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Abstract (150 words)

A downscalingool was developed to providgeib-daily high spatial resolution surfaces of
weather variables fatistributed hydrologic modelinfjom NASA Modern Era Retrospective
Analysis for Research and Applicatiomnalysis productd he tooluses spatial interpolation
andphysicaly basedelationshipbetween theveathewariables and elevatidon provide inputs
at the scale of a gridded hydrologic model, typicaityaller (~100m) than the scaleveéather
reanalysis data (~20 200 km) NashSutcliffe efficiency (NSE) measures greater tha®0.7
were obtained fodirect tests of downscalethily temperature and monthly precipitatianl 73
SNOTELSsites. Inanintegrated test drivinthe Utah Energy Balance (UEB) snowmelt model
80% ofthesesites gave NSE > 0.fbr snow water equivalentThese findings motivate use of
this tool in data sparse regions where ground based observations are not available and
downscaled global reanalysis products may be the only digtianodel inputs
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1. Introduction

High resolutionweatherdata are increasingly used in distributed hydrologic modeling
studies to simulate hydrological responses in heterogeneous areas. The outcomes of these studies
are critical for water resources management decisions related to agricultural water supply,
ecosytem services and hydropower production. While computer models in hydrology vary
widely in purpose, complexity and spattamporal scalgyhysically based distributedodels
requireas inputcontinuousand completéime-varyingweatherdata ateachgrid point or model
element(Jeffrey et al., 2001 Moreover physically basegnergy balance models often require
incoming |diation fluxes and wind speed, which are not measurat\aeatherstations
especially in developing countrigSlobally available climate reanalysis data provides an option
for obtaining hydrologic model inputs where surface observations are limited or not available.
However climate reanalysis data is often at a scale that is much coarser, typically 20 to 200 km,
than the grid scale of physically based distributed hydrologic models, 100 m or less, derived
from digital elevation models and scaled to represent topographic variability. There is thus a
need for tools to produce inputs at the scale of hydrologic mbrdetsclimate reanalysis data.

In this study, we developed a spatial downscaling tool for generatiogidy grid
surfaces of weather data over a complex terrain using reanalysis and satellite based precipitation
data The tool wagleveloped to addresise problem of obtaining sufficiently accurate input data
to appy the Utah Energy Balance Snowmelt Model (UEB}he melting of glaciens the
Himalaya regior(Brown et al., 2014Sen Gupta, 20146en Gupta et al., 2015Sen Gupta and
Tarboton, 2018 The tool was designed to take inputs from lagged reanalysis products such
as NASA'sModernEra Retrospective Analysis for Research and Applications (MERRA)
(Rienecker et al., 20)1and NOAA's Rainfall Estimation (RFE®ajracharya et al., 2014
2015 Shrestha et al., 201Xie and Arkin, 1996 Xie et al., 2002 products. UEB is an energy
and mass balance snowmelt model designed farldistd application over a watershed at a grid
scale fine enough to quantify topographic and vegetation variahbitiiyding the variability in
elevation, slope and aspect that are important for radiation ifijpuds and Tarboton, 2010
Mahat and Tarboton, 201Zarboton and Luce, 1996 Typically the scale is chosen based on
the scale of a digital elevation model (30 to 100 m), a scale we refer to as the hydrological scale.

UEB requires inputs of precipitation, air temperature, degiting long and short wave



radiation, air humidity @d wind speed at the scale and elevation of its grid cells. UEB inputs
include slope and aspect and it adjusts internally for the effect of these on radiation, but
adjustments due to processes in timeosphere above the surface are not modeled within UEB
and should be accounted for in inputs provided to UEB. These include adjustments in
temperature and humidity due to lapse rates and the differences in elevation between the
observatiorsitesor nominalelevation of a meteorological model or reanalysis input.
Precipitation, radiation and wind are also elevation dependent. This paper addresses the
hydrometeorological downscaling required to adjust inputs from the scale of a meteorological
model or rearlgsis to the scale of the hydrological grid. Hydrometeorological downscaling is
not unique to the application of UEB. It is required for any fine scale (DEM scale) hydrological
model. Itis distinct from the statistical or dynamical downscaling (e.@uthée Research and
Forecasting Model, nested within a General Circulation Model) used to go from climate model
scale (~ 0.5 to 2 degree) to regional model scale (~ 2 to 10(Bengstad, 20Q4-owler et al.,
2007 Wilby et al., 2002 Xu, 1999. Existing approaches for hydrometeorological downscaling
include MTCLM (Hungerford et al., 1989Integrated Runoff Model BultqiRMB, Gellens et
al., 2000, Daymet(Thornton et al., 2002 MicroMet (Liston and Elder, 20QGand TopoSCALE
(Fiddes and Gruber, 2014

