
this paper uses the D8 (or Direction-8) method as its basis
(as opposed to the D∞ method), in which water flow is
limited to one of the 8 compass points, so that all of its
water contribution is given to exactly one adjacent cell. The
D8 algorithm determines the flow directions for all cells in
a DEM using only these 8 compass points, and the AreaD8
algorithm determines the contributing area for each cell using
the flow directions calculated in D8.

The paper is organized as follows: Section 2 details the
serial versions of the D8 and AreaD8 algorithms. Section
3 introduces the ParallelD8 and ParallelAreaD8 methods.
Section 4 illustrates the effectiveness of the parallel algo-
rithms on a cluster computing system. Concluding remarks
are presented in Section 5.

dtarb
Text Box
Paper presented at PDPTA'09, The 2009 International Conference on Parallel and Distributed Processing Techniques and Applications, Las Vegas, Nevada, USA, July 13-16.





2

Fig. 1. Digital Elevation Model (DEM)

Fig. 2. Flow directions for DEM in Fig. 1

II. SERIAL D8 AND AREAD8 CALCULATION

For the D8 method a flow direction is assigned for each
cell to one of the eight neighbors, either adjacent or diagonal,
in the direction of the steepest slope. Cells along the edge
of the DEM are not assigned a flow direction.

As an example consider the simple 8X8 DEM in Figure
1. Each cell is represented in this example as an integer that
describes the elevation at the center of that cell, although in
general, these would be float values. In Figure 2, the flow
direction for the non-edge cells are selected as shown, with
the arrow for each cell pointing to the cell of the steepest
descent. Note that for diagonally adjacent cells the slope
calculation uses a greater horizontal value to account for the
increased euclidean distance between cell centers.

Calculation of flow directions in the serial algorithm is
straightforward for grid cells that have one or more lower
neighbors, as calculation for each cell depends only on eleva-
tion values of the nearest neighbors and is order independent
(Algorithm 1). Cells without any lower neighbors are referred
to as pits. These are handled either in a preprocessing pit re-
moval step (not described here) or do not have flow directions

assigned. Cells with neighbors of equal elevation are referred
to as ”flats”. These may drain, meaning that water could flow
away from them as long as one of the cells in a contiguous
flat has a lower neighbor. We use a method for assigning flow
directions across flats presented by Garbrecht and Martz [6].
This method uses a modified elevation field to calculate flow
direction across flats, calculated by raising slightly (within
numerical tolerance) the elevation of flat grid cells adjacent
to higher terrain and lowering slightly the elevation of flat
grid cells adjacent to lower terrain, iteratively until the flat
is removed, after which algorithm 1 is used.

Algorithm 1 Executed to calculate flow directions F of a
DEM E. SLOPE(i, n) return the slope of DEM from cell i
to cell n, a positive slope being a downhill slope.

SetF lowDirections(E,F )
1: for all i in E do
2: if i is not on edge of E then
3: for all n neighbors if i do
4: select n for which SLOPE(i, n) is maximum and

greater than 0
5: end for
6: F (i)← direction towards n
7: end if
8: end for

Once a flow field is defined it may be used to evaluate
contributing area and other accumulation derivatives. In
general the accumulation function is defined by an integral
of a weight or loading field r(x) over the contributing area,
CA

A[r(x)] = A(x) =
∫

CA

r(x)dx. (1)

This is evaluated numerically as

A(xi) = r(xi)∆2 +
∑

{k:Pki>0}

PkiA(xk) (2)

x is a location in the field represented numerically by a grid
cell in a grid DEM. The grid cell size is ∆ and the summation
is over the set of grid cells k that contribute to grid cell i, i.e.
have Pki > 0. This is a recursive definition and depends upon
the flow field not looping back on itself so that the recursion
terminates when source cells that have no grid cells draining
into them are encountered. Mark (1988) [10] presented a
recursive algorithm for evaluation of accumulation in the D8
case that was extended to multiple flow direction methods
[13] and is efficient because it requires evaluation of each
grid cell only once. TERRAFLOW [1] provides an input-
output efficient algorithm for flow accumulation that is
publicly available.

