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Abstract 

The structure and scaling of river networks characterized using fractal dimensions related to 
Horton's laws is assessed. The Hortonian sealing framework is shown to be limited in that strict 
self similarity is only possible for structurally Hortonian networks. Dimension estimates using the 
Hortonian scaling system are biased and do not admit space filling. Tokunaga eyclicity presents an 
alternative way to characterize network sealing that does not suffer from these problems. Fractal 
dimensions are presented in terms of Tokunaga cyclicity parameters. 

1. Introduction 

River networks have long been recognized as scaling, possessing self similar structures 
over a considerable range of scales. Without a scale on a map, it would be impossible to 
distinguish the Amazon network from smaller river networks. This was recognized early 
and Horton (Horton, 1932, 1945) provided a set of scaling laws, later refined by Strahler 
(1952), Schumm (1956) and others that characterize river networks. Mandelbrot (1983) 
used the empirical length-area power law relationship to suggest that rivers were fractal. 
Since then, considerable work has been done on the fractal dimensions of rivers, river 
networks and the relationships between fractal dimensions and the more traditional 
characterizations of scaling such as Horton's laws (Tarboton et al., 1988; La Barbera 
and Rosso, 1989; Marani et al., 1991; Rosso et al., 1991; Liu, 1992). 

Here I review how Horton's laws which characterize the self similarity of river 
networks can be used to obtain fraetal dimensions. I then show that Horton's laws are 
inadequate in that they do not admit space filling networks. The strictly Hortonian scaling 
framework is found to be restrictive and I suggest that cyclicity in the river network 
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branching structure as proposed by Tokunaga (1978) provides a better, more general, 
framework within which to characterize the scaling and fractal properties of river 
networks. Fraetal dimensions based on Tokunaga parameters are presented. 

2. Fractal streams 

Mandelbrot (Mandelbrot, 1977, 1983) recognized that the dimensional inconsistency in 
the empirical relationship between mainstream length and channel area (Hack, 1957; 
Gray, 1961; Leopold et al., 1964; Eagieson, 1970) 

L - C A "  (1) 

could be interpreted as the mainstream length being a fractal measure with dimension Ds - 
2o,. The subscript s indicates that this is the fractal dimension due to the sinuosity or 
meandering of streams. Reported values of u from 0.55 to 0.7 suggest Ds between 1.1 and 
1.4 centered around 1.15. 

Formally channel length is recognized as a fractal measure (Feder, 1988, p. 14), Md, 
determined by 

d > n  

M d - T N ( ~ ) 8  d M d d - O  (2) 

oo d < D  

where N(~) is the number of balls (boxes or rulers) size 6 required to cover the set (in this 
case points on the main stream) and ~/ a geometric factor. The fractal (Hausdofff- 
Besicovitch) dimension, D, is the critical dimension for which the measure Md changes 
from zero to infinity. My measures the size of the set in dimension D with units of L °. The 
apparent length measured at scale 6 is calculated as 

L(~) -N(~)~ - (Mo/3,)/~*-°--6*-° (3) 

This length diverges as/f - .  0. This relationship is commonly used to estimate fraetal 
dimension. Length is measured with rulers of different lengths ~ (or different map scales) 
and the slope of the log-log plot of L versus/t gives D. This procedure has been used 
(Hjelmfelt, 1988; Robert and Roy, 1990; Nikora, 1991; Rosso et al., 1991) to estimate the 
fractal dimension of various streams to be in the range 1 to 1.2. 

The interpretation of Eq. (1) as indicating that streams are fractal requires that Eq. (1) be 
established using maps of the same scale. It assumes statistical self similarity of river 
basins of different sizes. It is probable that the length and area data used to establish Eq. 
(1), assimilated by Eagieson (1970), are from a range of map scales. Measurement of L for 
large basins from small scale maps would distort the scaling exponent u towards the value 
of 0.5. If the maps are sealed such that all basins appear the same size on paper, the lengths 
measured at same resolution with respect to the paper would be proportional to paper size, 
i.e. A °'5. I believe it is this effect in the analysis of Montgomery and Dietrich (1992) that 
leads them to conclude L- -A  °'5. 