Sparse meteorological data in the Himalayan region motivated devebopiathodology
for driving UEB usingdownscaledjlobally available reanalysis data. However tiveas
insufficient data there to evaluate and validate the downscaling approaches described here.
Instead, the methodology was evaluated at sites in the Wes$enrhére there is more data
available. Precipitation and temperature were directly comparé@® &NOTEL sites in Utah,
Nevada, Idaho and California. Radiation and wdpd/nscalingdata for which is less widely
available was tested using data from théah State University Doc Danisite (NRCS, 2014in
the Logan River watershed from October 2009 to June 2010 where we had access to additional
detailed field observations. The downscaled data were also used in an integrateditesthe
UEB snowmelt model to simulate the spatial and temporal variability of Snow Water Equivalent
(SWE)at these SNOTESites. This tess the integral effect of downscaled inputs in the context
of the UEB model. Results do depend on the sensitivitliyge model to inputs, and thus this test

may not reveal discrepancies in inputs to which the model is less sensitiuttinbately it is the



performance of the model that we are interestesadiscrepancies in these variables are less
importantin this context

The code for the tool we developed)led MERRA Spatial Downscaling for Hydrology
(MSDH), is open source and available in a public bitbucket repository

(https://bitbucket.org/AvirupSenGupta/msdh.)skn’ developinghetool described herere

drew upon ideas in prior woKiddes and Gruber, 201Hungerford et al., 1989.iston and
Elder, 2006 Thornton et al., @12), but new code was developed and made open saswe
needed a tool that can produce hydrologic model inputs from globally available climate
reanalysis data, and that can be freely distributed and igeeasg Micromet(Liston and Elder,
2006 incorporates much, but not all of the physics we wanted, but operates on point data and the
code for MicroMet is only available for a fee. The recent Fiddes and G2@ie) articlehas
elements in common with our approach, thogs not repoon code availability and appeared
after we had substantially developed MSDH. The contribstibthis paper include the
physically basethiydrometeorological downscalimgethodology, open source R code
implementation and graphical user interfaofwarethat embeds direct access to MERRA and
RFE2 data sources used as input.

In this paper we nexgive background oreanalysis data available from climate models
(section 21), notablythe NASA ModerrEra Retrospective Analysis for Research and
Applications (MERRA) model used in our stuatydreviewcurrent hydrometeorological
approaches for the generation of gridded data from point observations that provide the
foundation for our approadBection 2.2) Section 2.3describes th&EB snow and glacienelt
model.We then describthe hydrometeorological downscaling methodology (sectiana)
software implementation of the downscaling tool (section 4)tiWe describe the data from the
western US (sections 5.1 to 5.3) aedults (section 5.4) fromvaluation of the methodology.
Sections @and 7 give discussions and conclusions respectiVelghnical model detailsre

given in appendiA.

