
 
Modeling Snowmelt Over an Area:  Modeling Subgrid 

Scale Heterogeneity in Distributed Model Elements 
 

C. H. Lucea and D. G. Tarbotonb 

a USDA Forest Service Rocky Mountain Research Station, Boise, Idaho, USA (cluce@fs.fed.us) 
b Civil and Environmental Engineering, Utah State University, Logan, Utah, USA (dtarb@cc.usu.edu) 

 

Abstract: We analyze the parameterization of sub-grid scale variability in snow accumulation and melt 
models from a physical perspective considering the causes of the variability and the effect on snowpack 
energy exchange.  The source of temporal changes in spatial variance of snow water equivalent is the 
covariance between snow water equivalent and the accumulation or melt rate at each point.  Variability 
caused by drifting and differential solar radiation can be effectively parameterized with areal depletion curves 
relating snow covered area to basin average snow water equivalent.  As a first approximation, depletion 
curves may be estimated from the distribution of snow at peak accumulation.  Improvements can be made to 
the depletion curve by using the joint distribution of solar radiation and snow water equivalent at peak 
accumulation.  Consideration of how distributions may change as the model element size increases provides 
insight into how this conceptualization may be applied to scaling up snowmelt models. 
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1.    INTRODUCTION 
 
While the physics and modeling of snowpack 
energy and mass balance at a point are well 
developed, much of the practical interest is in 
snowmelt over some area, be it a small catchment 
or larger basin.  Distributed snowpack models, 
using physically based one-dimensional mass and 
energy balance models on many small elements 
have been suggested as an optimal choice for 
describing the net effect of spatial variability in 
snowpack properties [Kirnbauer et al., 1994].  This 
approach presumes that all sources of variability in 
a snowpack can be mapped, and that most of the 
heterogeneity can be described as differences from 
one element to the next.   
 
There are several challenging aspects to distributed 
modeling in this fashion. It is difficult to define a 
homogeneous unit because variability exists even 
at very small scales.  The question is how much 
error caused by not meeting the assumption of 
homogeneity can be accepted within each element. 
Such error is dependent on element size.  
Furthermore, It may be difficult to know the 
characteristics of each small model element within 
the domain.  For example, it is unusual to obtain 
accurate detailed maps of vegetation 
characteristics (e.g. height, species, fractional 
density). In a similar vein, it may be difficult to 
map detailed precipitation and wind fields (O~30 
m) for short time steps (O~1-6 hrs) based on 

widely spaced weather stations.  Even some of the 
finest scale climate models output average 
precipitation, wind, etc., over 1-km2 elements, a 
size much larger than is generally considered 
acceptable for distributed snowmelt models.  
Calibration and validation of the model may be 
difficult because there may be a mismatch between 
the model element size and the integration scale of 
observations [Beven, 1995].  Finally, As domain 
size increases, execution times can become very 
slow. 
 
Some ability to relax the assumptions about 
homogeneity within elements, which would allow 
use of larger model elements, would be beneficial 
in meeting these challenges. 
 
Some have used large element sizes hoping to 
absorb the effects of the heterogeneity into 
calibrated parameter values [e.g. Wigmosta et al., 
1994].  Generally, however, the assumption is 
untested.  Bathurst and Cooley [1996] used 1-km 
square model elements in a region where wind 
drifting was noted to produce extreme variability 
on spatial scales of <250m.  Calibrating to stream 
flow, they adjusted their soil hydraulic 
conductivity to an extremely low value to 
essentially store water in the model “hillslope” that 
was in reality stored in the snowpack.  Luce et al. 
[1998], studying a small catchment (0.26 km2) in 
the same area, noted that this “effective 
parameters” approach to scaling up snowpack 



models was ineffective.  What is needed is a 
parameterization to mathematically describe the 
net effect of fine scale heterogeneity as a function 
of element-scale state variables and parameters 
[Brutsaert, 1986].  This paper describes the 
conceptualization, mathematical development, and 
validation of one such parameterization. 
 
 
2.    BACKGROUND  
 
The fact that an “effective parameters” approach 
cannot result in a reasonable simulation of 
snowmelt suggests, by way of Beven [1989], a 
nonlinearity in the sensitivity of snowmelt to some 
aspect of the heterogeneity of the snowpack.  One 
nonlinearity in the snowmelt rate with respect to 
variability in the amount of snow is that when 
there is no snow, there is no melt, while if there is 
snow, melt occurs.  Essentially it is a step function 
or at least a discontinuity at zero snow water 
equivalent.  Consequently, estimating the area 
average melt may work reasonably well as long as 
there are no bare patches within the model 
element.  Heterogeneity in snow accumulation and 
melt will eventually lead to patchiness in snow 
cover. 
 