If the loading field is assumed to be a constant of 1 for
each cell in the DEM, then contributing area of each cell is
its own area (i.e., one) plus the area of all neighboring cells
which drains into it:

A(xi) = 1 +
∑
N

A(N) (3)



3

where xi is a cell in the DEM and N is each neighbor of xi

whose flow direction drains into i. This recursive approach
is simple and straightforward; however, because it requires a
large amount of memory, it is infeasible for large data sets.
Furthermore, due to its recursive nature and the resulting
ordering of operations it is difficult to parallelize and run on
distributed systems.

III. PARALLELD8 AND PARALLELAREAD8

In order to calculate the contributing area of large data sets
in parallel, a method must be devised to partition the data
across multiple processes. This study implements a striped
partitioning scheme where the grid is divided horizontally
into p equal parts and mapped to p processes, with any
portion of the grid remaining being attached the last divided
portion. Each process reads in their assigned portion of the
DEM from a file, along with a row of cells directly above
and below the assigned portions. This allows each process to
have quick access to all neighboring cells without the need
of any extra communication between processes. This method
of partitioning the data offers some benefits, in particular,
each process inherently knows which process contains the
neighboring portions of the DEM, and communication can
be simplified. The striped partitioning scheme, as opposed
to a tiling partitioning scheme where the DEM is divided
vertically as well as horizontally requires greater number of
transfers than in a equivalent tiled scheme, but fewer distinct
communications events. Furthermore, the data for the striped
scheme is contiguous in the input data file, resulting in a
faster overall load time.

To calculate the contributing area of a cell i, all of the cells
in the region that drain into i must first be calculated. In the
serial version of the AreaD8 calculation, this partial ordering
of cell consideration is accomplished via recursion – if a cell
is considered before it can be completely calculated, then an
adjacent cell is chosen instead and the algorithm recurses.

It is imperative in the parallel version that different cells
be considered simultaneously in different processes, so a
queue-based algorithm is used. In the parallel version, each
process independently evaluates its own partition as much as
possible, allowing data between processes to be shared when
needed.

To achieve this, a dependency grid is created. The depen-
dency grid contains at each cell i the number of immediate
neighbors that drain into i. If there are no neighboring
cells that drain into i, that cell is considered a peak of the
DEM (and thus is not dependent on any other cell), so it
is placed on the queue, allowing its final contributing area
to be calculated. If there is a neighbor that drains into i,
the number of neighbors that drain into i is recorded in
the dependency grid. This number is used later to determine
when cell i will be ready to be calculated. Figure 3 shows the
flow direction from Figure 2, with the grey cells representing
those cells that have been put on the queue. Algorithm 2
describes the formal algorithm for building the dependency
grid in pseudo-code. Each process completes this phase
in parallel with all other processes; no communication is

Fig. 3. Flow Direction Grid. A grey cell represents a cell on the queue

necessary. Two dependency buffers are also created and
initialized to zero. These buffers are needed to keep track
of dependency information between processes, one for the
process containing the DEM partition above, and one for the
partition below.

Algorithm 2 Executed by every process with grid flow
direction F , grid dependencies initialized to zero D, and
an empty queue Q.

FindDependencies(F,D, Q)
1: for all i in F do
2: for all n adjacent to i do
3: if n drains to i then
4: D(i)← D(i) + 1
5: end if
6: end for
7: if D(i) = 0 then
8: add i to Q
9: end if

10: end for

Once the initial step has completed, each process contains
a queue containing cells that are ready for computing the
contributing area and a grid filled with number of cell
dependencies. Each process begins popping cells off the
queue and calculating each cell’s contributing area as defined
in equation 3. Once a cell’s contributing area is calculated,
the dependency grid is updated. For each neighboring cell n
that is downslope from the calculated cell i, the dependency
grid is decremented by one at n. If the dependency grid
becomes zero at n, the contributing area of all cells upslope
of n have been calculated and n is put on the queue. It is
possible however that n may not pertain to a cell in the
partition of that process, but rather to a neighboring one. In
this case, instead of decrementing the dependency grid by
one at n and putting n on the queue, the dependency buffer
at n is decremented and n is not put on the queue. The
grayed out cells in Figure 3 represent cells that have been



4

Fig. 4. Time taken to complete contributing area calculation as a function
of the number of processes on a grid of size 772 X 832

Fig. 5. Time taken to complete contributing area calculation as a function
of the number of processes on a grid of size 4045 X 7042

initially placed on the queue.
Once all processes queues are empty, communication

between processes is performed to obtain the dependency
information each process has been storing in its buffers.
Each process swaps their buffers with the neighboring
processes. Each process now decrements their dependency
grid according to the buffer received. If, after decrementing
the dependency grid, there exists a cell i that now has a
dependency of zero, indicating that all of i’s dependencies
have finished calculating their contributing area and i is
placed on the queue.