2. Background

2.1. Literature Review onClimate Reanalyss Data


https://bitbucket.org/AvirupSenGupta/msdh.usu/

Climate reanalysis datasets are commonly used to complement a limited observational
record. Climate reanalysis dasgproduced by ranalyzing historic observations usiaglimate
modelthat hasuinchanging parameters and equations based on known phis&gassimilate
measurements of different atmospheric variables (temperature, pressure, precipitation etc.) from
many source® produce spatially complete, gridded meteorological variables at a continental or
global scaldKucera et al., 20LRienecker et al., 20)1Most reanalysis data are also
temporally complete during the satellite era (1979 to present) and are typically generated at a
resolution (hourly, dhourly and éhourly) sufficient to capture the diurnal variabil(fienecker
et al., 201} Thereare anumber of reanalysis da@tsavailable includingrom European Centre
for MediumRange WeathgDee et al., 200)1 NOAA/NCEP (Kanamitsu et al., 2002Japanese
55-year ReanalysiéEbita et al., 2011andNASA ModernEra Retrospective Analysis for
Research and Applications (MERR@Rienecker etlg 201]). Theseadatasetshave proven to be
valuable research taoin meteorology, climatology, and ecolofRienecker et al., 20} ndan
important source fapbtaining forcing variables to drive hydrological models in data scarce
regions such as the Himalayas in South AXia et al., 200y and the Blue Nile Basin in Africa
(Dile and Srinivasan, 20)4Howeverreanalyss pr eci pi t ati ocontamnd surf ac
uncertaintybecause of model biases in long term climatology and limitations in reprodbeing
diurnalcycle. A recent study by Kishore et @013 shows that the mean difference between
the seasonal precipitation from various reanalysissdtdim the Western Himalayas can be as
high as 86% from the observed value. This study also shomhéhperformance of reanalysis
precipitation substantially varies over different seasons and regions in India. Tha;utecy
of the reanalysis data must be taken into account before theimgn hydrologic applications.

This needmotivated us toevduate the accuracy of downscaled meteorological data in the
context of it being used to driva energy balance snow melt model.

This work was donas parbf a NASA applications proje¢Brown et al., 2014Sen
Gupta, 2014Sen Gupta et al., 201@&hose goal was to evaluate and apply NASA technology in
the developindgdimalayan region. This dictated the use of MERRA and RfE6athern Asia
Daily Rainfall Estimatgproducts as primary data sources for the downscaling and hydrologic
modeling.

MERRA is a neareattime global climate reanalysis product developed by NASs

Gl obal Modeling and Assimilation Ofyce provid



present). MERRA is derived from the Goddard Earth Observing System version 5-8EOS
NASA general circulation modéRienecker et al., 201 Buarez et al., 200&nd National
Centers for Environmental Prediction (NCEP) Gridpoint Statistical Interpolation (GSI) analysis
(Wu et al., 2002 Hourly temperature, wind speed, and relative humidity are available at a
spati al resol uti on ofan@3hd&gyintomimgshartwadeeandby 1/ 2 ¢
longwaverad at i on ar e avail abl e at (lacclesi, 201 er r esol u
Assimilation of satellite precipitation and-situ information reduces the uncertainty in climate
variable fieldan MERRA and makes the data more usefuldeariety of applicatiosincluding
flood and drought studig&ucera et al., 2013

Given $ortcomings in MERRA precipitation fieldRFE2is an alternative source for
precipitation dataThe merits of precipitation data from these two datasets (i.e. RFE2 and
MERRA) are discussed by Shrestha e{2008 and Reichle et a{2011), respectivelyRFE2
was favored in our Himalayan application daets adoption by our regional collaborators
(Shrestha et al., 20L3RFEZ2 is aNOAA high resolution (0.1° 0.1°)daily observatiorbased
precipitation product over South AqBajracharya et al., 2012015 Shrestha et al., 201Xie
and Arkin, 1996 Xie et al., 2002 Rainfall Estimation (RFEZ2) daily total precipitation estimates
are constructed using four observational input data sources: approximat&y 38fations,
geostationary infrared cloud top temperature fields, polar orbiting satellite precipitation estimate
data from SSM/I, and AMSB microwave sensolie et al., 2002 Near realtime daily
rainfall estimations are avall@édl Exbfeo Nobr¢teh )S m
a spatiakesolutiono f 0 . 1 begibning dh May @1, 2001

2.2. Literature Review on Hydrometeorological Downscaling

The Parameteelevation Regressions on Independent Slopes Model (PRISM) is a widely
used approach to produce higgsolution climate data in North America. PRISM generates
gridded estimates of annual, monthly, and exssed climatic variables such as maxm and
minimum temperature, precipitation, and humidity using observational data at point locations,
DEM, other spatial data, and local informati{@ualy et al., 19941997 200Q 2008. Variables
at a target site are calculated by using linear regression, with regression weighting factors

estimated based on elevation, terrain aspect, coastal proximity, andl\artnass layering



(Hunter and Meentemeyer, 2009 he spatial scale of PRISM outputs can be as fine as 800 m,
reducing the adjustments required for application at the hydrological scale (~18RIBSM
was not considereior this study, due to its products being limited to the W& nevertheless
anticipate that the methodology developed in this paper for MERRA and RFE2 data could be
used with PRISM data to produce model inputs at the hydrologicwsithla the US