If the presence and absence of snow is a dominant 
nonlinearity, a parameterization relating snow 
covered area to element-scale state variables would 
be expected to yield less error.  Derivation of the 
parameterization required: (1) understanding 
sources of variability in the accumulation and melt 
of snowpacks; and (2) mathematically relating 
snow covered area to variability in snow water 
equivalent in a model element. 
 
Variability in snow water equivalent in an area 
results from differential accumulation and melt.  
Figure 1 shows a conceptual evolution of the 
distribution of snow water equivalent in a basin 
over a season.  Starting from no snow at the 
beginning of the season (represented by a Dirac 
delta function at 0 swe), as snow accumulates, the 
mean and variance increase until peak 
accumulation is reached.  The variability increases 
because snow inputs may be random and because 
some places receive more snow than others on a 
consistent basis.  During melt, variability may 
increase or decrease depending on whether 
locations with greater or lesser accumulation melt 
preferentially.  Differential melt increases the 
variability of snow water equivalent when areas 
with shallow accumulation melt faster than areas 
with deeper accumulation.  Such a circumstance is 
common in the western United States, where wind 
patterns during passage of synoptic scale cyclones 
create a pattern of drifts on shaded northeast-

facing slopes and scour on sunny southwest-facing 
slopes. If locations with greater accumulation 
receive more sunlight (e.g., clearings in forests), a 
reduction in variance may occur during melt. 
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Figure 1. Conceptual changes to distribution of
snow water equivalent in an area during
accumulation (black) and melt (gray).  Nugget of
probability with zero snow water equivalent (snow
  free area) represented with an arrow 

 
We can describe this behavior mathematically 
using a perturbation approach by decomposing the 
snow water equivalent at a point, W, into the 
spatial average (denoted by angular brackets) and 
the residual at the point, W'. 
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where ∂W’/∂t represents either accumulation or 
melt.  Averaging over an area, 
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where the left side of the equation is the change in 
variance with time and the right hand side is twice 
the covariance of snow water equivalent with its 
rate of change, e.g. melt or accumulation. This 
confirms that covariance between accumulated 
snow and changes in the snowpack leads to 
increases and decreases in variance.  This focuses 
our work on two problems: (1) how to relate 
consistent differential accumulation to the eventual 
formation of bare and snow covered areas 
(persistent covariance in accumulation); and (2) 
how to relate differential melt to patterns in 
differential accumulation (covariance of 
accumulation and melt) to improve relationships 
based on differential accumulation alone. 



3.    1st APPROXIMATION: DIFFERENTIAL 
ACCUMULATION – UNIFORM MELT 
 
Snow drifting is one process leading to strong 
patterns of differential accumulation at relatively 
small spatial scales [e.g. Tarboton et al., 1995; 
Liston and Sturm, 1998].  Other processes, such as 
orographic precipitation enhancement or 
interception of snow by tree crowns, lead to 
differential accumulation at both larger and smaller 
spatial scales [Seyfried and Wilcox, 1995].  
Conceptually, drift patterns are driven by wind and 
are only slightly affected by melt.  Furthermore, 
once the melt season has begun, wind transport is 
greatly reduced.  We could therefore view the 
spatial distribution of snow at the peak 
accumulation as the net effect of differential 
accumulation over the accumulation season.  
Conceptually, this can be viewed as a generic 
probability density function of snow water 
equivalent, fg(W), at the beginning of the melt 
season (Figure 2). 
 
As a first approximation, we can consider what 
happens when a snowpack with this distribution of 
snow water equivalent is subjected to uniform melt 
[see Luce et al., 1999 for more details].  Figure 2 is 
reminiscent of Figure 1, but shows how the 
fractional bare area for a given amount of melt, M, 
is equivalent to the fraction of the area that had 
less than M snow water equivalent at peak 
accumulation.  In terms of the pdf:  
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where Fg(M) is the cumulative density function 
evaluated at M.  For any value of M, Af(M) is the 
fraction of the area with more than M units of 
snow water equivalent at peak accumulation.  The 
function Af(M) may be numerically evaluated from 
a sample of snow water equivalent values taken 
across the area of interest.  The function Af(M) is 
the classical depletion curve expressed as 
fractional snow-covered area as a function of 
potential cumulative melt depth [Anderson, 1973; 
Rango and Van Katwijk, 1990]. 
 