An alternative interpretation of Eq. (1) is that river basins are allometric, with larger 
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basins tending to be more elongated. This was the interpretation of Hack (1957) and others 
prior to the discovery of fractals. Fig. 1 illustrates the consequences of  this interpretation. 
Some recent channel network models have predicted elongation as an explanation of Eq. 
(1) 0naoka and Takayasu, 1993; Ijjasz-Vasquez et al., 1993). These models impose a 
numerical grid on the landscape and the predicted allometry is in terms of this grid scale. 
Thus if the model were applied at a different numerical grid scale to areas the same 
physical size different width to length ratios would result. This poses a problem in 
selecting grid size for any practical application of these models and casts doubt on the 
validity of the allometric prediction they make. 

It is not my experience that river basins are on average (statistically) more elongated to 
the extent shown on Fig. 1 at larger scales. Rather it appears, at least visually, that river 
networks have statistically self similar shapes over a large range of scales. Therefore I 
favor the fiactal interpretation of Eq. (1) over the allometric interpretation. It may be 
that o~ > 0.5 is due to some combination of elongation and fractal sinuosity in channels. 
This would make detection of elongation even more difficult over the range of sizes of 
channel networks commonly studied. 

3. Horton's laws and fractal d i m e n s i o n s  

Central to understanding the scaling of river networks is the ordering system used to 
categorize streams. Here I use the Strahler (1952) ordering system. Stream properties refer 
to adjoining segments of channel with the same stream order. Horton's ratios are empirical 
quantities that describe the scaling structure of a river network. 

RB =Nw_i/Nw 

RL. (4) 

R A "Aw//Aw_ l 

give, respectively, the bifurcation, length and area ratios as ratios of the number of 
streams, Nw, mean length of streams, L~, and mean total contributing area, Aw, in streams 
with successive orders w. Horton (Horton, 1932, 1945) and Schumm (1956) (area ratio) 
discovered that these ratios are approximately constant across all orders of a river basin. 
Their applicability with the Strahler ordering system has been widely demonstrated. 
Horton's ratios quantify the self similarity present in river networks. 

1 

lOOkm 
0.18 

Fig. 1. Allometric interpretation of L ~°~7 
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Kirchener (1993) has recently showed that these scaling laws are statistically inevitable 
in virtually all possible networks, and profoundly indifferent to network structure. He 
argues that they are a consequence of the hierarchy created by the Strahler (1952) stream 
ordering rules. Geometric tree structures, of which channel networks are an example, 
possess an inherent self similarity, which when ordered using Strahler ordering leads 
inevitably to Horton's laws. With the discovery of fractals, fractal dimensions have 
become a popular and standard way to quantify self similarity. It is therefore of interest 
to develop the relationship between fractal dimensions of river networks and the inevitable 
scaling in river networks reflected in Horton's laws. Relationships between Horton scaling 
ratios and fractal dimensions lends insight to the structure of river networks despite the 
inevitability of Horton's laws. 

Horton's length and area ratios, which relate mainstream length and channel area at 
small and large scale, yield the mainstream fractal dimension (Rosso et al., 1991; Liu, 
1992; Beer and Borgas, 1993) 

Ds = 2 In RL/In RA (5) 

This is derived by restating Eq. (1) in the form L--A °1/2 and taking the ratio of it applied 
to the highest order stream in basins of order w and w-1. This derivation takes mainstream 
length as the length of the highest order stream. It is more conventional to think of 
mainstream length as the sum of stream lengths over all orders. When this is done to 
the limit of infinitesimal resolution using geometric series the mainstream length is 
La/(1-1/R O, a multiplicative constant times length of the highest order stream. Therefore 
Eq. (5) also applies to this interpretation of mainstream length. 