Physically basedhydrameteorological downscaling techniqusesh asviTCLIM
(Hungerford et al., 1999DAYMET (Thornton et al., 200)2MicroMet (Liston and Elder, 2006
andTopoSCALE(Fiddes and Gruber, 20)1distribute poirimeasured information over a
modeling domain or downscale from eitheriog@l or global informatiomo a distributed local
modeling domain. MTCLIM provides algorithms for extrapolating meteorological forcing
variables such as daily air temperature, precipitation, solar radiation, and relative humidity at a
location of interst by using point measurements at weather stagdinenermann and Roberts,
2001]). This approach constructs climate data at any elevation by adjusting the observed data
collected at lower elevation climate statiokketeorological variables aradjusted for elevation
difference between the weather station and target site, slope, aspewgsasientation and
leaf area index (LAI). The main objective of developing MTCLIM was to provide inputs to an
ecological modelor simulating plant growth in mountainous regions where observed data is
sparse. DAYMET extends MTCLIM algorithms to produce gridded daily meteorological
variables by interpolating observations at multgites across larger regioi§hornton et al.,
1997 Thornton et al., 203Zimmermann and Roberts, 2Q0MicroMetis a quasiphysically
based spatial and temporal downscatimgdelcapable of producing higresolution (30 to 1000
m) climate data over a wide range of landscdpiston and Elder, 2006 Using grounebased
observations of air temperature, precipitation, relative humidity, wind speed, and direction within
or near the area of interest, MicroMeticulatesigh-resolution gridded air temperaéy
precipitation, pressure, relative humidity, wind speed and direction, and shortwave and longwave
radiation. Spatial interpolationsethe Barnes objective analysis scheiBarnes, 1964 and
adjustments are made for elevation, topography, and cloudlnsss and Elder, 2006The
TopoScale moddFiddes and Gruber, 20ldoes not use point observations as input. Instead it
takes input fronERA-Interim griddeddata(Dee et al., 201)lusing interpolation of pressure
level data according ahigh-resolution DEM elevationThe physical concepts in TopoScale

are quite similar to those of MicroMet, and those that weemphted here, but an important



idea introduced with TopoScale is the quantification of lapse rates from information at higher
levels in the reanalysis data, rather than relyingliomatological averages or values estimated
from ground stations. This alis lapse rate adjustments to be time varying based-on re
analyzed atmospheric conditions at each time step.

2.3. Utah Energy Balance Snow and Glacier MelModel

TheUtahEnergy Balance modé& aspatially distributeanodel that uses energy balance
formulations to simulate the snowmelt and SWE over a watershed, driven by gridded weather
inputs(Luce and Tarboton, 201Mahat and Tarboton, 201Zarboton et al., 1999 arboton
and Luce, 1996You, 2004. UEB is physicallypbased and tracks point energy and mass balances
to model snow accumulation and melt. UR&s four state variables: surface snow water
equivalent, W (m); surface snow and substrate energy contentkdUm?hr?); the
di mensionless age of the snow surface d; and
snow, W, (m). The model is driveby timevarying air temperature, precipitation, wind speed,
relative humidity, and incoming shortwave and longwave radiation at time steps sufficient to
resolve the diurnal cycle. Sen Gupta e{2015 provides a detailed description of the
distributed version of UEB.

3. Downscaling Methodology

MSDH was developed to generatéd@urly grid surfaces of temperature, precipitation,
relative humidity, wind speed, and shortwave and longwave radiation over a complex terrain
watershed using MERRA and RFE2 reanalysis inputsagmndhresolution digital Evation
model (DEM) of the target area or watershBue choice of DEM resolution is left to the user
based on the watershed area, source of the DEM, availability of computer disk space, resource
constraints, and use of the data. Our choice ehausly time stepwas largely influenced by the
need for the input variables in a physically based energy balance snowmelt model to quantify the
diurnal cycle. This is a common requirement in the computation of surface energy balance so we
anticipate that this ggoach has broad applicabilityfthe model is capable of producing spatially

distributed weather data without requiring any grebaded observations, which makes it
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suitable for use in data scarce watersheds. However, when observed data is availabke it ca
used to derive location specific precipitation and/or lapse rate adjustment coefficients and bias
correction factors that improve the quality of the downscaled data. Post processing bias
correction adjustments can also be applied to other variabkss thvbre is data available to
support such adjustments. While developing the tool, we considered the following criteria.
(1) Given the target application in data scarce remote locations, often in developing
countries, the tool should be based on a free and @@ ce software solution.
(2) The tool should have an eayuse graphical user interface to hide internal codes and
file-folder complexity and to provide an intuitive visual environment.
(3) The data should be stored in a standard file format that can é&saddy readily
available software tools.
(4) The computational complexity should be limited so that the software tool can be used on

a personal computer (PC)