Processes continue popping the cells off their queue,
evaluating the contributing areas, and passing the buffers
as previously defined. Once every queue on every process
is empty, all cell’s contributing area have been evaluated
and the algorithm terminates. The formal parallel areaD8
algorithm is provided in Algorithm 3.

IV. EFFECTIVENESS OF THE PARALLEL ALGORITHM

To measure the effectiveness of the parallel algorithm, it is
compared against the serial recursive approach. Testing of the

parallel algorithm was performed on a 16-node Intel Pentium
4-based cluster system operating at 3 GHz with one GB of
memory per processor. For comparison, the serial algorithm
was executed on a single processor within the cluster. Two
data sets were used for the experiments; the first one, entitled
”Lidar” consists of a small 772 cell by 832 cell grid; the
second data set, entitled ”Great Salt Lake” consists of a much
larger 4045 cell by 7042 cell grid describing the Great Salt
Lake Basin in northern Utah. The time taken to complete the
task was measured using the serial algorithm for each data
set. For the parallel algorithm, the time taken to complete
the task was measured using a varying number of processes
from one to sixteen. The time taken for each node was then
graphed as a function of the number of processes. The time
taken for the serial algorithm was graphed on each plot as a
horizontal line for use as a comparison. Figure 4 shows the
graph of the execution times for the Lidar data set, while
Figure 5 provides the same graph using the Great Salt Lake
set.

For the small test dataset the execution time for the two
parallel runs are (for the most part) longer, but it must be
remembered that (1) there is an additional preprocessing
scan made on the data, (2) that adjacent processors must
perform communication steps that are not needed in the serial
version of the algorithm, and (3) processors must synchronize
with each other when waiting for data to be received. It
is interesting to note for this experiment that the effects of
additional processing, communication, and synchronization
are all quickly alleviated as the number of processors is
increased, and that even with the small dataset, method used
achieved a crossover point at 6 processors. For the large
dataset the advantage of parallelization is apparent with the
crossover at 2 processors.

It is interesting to note that the serial algorithm is limited
with respect to the size of the DEM. Becuase of memory
constraints of even today’s off-the-shelf processors, the large
data set used in the experiments is at the upper bounds of
the capability of the serial algorithm. The parallel approach
used in this study does not suffer as readily from this
limitation, because the aggregate memory size of the system
is communsurately larger with the increase in the number of
processors. The distribution of the data among the processes
makes possible the processing of large DEMs without the
thrashing effects seen with serial versions of the algorithm.

V. CONCLUDING REMARKS

This paper has presented a set of parallel algorithms for
determining the flow direction and contributing area for
digital elevation models used in the hydrology analysis of
large terrain data sets. The algorithms are relatively straight-
forward and can be easily augmented for a variety of similar
terrain analysis tools. The parallel areaD8 algorithm replaces
the serial recursive approach that creates an unneccessary
ordering of processing with a queue-based approach that can
work concurrently on several data partitions simultaneously.
Furthermore, because memory constraints are ameliorated
both by the disuse of stack-intensive recursion and by the



5

increased aggregate memory capacity of cluster systems,
the algorithm runs at a much faster rate than could be
anticipated by the linear speedup gains of classic parallel
implementations.

Although this study deals specifically with D8 directions,
an extension of the concepts for a D∞ implementation are
straightforward, and have currently been implemented for use
in the TauDEM hydrology analysis library.

REFERENCES

[1] L. Arge, J. Chase, P. Halpin, L. Toma, J. Vitter, D. Urban, and
R. Wickremesinghe. Efficient flow computation on massive grid terrain
datasets. Geoinformatica, 7(4):283–313, 2003.