Potential cumulative melt is the cumulative depth 
of melt in areas that have snow.  Temperature 
index models estimate the potential melt, and 
models using such estimates can easily track 
accumulated potential melt values.  Mass and 
energy balance models track the volume or depth 
equivalent of water within an area.  Consequently 

it is desirable to directly relate Af to a state 
variable like area average snow water equivalent.  
One can estimate the area average snow water 
equivalent, Wa, as a function of M from  

Wa = mean of truncated pdf.
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Figure 2.  Schematic of generic distribution of
snow water equivalent showing effect of uniform
  melt depth M on the distribution. 
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a form that is particularly useful since the function 
Af(•) is defined in equation 4.  Af(M) and Wa(M) 
can be viewed as parametric functions in M and 
pairs of Af and Wa can be plotted to yield a water 
equivalent basis depletion curve, Adc(Wa).  
Because the amount of snow at peak accumulation 
varies from year to year, we normalized Wa, by the 
maximum area-average snow water equivalent in 
the season to date, Wamax, to yield a dimensionless 
snow water equivalent W*= Wa/Wamax and the 
dimensionless depletion curve Adc(W*). 
 
These equations and methods provide the means 
for estimating the depletion curve from samples of 
snow water equivalent, however it is useful to look 
at depletion curves derived from a few parametric 
distributions to understand how the distribution of 
snow influences the depletion curve (Figure 3).  
The highest curve is for a normally distributed 
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Figure 3. Depletion curves derived for four
distributions: (a) normal, CV=0.1, (b) lognormal,
  CV=0.75, (c) exponential, (d) gamma, skew=4.7. 



snowpack with low coefficient of variation, 
representing a fairly uniform snow pack.  One can 
see how there would be no decrease in snow 
covered area until a substantial portion of the 
snowpack had melted.  Methods discussed in 
Buttle and McDonnell [1987] and Dunne and 
Leopold [1978] are for normal distributions.  The 
next curve is for a log normally distributed 
snowpack with high CV.  The nearly straight line 
results from an exponentially distributed 
snowpack, and the lowest, shaped like the 
empirically derived one here, results from a 
gamma distribution with high skew.  These 
progressively show how increased variance and 
skew affect the shape of the depletion curve. 
 
Figure 4 shows a depletion curve estimated from 
equations 4 and 5 based on 255 samples from a 
0.25 km2 basin in southwestern Idaho, USA.  The 
depths from the gridded sample are shown in 
Figure 5, demonstrating pronounced heterogeneity 
caused by wind drifting.  Figure 4 compares this 
depletion curve with observations of snow water 
equivalent and snow covered area on 9 days and 

the relationship estimated from a distributed model 
that applied a point model on each of 255 grid 
elements 30.3 m on a side. Note that there is a 
temporal component to the position on the curve, 
and the points for the observations and for the 
distributed model show the hysteresis of 
accumulation versus melt in the relationship 
because some of the points are from the period 
prior to the melt season.   In these curves it can be 
noted that the curve estimated based on the 
approximation of uniform melt is somewhat to the 
left and higher than either the observations or the 
curve estimated from the distributed model.  This 
position implies less variability.  Because this first 
approximation only accounts for variability caused 
by differential accumulation, it is expected to be to 
the left and above points from models accounting 
for heterogeneity in accumulation and melt.  
Further, one might expect both models to be to the 
left and above points from observations. 
 