The MERRA variables used in this study are listed in Talsledlcarbe accessed and
downloadedromNASA6s Goddard Earth Science Data and
websiteRFE2d at a are available in gridded binary fo

Environmental Protection (NCEP) ftp websiti {(/ftp.cpc.ncep.noaa.gov/fews/S.A3la/
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Table 1. Input MERRA variables used for downscaling

Spatial
MERRA o resolution Temporal
Variable Description (longitude Resolution
latitude)
t2m Temperature at 2 m above the ground (K) 0. 6 De 5 ehourly
v2m Northward wind at 2 m above the ground (s |0 . 6 De 5 e|hourly
u2m Eastward wind at 2 m above the ground ( s 0. 6 De 5 ehourly
ps Time averaged surface pressure (Pa) 0. 6 De 5 ehourly
gv2m |Specific humidity at 2 m above the ground (kg'kg0 . 6 De 5 e|hourly
swgdwn |Surface downward shortwave flux (W3n 1. 289e¢ 0 e|3-hourly
t850 Temperature at 850 hPa (K) 0. 6 De 5 elhourly
t500 Temperature at 500 hPa (K) 0. 6 De 5 elhourly
t250 Temperature at 250 hPa (K) 0. 6 De 5 elhourly
h850 |Elevation at 850 hPa (m) 0. 6 De 5 ehourly
h500 |Elevation at 500 hPa (m) 0. 6 De 5 elhourly
h250 |Elevation at 250 hPa (m) 0. 6 De 5 ehourly

To start, MSDH automatically downloads tt@arse scale MERRA and RFEZ2 input data
for therange of dateandspatial bounding bogpecified by a useMNext, MSDH interpolates
this datao the finer scale of the hydrologic grid. Bilinear interpolation is used and coordinate
transformations are done at this step. This includes interpolation of totgdial height that
is the reference elevation foramalysis data. Then the difégrce in elevation between the DEM
and interpolated gepotential height is used to adjust each of the variables being modeled. For
temperaturealapse rate is calculated based on the MERRA surface temperature and the two
nearest elevations above the MERBUrface elevatioat each time step and grid poinkhis is
used to adjust MERRA surface temperature to the elevation of the DEM. There is also an option
for a user to input the lapse rate to be used, for example from nearby station data.

For humidity, MERRA specific humidity is used to calculate the dew point temperature,
which is then adjusted for DEM elevations using a monthly vapor pressure coefficient and

parameters in the saturation vapor pressure function for ice, relying on the relativaly line
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relationship between dew point temperature and elevation We then evaluate actual vapor
pressure from air temperature and saturated vapor pressure from dew point temfhésttare
and Elder, 2006 Relative humidity is quantified as the ratio of these two quantities.

Horizontalwind speed magnitude was obtained from eastward and northward wind
components from MERRA and was interpolated bilinearly and projected to the DEM grid
resolution. Then, the fefct of slope, aspect and curvature on wind speed was accounted for
following Liston and Sturn1998.

For solar radiation, a pressure based atmospheric attenuation coefficient was calculated
for each time step and used to adjust MERRA incoming-sathation to the grid DEM
elevation. Incoming longwave radiation was estimated based on downscaled aiaterepe
cloud cover and atmospheric emissivity.

Precipitation is adjusted, following Liston and EI§2006 using the following non

linear relationship between elevation and precipitation

02#0 O02#0 (1)

where0 2 # 0 is the MERRA or RFE2 reanalysis precipitation interpolated at DEM cell
location, and[ is a coefficient that quantifies how precipitation varies with elevation. Liston

and Elder(2006 provided a table (Table Al, Appendix A) that gigsbally averaged monthly

J values that we use as defaults. We also provide the capability for users to input values fit for
their location from observations.