Horton's bifurcation ratio indicates that a network is on average comprised of RB 
subnetworks, that by the length ratio are scaled down by a factor 1/RL. The similarity 
dimension due to network branching is (La Barbera and Rosso, 1989): 

Db - In Rn/ ln  RL (6) 
The area ratio indicates that drainage area is on average comprised of Re subareas 

scaled down in area by length scale factor 1/V~A, resulting in similarity dimension for 
area, 

Da = 2 In RB/In RA (7) 

These similarity arguments neglect the left behind main stream or higher order part of 
the subbasin present in the fractal generation process. A network of order fl is comprised 
of RB subnetworks of order fl-1 plus the main stream of order ft. These dimensions can 
also be calculated more formally, accounting for the main stream part, in the context of 
fractal measures. The network is taken as part of an infinite network that in principle could 
be obtained from refining map resolution indefinitely. Horton's ratios are taken to hold 
exactly over all orders. The program for calculating dimension is then to sum the measured 
quantity over all orders. The result is a geometric series (because of the geometric scaling 
implied by Horton's laws). The limit depends on the limiting resolution ~ taken as the 
average length of lowest order streams. The limit is compared with Eq. (3) to obtain D. 
When this procedure is applied to the total length of streams with resolution 6 - Lo/RaL -~, 

-.-. _o0 as the length of the lowest order streams one obtains Eq. (6). Analogously, if one 



D.G. Tarboton/Journal of Hydrology 187 (1996) 105-117 109 

takes 8 =A °'5 = (Aa/RaA-)') °'5, k---* -oo as the length scale of the lowest order subbasins 
and sums area over all orders, recognizing that interbasin areas also follow Horton's area 
law (Beer and Borgas, 1993), one obtains Eq. (7). The limit process results in stream order 
going to infinity. The absolute value of stream order then loses importance in favor of 
differences between stream properties as a function of the difference in their orders. The 
limit process is recognized as a necessary mathematical construct while acknowledging a 
lower and upper limit of scaling, defining the range of scales over which the fractal 
description is useful. The wider this range of scales, the more useful the fractal description. 
The fact that this limit procedure yields the same answers as the self similarity arguments 
is a reflection of the fact that the lowest order basins dominate the total length and area of 
river basins. 

The derivation of Eq. (6) omitted to consider the fact that streams are themselves fractal 
measures. The length ratio describes how the ratio of stream length measure scales with 
order. In the fractal perspective one must assume (because of self similarity) that this also 
applies to the lowest order streams with length 5. In terms of Eq. (2) 

D. (8) 

and 

LT =N(5)~ vb (9) 

where e is the size of a linear ball (ruler or box) and LT the total length of streams in a 
channel network. Combining these we find (Tarboton et al., 1990) 

LT -N(5)N(e)vbe ~bD' (10) 

This shows that the total length of streams is a measure with dimension 

D a -DbD s -(11) 

which is a combination of branching and stream dimensions. It is no coincidence that Di 
calculated from using Eq. (5) and Eq. (6) in Eq. (11) is the same as Eq. (7). In the 
infinitesimal fractal limit the dimension of area comprising the basin is the same as the 
dimension of all points on the channel network. Marani et al. (1991) call this connectivity: 
" A  point belongs to a drainage basin if there exists a channel connecting that point to the 
outlet of the basin." 

4. Limitations of Horton system 

Fig. 2 illustrates a basin ordered according to Strahler's ordering. In this illustrative 
network there are nine first order streams, three second order streams and one third order 
stream. Thus Rs is (by construction) exactly three. However, this does not apply to all the 
subbasins, two of which have Rs = 2. Thus for this basin exact self similarity does not hold. 
The same can be said for practically all natural basins. Horton's rules are statistical 
descriptors of self similarity and only hold on average. However, one sees here that the 
first order streams flowing directly into the third order stream introduce a downward bias 
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Order 2 
~"~'~'^-ins with 

t/N2= 2 

Order 1 
• - -  Order 2 
- - -  Order 3 

Order 2 Subbasin 
with 
RB= N 1 / N 2 =3 

Order 3 Network with Structurally Hortonian 
R ~ = N  1/N2=N2/N3 =3 Network with liB= 3 

Fig. 2. Strahler ordering and structurally Hortonian network. 

into the average bifurcation ratio. 