 Important questions are: (1) does this 
parameterization improve estimates of melt over 
an area compared to modeling it as a uniform 
element; and (2) does the depletion curve vary 
from year to year.  Figure 6 shows that the 
parameterization, using a single model element, 
performs as well as a distributed model using 255 
format last linemodel elements for the same 
area.  Both represent a tremendous improvement 
over a homogeneous depiction of the basin, which 
estimates complete melting of the basin two 
months too early [Luce et al., 1998].  Figure 7 
shows observed depletion curve relationships for 
the basin for 9 years in which sampling was done.  
These curves show a strong grouping with no real 
indications of substantial year-to-year variability 
even though the years covered include both wetter 
than normal and drought years.  This indicates that 
the normalization done to create the dimensionless 
depletion curve is practical and applicable in other 
years without modification for this basin.  Others 
[Kirnbauer and Blöschl, 1994; Liston and Sturm, 
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Figure 4. Depletion curve for Upper Sheep Creek
derived by three methods, (1) From PDF of snow
water equivalent on March 3, 1993, (2) from
distributed model outputs, and (3) from
observations.  Note hysteresis in relationship as
snow covers entire area with only slight
accumulation in early season (on left and top),
   while melt uncovers areas gradually. 
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Figure 5. Grid of snow water equivalent at Upper
       Sheep Creek March 3, 1993. 
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the distributed model and the parameterization
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1998] have also noted that spatial patterns in snow 
cover seem to be consistent from year to year in 
Alpine and arctic basins.  This is not a necessary 
condition for the parameterization to be useful, and 
may not be a general behavior for all basins.  
There may be areas where a change in global 
circulation affects wind directions during snow 
deposition, which would change the distribution of 
snow water equivalent at peak accumulation. 

4.    2nd APPROXIMATION: DIFFERENTIAL 
ACCUMULATION – DIFFERENTIAL MELT 
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Figure 7. Depletion curves from 9 years of data at 
Upper Sheep Creek (Data provided by K. Cooley).

 
Beginning with the assumption used in the first 
approximation that the distribution of the 
snowpack at peak accumulation represents the 
heterogeneity due to differential accumulation, we 
can seek improvements in the parameterization by 
incorporating variability induced by differential 
melt.  One approach is to assume that much of the 
variability in melt energy is caused by differences 
in solar radiation that can be estimated from the 
terrain.  In this case we coupled a map of incoming 
solar radiation calculated for the 24-hour period 
around the spring equinox (~ March 21 in the 
Norhern Hemisphere) with the map of snow water 
equivalent at peak accumulation to see how solar 
radiation inputs correlated to accumulation, e.g. 
the covariance of accumulation with melt. 
 
The map of solar radiation was normalized by the 
basin average energy input, to give a value of Er, 
the relative energy (dimensionless) given as: 
 

Er = El/Eba       (6) 
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Where El is the local total solar radiation for the 
day and Eba is the basin average solar radiation for 
the day.  Plotting Er verses W (Figure 8) shows 
that places with deeper accumulations have 
generally less exposure to solar radiation than 
places with shallower accumulations.  Note that 
this scatter plot can also be viewed as a joint 
probability distribution function where areas with 
higher dot densities have greater representation in 
the distribution function.  Noting that reduced 
energy inputs are essentially equivalent to having 
deeper snow in terms of the amount of time before 
the location is snow free, we can divide W by Er to 
collapse this bivariate distribution into a new 
univariate distribution in We, where: 
 

We = W/Er       (7) 
 
This new variable, We, can be treated like snow 
water equivalent in equations 4 and 5 to produce a 
new depletion curve Adc(We

*).  This depletion 
curve, which incorporates both differential 
accumulation and differential melt lies closer to 
the observations and almost on top of the curve 
derived from the distributed model (Figure 9). 
 
 
5.    CONCLUSIONS 
 
Depletion curves relating area-averaged snow 
water equivalent to the fractional snow covered 
area are an effective parameterization to 
mathematically describe the effect of heterogeneity 



in snow accumulation and melt within a model 
element.  While distributed models typically 
calculate only element-to-element variability, and 
rely on it to account for most of the variability 
within an area, use of a parameterization like the 
one presented here makes the assumption of 
homogeneity at the sub-element scale unnecessary.   
 
The parameterization uses information about the 
distribution of snow and how that distribution 
relates to incoming melt energy to account for 
covariance in accumulation and melt that 
eventually lead to patchiness in snow cover.  If the 
patchiness in an area is not modeled, models 
typically estimate melt occurring too early. 
 