Appendix A gives full details of the downscaling methodology.

4. Software Implementation

4.1.Implementing Downscaling Algorithms in R

R is a statistical software and scripting language initially developed for statistical analysis
such as hypothesissting, time series analysis and plotting, and linear and nonlinear modeling
(Carslaw and Ropkins, 20LR is also extensivelysed in environmental data analysis,
visualization, and modeling. Open source, highly optimized coding functionality, extensibility,
and simplicity contributed significantly to the large popularity of R. Users can extend its

functionality by writing R pakages, collections of weditructured reusable functions and data.

13



These packages can be distributed to the entire R user group through a single web repository
(Horsburgh and Reeder, 2QRinheiro et al., 2001 In this study, we used several existing R
packages such as utitecdf (Pierce, 201), rgdal(Keitt et al., 201}, and raste(Hijmans et al.,
2013. We also usebtlletCDF (perators CO) (Zender, 2008andClimate Data Operators
(CDO) (Schulzweida et al., 2006ools for efficient manipulation of netCDF files. NCO and
CDO are both collections of operators for statistical and arithmetic processes, subsetting,
interpdation, extraplation, and transformation of geospatial time series data stored in netCDF
files. The windows version of NCO and CDO program executables are called from R using the
system() function.

First, a R function was developed to download MERRA and RFE2 filabdorariables
listed in Table 1 for a specified spatial and temporal extent using the binary file transfer method
provided in the function download.file() from utils packalyext, for each netCDF file, all the
MERRA and RFE2 variables are aggregated thtee hourly time steps. Hourly MERRA data,
such as temperature, is averaged overathreeu r | 'y t i me step using NCO®
Then, daily RFE2 precipitation is uniformly distributed intotAree ur | 'y t i me st eps U
arithmetic process capaityl on netCDF datase{Schulzweida et al., 2006

A TIFF or image file of the DEM is read in
converted into a RasterLayer object. A RasterLayer object is single layer of raster data described
by a set of parameters, suchnasnber of columns and rows, spatial resolution, the coordinates
of its spatial extent, and map projection. The DEM RasterLayer represents the domain and
modeling grid that is the target for the downscaling. Then MERRA and RFE2 variables such as
temperatue and precipitation are read from netCDF files for each time step asdinbwosional
array. Using latitude and longitude bounding box information, the array is projected into another
RasterLayer, then the netCDF RasterLayer is projected to the DEM IRg&teusing the
projectRaster() function from raster package. This function of the raster package bilinearly
interpolates the values of the netCDF RasterL&yéhne extent and resolution of the DEM and
transforms its pr oj ec toidinate refe@nce dystemCRS)OMERRAr 0] e c
Geopotential height in netCDF files are converted to a MERRA hdigisterLayer with the
resolution and spatial extent of the DEM. The conversion of multipledimensional data
objects to a uniform RasterLayer emflge implementation of the topographical adjustment

algorithms described in Appendix A. Once the adjustment algorithms are implemented, the final
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RasterLayer of each output variable is converted into adimensional matrix in R and

appended onto a desigted netCDF file that holds the downscaled result.

4.2.Output Data Storage in netCDF

The input and output gridded data used in MSDH are stored in netCDF files. NetCDF is a
binary, multidimensional format commonly used by the oceanographic and atmospheric
scientific communities fostoring and managing scientific data. NetCIRéw et al., 2006is a
machineindependent format that allows direct access, shared access, visualization, and
appending of new data to portable binary files. The output netCDF files of MSDH are always
threedimensional: (a) X (m), (b) Y (m) and (c) time (hours). Sincentbather variables are
produced at the surface, altitude is not a required dimension. The performance of reading the
data from the files depends on the ordering of dimensions withiniéhentil the programming
language used to read the d&waMSDH we provide an option to the users to choose the order
of the dimensions in the file.

Each of the six weather variables is associati#iu six attributessuchas short name,
long name, unjtanumeric value to represent the missing data, and a plausible range of values.
All six variables are stored in the same netCDF file with a data array for each variable
corresponding to the same set of dimension vectors. A large volume of data might beedener
if the program is run for multiple years or at a very high spatial resolution or combination of
these two. To avoid storing a large volume of data in a single netCDF file, a separate file is
created for each month. The temporal sequence of the dateelpemultiple files is maintained
by incrementing the time di mension from fAti me

dimension stores the start time in each file.