Average (NI/N2) <- Overall (N1/N2) (12) 
over subbasins 

This is always the case. The inequality is strictly less than whenever streams flow into 
streams more than one order higher. This bias can only be avoided if the network is 
structurally Hortonian, meaning that streams only flow into streams one order higher. 
The derivations above assumed Horton ratios were constant over all orders. They therefore 
only apply to structurally Hortonian networks, which are rare in nature. The average Re for 
subnetworks is constrained to be less than or equal to the overall Re. This bias is apparent 
even where Horton ratios are more loosely interpreted as referring to average values since 
whenever a low order stream flows into a stream more than one order higher the overall 
bifurcation ratio is higher than the bifurcation ratio of subbasins. This biases (downwards) 
fractal dimension estimates based on Re. 

Since the total area draining any stream is larger than the sum of area draining its 
tributaries, R^ > Re. The area dimension Da (from Eq. (7)) is therefore strictly less 
than two. The Hortonian system does not admit a network to be space filling. One can 
debate as to whether networks in practice are space filling, however it seems desirable to at 
least work in a theoretical framework that admits space filling. 

5. Tokunaga cydidty 

The problem in the description of network branching using Horton's bifurcation ratio 
was recognized by Smart (1967) and Scheidegger (1968). Tokunaga (1978) gives an 
alternative description of network branching (illustrated in Fig. 3) that does not suffer 
from this deficiency. Let the number of streams of order i flowing laterally into a higher 
order stream of order j be denoted by ie~. Tokunaga (1978) suggests that jel_t (k > 0) are on 
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m Order  1 
- - -  Order  2 
I Order  3 

3E2:1 2El =3/3=1• 3 El=2 

EI=I E2--2 

l = E2/£1--2 

Fig. 3. Order 3 network adhering exactly to Tokunaga cyclicity. 

average independent of j, denoted 

e k " je j_  k (13) 

This is a self similarity property. Furthermore Tokunaga suggests that analogous to 
Horton's ratios the et are also geometrically dependent on order. 

K-el,/et_1 (14) 

The two parameters el and K are analogous to Re in that they completely describe the 
network branching structure. The number of streams of each order w within a basin of 
order fi is (Tokunaga, 1978) 

Oa-w-1 _pf i -w-  1 

Q-P 

where P and Q are parameters given by 

p .  2 + e l  + K -  ~/(2 + e 1 +K) 2 - S K  
2 (16) 

Q .  2+81 +K+ ~/(2+ v 1 +K) 2 -8 / (  

Eq. (15) gives a law of stream numbers such that the log of stream numbers plots against 
order as a slightly concave shape, agreeing qualitatively with this tendency reported by 
Shreve (1966). Putting vl -RB - 2 and K - 0 one obtains P - 0, Q - R  m and N(fl, w) - R ~  TM. 
Thus Tokunaga cyclicity generalizes Horton's bifurcation law, retaining it as a special 
case. The appeal of Tokunaga's formulation is its self similarity. Subnetworks within a 
network are statistically equivalent, except for a scaling factor, without needing to be 
structurally Hortonian. In Tokunaga cyclicity the length and area laws can be retained 
unchanged. 

To calculate similarity dimensions for a Tokunaga network of order t ,  let the linear 
scale reduction factor for each order be r ( - 1/RL for streams or 1 / ~  for areas). The 
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network is comprised of 2+e~ subnetworks order fl-1 reduced by factor r, ~ K  networks 
order fl-2 reduced by factor r 2, e lk  2 networks order ~-3 reduced by factor r3 and so on. 
The similarity dimension is then calculated using uneven scale ratios (Mandelbrot, 1983, 
p. 57; Feder, 1988, p. 63). 

(2 + ~l)r D + elKr 2D + elK2r 3D + . . . .  1 (17) 

This geometric series can be reduced to a quadratic equation for r- D. The larger root 
gives 

D - In Q/in(1/r) (18) 

which for stream lengths (r - I/R 0 gives 

D b " in Q/In R L (19) 

and for stream areas (r - 1/V~A) gives 

Di - 2 In Q/In RA (20) 

(F_~ I. (17) can also be reduced to a quadratic equation in r D which yields different 
solutions. The largest root overall is the one that yields Eq. (18). I do not know a good 
reason for selecting the largest root in this procedure to obtain dimension by the similarity 
approach, except that it corresponds to what is obtained using the infinitesimal limit 
approach.) 