[2] K. J. Beven and I. D. Moore. Terrain Analysis and Distributed
Modeling in Hydrology. Wiley, 1992.

[3] M. Borga, G. D. Fontana, and F. Cazorzi. Analysis of topographic
control on shallow landsliding using a quasi-dynamic wetness index.
Journal of Hydrology, 268(1-4):56–71, 2002.

[4] J. M. Buttle, P. W. Hazlett, C. D. Murray, I. F. Creed, D. S. Jeffries, and
R. Semkin. Prediction of groundwater characteristics in forested and
harvested basins during spring snowmelt using a topographic index.
Hydrological Process, 15(18):3389–3407, 2001.

[5] G. B. Chirico, R. B. Grayson, and A. W. Western. On the computa-
tion of the quasi-dynamic wetness index with multiple-flow-direction
algorithms. Water Resources Research, 39(5):1115, 2003.

[6] J. Garbrecht and L. W. Martz. The assignment of drainage direction
over flat surfaces in raster digital elevation models. Journal of
Hydrology, 193:204–213, 1997.

[7] E. Istanbulluoglu, D. G. Tarboton, R. T. Pack, and C. Luce. A sediment
transport model for incising gullies on steep topography. Water
Resources Research, 39(4):1103, 2003. doi:10.1029/2002WR001467.

[8] R. Jones. Algorithms for using a dem for mapping catchment areas
of stream sediment samples. Computers & Geosciences, 28(9):1051–
1060, 2002.

[9] D. R. Maidment. Arc Hydro GIS for Water Resources. ESRI Press,
Redlands, CA, 2002 edition.

[10] D. M. Mark. Network models in geomorphology. Modelling in
Geomorphological Systems, pages 73–97, 1988.

[11] J. J. Roering, J. W. Kirchner, and W. E. Dietrich. Evidence for
nonlinear, diffusive sediment transport on hillslopes and implications
for landscape morphology. Water Resources Research, 35(3):853–870,
1999.

[12] J. M. Schoorl, A. Veldkamp, and J. Bouma. Modeling water and soil
redistribution in a dynamic landscape context. Soil Science Society Of
America Journal, 66(5):1610–1619, 2002.

[13] D. G. Tarboton. A new method for the determination of flow
directions and contributing areas in grid digital elevation models.
Water Resources Research, 33(2):309–319, 1997.

[14] D. G. Tarboton and D. P. Ames. Advances in the mapping of flow
networks from digital elevation data. In World Water and Environmen-
tal Resources Congress, Orlando, Florida, 2001. May 20-24, ASCE,
http://www.engineering.usu.edu/cee/faculty/dtarb/asce2001.pdf.

[15] J. P. Wilson and J. C. Gallant. Terrain Analysis: Principles and
Applications. John Wiley and Sons, New York, 2000.

Algorithm 3 Executed by every processor with grid up slope
area A initialized to zero and two local buffers DAbove

and DBelow also initialized to zero. SWAPBUFFERS() swaps
DAbove and DBelow with the two adjacent processors.

ComputeArea(F,D, Q,A)
1: while not terminated do
2: while Q isn’t empty do
3: i← front of Q
4: A(i)← 1
5: for all n adjacent to i that flow into i do
6: A(i)← A(i) + A(n)
7: end for
8: n← downslope neighbor of i
9: if n pertains to processor above then

10: DAbove(n)← DAbove(n) + 1
11: else if n pertains to processor below then
12: DBelow(n)← DBelow(n) + 1
13: else
14: D(n)← D(n)− 1
15: if D(n) = 0 then
16: add n to Q
17: end if
18: end if
19: end while
20: SWAPBUFFERS()
21: for all i in BufferAbove do
22: D(i)← D(i)−DAbove(i)
23: if D(i) = 0 then
24: add i to Q
25: end if
26: end for
27: for all i in BufferBelow do
28: D(i)← D(i)−DBelow(i)
29: if D(i) = 0 then
30: add i to Q
31: end if
32: end for
33: if Q is empty then
34: BROADCAST(termination signal)
35: end if
36: if all processes sent termination signal then
37: TERMINATE()
38: end if
39: end while