4.3.MSDH Graphical User Interface

Using R packages is a relatively straightforaveask for experienced users, but it can be
challenging, witha steeplearningcurve,for beginners with no prior programming experience

We, therefore, developed a GUI in order to create a visual environment for the users to enter
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inputs and execute thefBnctions. The GUI was coded in R using the RGtk packagéhand
script runs from a C# wrapper prograhmus, theMSDH GUI hides the R code from the user
and enables data downloading and downscaling tasks while eliminating the complexity of
creating orediting codes, files, and folders.

The MSDH has three main tabs: (1) data download, (2) coefficient calculations and (3)
data downscal e. The #d)¢ravides anaptiomforthausérstda ab ( Fi gu
download data for the variables listed in Table u s i utilg paékégsPrecipitation can be
downloaded from either RFE2 or MERRA. MERRA data is available globally, while RFE2
covers only the South Asian region, but with better resolution.

The fAcoefficients cal cul skofcacuatingtimeardrying er f or
lapse rate and precipitation adjustment coefficient using observational data from the site network
within the target domain or a watershed.

The fAdata downs c al-sepdawasbaling maethbdologsndesctibedein f o u r
Appendix A. The user only needs to specify a DEM of the target spatial domama(jdTIFF
format). The user is provided with a capability to choose the source of the precipitation
adjustment factor from a set of options, such as (1) default specifiadtbg and Eldef2006),

(2) calculated fromthéa Coef fi ci ents cal cul ationso and (3)
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Figurel. Graphical User Interface fMMERRA Spatial Downscaling for Hydrology (MSDH).

5. Evaluation using Western US SNOTELsites

5.1. SNOTEL Data Sources

To test the downscaling methodology, software implementation, and test that the GUI
functioned as intended, MSDH was run for one water year starting from October 2009 to
September 2010 over the an area betvggeh5° to43.23° N latitude and 108.90° to 121.92° W
longitude(Figure2) at 120 m resolutiarl73U.S. Department of Agriculture snowpack
telemetry (SNOTEL}ites are located within the study a(dapendix B) The elevation of the
sites ranges from 1777 m to 3816 m, with an average elevation of 2537 m. Daily historical
minimum, mean, and maximum temperature; daily precipitation; snow depth; and SWE data
available at these sites was used to test the downscaloryg with daily temperature and

precipitation hourly temperature, precipitation, wind speed, relative humidity, and incoming
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shortwave radiation were availabletta¢ USU Doc Daniebite (Appendix B)from October 2009
to June 2010 from a separate stbghyMahat and Tarbotof2012 2013 and Mahat et a{2013.
This data was used to compare the downscaled relative humidity, solar radiation and wind speed

data, and to conduct a sensitivity analysis.

@® SNOTEL sites

Elevation
—— High 14405

B Low: -86

Arizona

New Mexico

400 km

Figure2. Locations of the SNOTEL sites used in this study. Blue lines indicate state
boundaries and red dots symbolize the SNOTEL sites. Utah State University Doc Daniel site is
shown as a blue dot and 8 sites that are reported in fiqamd table 4 are showy their station
ID number. The Digital Elevation Model (DEM) from the National Elevation Model dataset

shows the variability in terrain surface elevation (metegskvaluation of Downscaling
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The DEM of the Western United States was divided into a number of small regions to
prevent MSDH output files from becoming too large. Fighishows the downscaling steps for
the Logan River watershed in Utah where six SNOTEL sites are located. MERRAad@&amgpe
data was downloaded for the contiguous United States (F3gian¢ and the four grid cells
spanning the Logan River watershed (Fig8i(b)) were used in bilinear interpolation to obtain
gridded temperature at the scale ofthe DEM (Fi@rec ) ) . Thi s i nvolved usi
projection transformation capability to trans
Mercator (UTM) projection system and clip it to the extent of the DEM. This raster layer
contains bilinearly resangd temperature data, while its spatial domain, resolution, and number
of rows and columns are exactly the same as the DEM. Next, temperature was adjusted using the
lapse rate and the difference between MERRA elevation and DEM elevation using the
methodolgy described in SectionBand Appendix A. This procedure was repeated for all time
steps and grid cells. Other variables, such as incoming shortwave radiation and wind speed, were
also downscaled to the DEM spatial scale using the physically based oletyodescribed in
Section 31. Precipitation was adjusted using equation (1) and bias corrected using equation A18

using the average of SNOTEL stations within each MERRA grid cell.
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Figure3. Downscaled MERRA temperatur&Q) for the Logan River watenmed 18:00 UTC on
Dec 24, 2009 (a) temperature reported in MERRA for Contiguous USA; (b) MERRA grid cells
spanning Logan River watershed and surrounding areas and (c) downscaled temgidpdiivte

grid resolution.