These results can also be obtained by summing over all orders to the infinitesimal limit. 
If one assumes stream lengths obey Horton's length law one obtains (not surprisingly) 
Eq. (19). If one assumes link lengths are on average constant (and hence going to 0) 
throughout the network one obtains (Tarboton, 1989) 

inQ 
D b - (21) 

InK 

Under the constant average link length assumption (link length - length of lowest order 
stream LI) the following length scaling relationship holds (Tarboton, 1989). 

K w-1 - 1 ' ~  
L w -  1 + -----gZT-)L1 (22) 

This goes asymptotically (w large) to RL - K, showing the similarity between F_x 1. (21) 
and Eq. (19). To account for the streamsthemselves being fractal the argument used above 
applies. Note that Db, Eq. (19) times D., Eq. (5), gives Da, Eq. (20). 

Since basin areas cannot occupy a space of dimension higher than the plane (D, --< 2) 
Eq. (20) suggests that R^ > Q. Tokunaga (1978) showed that under certain assumptions 
RA asymptotically equals Q. The assumptions were: (1) A basin can be divided into 
infinitesimally small subbasins and interbasin areas; (2) The average area of subbasins 
of order j, A~, is larger than the interbasin area flxj, defined as the average of interbasin 
areas draining directly into streams of order X when the lowest resolved stream is order j; 
(3) The value of K/(2+61) is less than 1. These assumptions are required for convergence of 
geometric series and disappearance of terms containing interbasin areas. It is somewhat 
theoretically disturbing (at least to me) that the area ratio, a property that relates well 
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defined measures Aw and Aw_1 which are not dependent on how finely the network is 
resolved, should depend on the infinitesimal limit for its derivation. Tarboton (1989) 
shows that under the alternative assumption that link area is on average constant, RA 
also asymptotically equals Q. The latter approach can be combined with an assumption 
of constant average link length to get asymptotically RL - K and Db - In Q/In K. This 
amounts to assuming a constant (spatially uniform) coefficient of channel maintenance, or 
drainage density. These are two reasonable scenarios under which networks are space 
filling. 

There may also be reasonable alternative scenarios that result in RA > Q giving 
networks that do not fill space. The set of points connected to the outlet may form a set 
with Da < 2. This would imply holes in the network (unchanneled areas) at all scales. Such 
a scenario would violate the assumptions necessary to get RA = Q by having large 
unchanneled interbasin or link areas. One plausible scenario is in basins where the 
drainage density is dependent on slope. Finely dissected high drainage density headwater 
basins may flow Into open lower drainage density high order basins. Horton's slope law 
and a physical understanding of the basis for drainage density may hold the key to under- 
standing the scaling of these non space filling networks and the connection between the 
fractal dimensions of river networks and physical landforming processes. 

6. Examples 

6.1. Peano network 

An example of a network that conforms exactly to Tokunaga cyclicity is the Peano 
network (Mandelbrot, 1983) analyzed by Marani et al. (1991) flinstrated in Fig. 4. It has 
el = 1 and K = 2 which in Eq. (16) yield Q = 4 and P - 1. It has RL = 2 and RA -, 4. 
Db and Da are both 2 and Eq. (5) gives Ds = 1. This is consistent with the Peano network 
filling space and being comprised of linear, dimension 1 (straight), streams. Horton's 
bifurcation ratio is not constant for this network. In the lowest order subbasins it is 3, 
while for the network as a whole it approaches 4. 

s ~  Order 
1 3 m 

4 m  
Rl | 

Mm 

Fig. 4. Peano network (Mandelbrot, 1983; Marani ct aL, 1991). For every change of ruler scale every link 
generates four links, two resulting from subdivision in half of  the previous link and two new links. This network 
conforms exactly to Tolamaga cyclicity with K - 2 and 61 = 1. 
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Fig. 5. Buck creek, California, USA. 