Applying the parameterizations to other regions or 
element sizes requires recognition of the 
relationship between site characteristics, element 
size, and variability.  The site we examined had a 
relatively small area, but extreme heterogeneity in 
accumulation within that area.  One might expect 
that there would be less heterogeneity in 
accumulation under forest canopies, where winds 
are moderated.  As model element sizes are 
increased, different sources of variability, e.g. 
changes in vegetation or elevation, may increase 
the variability, shifting the depletion curve lower 
and to the right in Figure 3. Variability in solar 
radiation, and in particular, its covariance with 
accumulation is important in determining the shape 
of a depletion curve.  In a forest, the scale of 
variability in accumulation may be very fine and is 
probably uncorrelated to solar inputs; in an open 
basin, drifting is more closely tied to topography, 
which in turn drives solar inputs.  The methods 
presented are mathematically robust enough to use 
direct sampling data with spatial registration 
however such data are not always available.  Even 
an approximate depletion curve, estimated based 
on considerations like those listed earlier in this 
paragraph, could provide a basis for substantial 
improvements over assuming homogeneity within 
each element of a distributed model. 
 
 
6.   REFERENCES 
 
Anderson, E. A., National Weather Service River 

Forecast System-Snow Accumulation and 
Ablation Model. NOAA Technical 
Memorandum NWS HYDRO-17, U.S. Dept 
of Commerce, Silver Spring, Md., 1973. 

Bathurst, J. C., and K. R. Cooley, Use of the SHE 
Hydrological Modelling System to Investigate 
Basin Response to Snowmelt at Reynolds 
Creek, Idaho, Journal of Hydrology, 175, 
181-211, 1996. 

Beven, K., Changing Ideas in Hydrology—The 
Case of Physically-Based Models, Journal of 
Hydrology, 105, 157-172, 1989. 

Beven, K., Linking parameters Across Scales:  
Subgrid Parameterizations and Scale 
Dependent Hydrological Models, 
Hydrological Processes, 9, 507-525, 1995. 

Brutsaert, W., Catchment-Scale Evaporation and 
the Atmospheric Boundary Layer, Water 
Resources Research, 22(9), 39S-45S, 1986. 

Buttle, J. M., and J. J. McDonnell, Modelling the 
areal depletion of snowcover in a forested 
catchment, Journal of Hydrology, 90, 43-60, 
1987. 

Dunne, T., and L. B. Leopold, Water in 
Environmental Planning. W. H. Freeman and 
Co., San Francisco, 1978. 

Kirnbauer, R., and G. Blöschl, How similar are 
snow cover patterns from year to year?, 
Deutsche Gewässerkundliche Mitteilungen, 
37(5/6), 113-121, 1994. 

Kirnbauer, R., G. Blöschl, and D. Gutknecht, 
Entering the Era of Distributed Snow Models, 
Nordic Hydrology, 25, 1-24, 1994. 

Liston, G. E., and M. Sturm, A Snow-Transport 
Model for Complex Terrain, Journal of 
Glaciology, 44(148), 498-516, 1998. 

Luce, C. H., D. G. Tarboton, and K. R. Cooley, 
The Influence of the Spatial Distribution of 
Snow on Basin-Averaged Snowmelt, 
Hydrological Processes, 12(10-11), 1671-
1683, 1998. 

Luce, C. H., D. G. Tarboton, and K. R. Cooley, 
Subgrid Parameterization Of Snow 
Distribution For An Energy And Mass 
Balance Snow Cover Model, Hydrological 
Processes, 13(12/13), 1921-1933, 1999. 

Rango, A., and V. Van Katwijk, Development and 
testing of a snowmelt-runoff forecasting 
technique, Water Resources Bulletin, 25(1), 
135-144, 1990. 

Seyfried, M. S., and B. P. Wilcox, Scale and the 
Nature of Spatial Variability:  Field examples 
having Implications for Hydrologic 
Modeling, Water Resources Research, 31(1), 
173-184, 1995. 

Tarboton, D. G., T. G. Chowdhury, and T. H. 
Jackson, A Spatially Distributed Energy 
Balance Snowmelt Model, in 
Biogeochemistry of Seasonally Snow-
Covered Catchments, edited by Tonnessen, K. 
A., Williams, M. W., and Tranter, M., pp. 
141-155, IAHS Publ. no. 228, Boulder, Colo., 
1995. 

Wigmosta, M. S., L. W. Vail, and D. P. 
Lettenmaier, A Distributed Hydrology-
Vegetation Model for Complex Terrain, 
Water Resources Research, 30(6), 1665-1679, 
1994. 


	1.    INTRODUCTION
	2.    BACKGROUND
	3.    1st APPROXIMATION: DIFFERENTIAL ACCUMULATIO
	5.    CONCLUSIONS
	6.   REFERENCES