Table  1 

Branching analysis  of  Buck creek 

Order (w) 

1 2 3 4 5 

164 33 10 2 1 Number  of  
s treams 

Number  of  side 
streams entering 

order w stream 
Order 1 
Order 2 

Order 3 
Order 4 

33 30 29 6 

- 7 6 0 

- - 5 1 

/e/-- 1 je j -2  / ~ - 3  /~j--4 

j - 2 33/33 = 1 - - - 
/ - 3 7/10 - 0.7 30/10 - 3 - - 
j - 4 5/2 - 2.5 6/2 - 3 29/2 - 14.5 - 
j - 5 0/1 - 0 1/1 - 1 0/1 = 0 6/1 - 6 

Average  • el - 0.98 82 - 2.8 e3 ,, 9.7 e4 - 6 

• Est imates of e t  are weighted by the number  of  receiving streams in the calculation o f / e j _ t .  

K - 2.89 - average of  (eTJeb e3/e2, e4/83) weighted by  the sum of  the number of receiving streams used to 
est imate ej and eF1 .  



D.G. TarbotonlJournal of Hydrology 187 (1996) 105-117 115 

6.2. Buck creek 

Buck creek is a 606 km 2, fifth order basin in Northern California, USA. The stream 
network (Fig. 5) was extracted from a 30-m USGS digital elevation model (Tarboton, 
1989; Tarboton et al., 1991). Horton ratios were estimated as: Re - 3.67, RL - 2.2, RA - 
4.55. Table 1 illustrates the procedures for estimating Tokunaga parameters K - 2.89 and 
el - 0.98. Using these in Eq. (16) gives Q -, 4.62, P = 1.25. With these Eq. (15) is used to 
calculate the number of streams of each order. This is compared to observations and 
Horton's bifurcation law in Fig. 6. Based on these parameters one obtains the following 
fractal dimensions using the Horton system, Eqs. (5)-(7): 

Ds " 2  In RL/In R A . 1.04 

D b - In RB/In R L = 1.64 

Da - 2 In RB/In R A .. 1.72 

By comparison in the system based on Tokunaga's rules, Eq. (5), Eq. (19) and Eq. (20): 

D s - 2 In RL/ln R A - 1.04 

D b - In Q/in R L - 1.94 

Da " 2  In Q/in RA - 2.02 

The area dimension D, for the Horton system is unrealistically low. This network was 
extracted from a digital elevation model with constant support area used to identify 
channels. This procedure effectively prescribes constant drainage density and space 
filling, Da - 2. D. estimated using Tokunaga cyclicity is closer to 2. 

~ 100 

z 

i I I I I 

~.. • Ob~,v~l 

~ .  Horton R B = 3.67 

......... Tokunaga rule, 
equation (15). 

{ I I { I 
1 2 3 4 5 

Stream Order 

Fig. 6. Buck creek stream number analysis. 
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7. Condusinns 
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Fractal dimensions may be used to characterize the branching (Db) and sinuosity (Ds) of 
stream networks. The fractal idealization recognizes the self similarity in river networks 
and extends this to the infinitesimal resolution limit. The river network through branching 
and sinuosity connects to each point it drains, this connected set having combined 
dimension Da - DbDs which may be less than or equal to two. In the case where Da - 2 
the network is completely connected (to every point) and fills space. Horton's bifurcation 
and area laws are limited in that they do not admit space filling. Whether or not river 
networks are space filling, this is a flaw in the theoretical framework founded on Horton's 
laws. Hortnn's bifurcation ratio is also biased whenever streams flow into streams more 
than one order higher. Tokunaga cyclicity generalizes Horton's bifurcation law and 
overcomes these difficulties. The branching, sinuosity and area fractal dimensions 
pertaining to river networks in terms of this description of self similarity were presented. 
It is my opinion that Tokunaga cyclicity offers the possibility for better understanding the 
geometrical structure and scaling of river networks and their contributing area. Further 
work is required to refine procedures for estimating Toknnaga cyclicity parameters and 
check their applicability for estimating fractal dimensions in observed river networks. 
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