NashSutcliffe Efficiency (NSE), Root MeaBquared Error (RMSE) and bias (BIAS)
were used to compare the downscaled variables with observations. These are defined as follows:

= )

.3 ™Yp
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2.3 2 3)

")1 3B 3Ef/AO (4)

where/ A @nd3 E lare observed and simulated values at any time &/ A © is the mean

of observed values and n is the number of observations. NSE is a dimensionless metric
quantifying error relative to variability, while RMSE and BIAS have the units of the quantity
being evaluated and is representative of the scale of the error. NSE ranges from 1 for
observations equal to simulations to 0O if simulations are no better than just picking the mean and
may extend into negative values for even worse performance. Guuative interpretation of

NSE is variable, but it is common practice to interpret the ranges < 0.5 as poor, 0.5 to 0.65
satisfactory, 0.65 to 0.75 good, and > 0.75 as very deaglKalraand Ahmad, 203;2Moriasi

et al., 2007.

5.2 Detailed Evaluation at USU Doc DanielSite

All five downscaled variables were compared with observations at the USU Doc Daniel
site for the period Octwer 2009 to June 2010 (Table 2, Figdye

Table 2. NastSutcliffe Efficiency (NSE), Root Mean Squared Error (RMSE) and bias (BIAS)

metrics at USU Doc Daniel site.

VariableName NSE RMSE BIAS
Temperaturg°C) 0.87 2.44 0.07
Shortwaveradiation(Wm) 0.65 209 17.07
Wind speed (m/s) 0.16 0.85 -0.06
Relative Humidity 0.64 0.12 -0.02
Precipitation(mm/day) 0.28 5.23 -0.171
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Figure4 shows that the downscaled data captures the seasonal pattern of low
temperatures in December and high temperatures in June quite successfully. The very good NSE
of 0.87 reflects this and demonstratesedt he mo
temperature. Both downscaled incoming shortwave radiation and relative humidity capture the
seasonal cycle of the observed data reasonably well; however, they fail to reproduce some short
term changes and appear to fluctuate at smaller amplitude #habgbrvations at short time
scales for some months. This is reflected in their somewhat lower NSE (Table 2). Nevertheless,
the NSE values obtained indicate the method's capability to reproduce these two variables at a
Asati sfactory o0 ebeeariables, wirtlspagdand @rdcipitaton petiorm rather
poorly (i.e., precipitation NSE = 0.28 and wind speed NSE = 0.16). The wind discrepancies
likely reflect the challenge in representing local (DEM grid scale) wind variability from regional
informaton, while precipitation discrepancies originate both in the driving MERRA data and
downscaling. Although 96% of precipitation events were simulated successfully by MERRA, it
produces a considerable number of-otiserved rainfall events with low magnitsdand fails to
simulate the magnitude of observed rainfall events (Figubettom right panel). Less intense
precipitation events are often overestimated, and moderately heavy events are underestimated.

Note thatin an earlier implementation versi¢@en Gupta, 20)4ve used linear
regression between the mean monthly temperature gauge data and gauge elevation to calculate
the monthly lapse rate. Precipitatiadjustments used the same adjustrfetbr everywhere
based on a single fitting of gauge precipitation and elevati@ne we have extended the
methodology to use atmospheric profile information from MERRA at each time step for
calculation the lapse rate. The monthly precipitation adjustment factor was calculated for each
gauge as a nonlinear functionalfservegreciptationat a gauging stations and their respective
elevation (compared to the MERRA grid elevation) at the grid cell in which the site is located.
Quantitatively, the NSE for temperature remained about the same, while the precipitation NSE

improved indicatng the merit in this approach
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Figure4. Comparison of downscaled daily mean temperature, incoming shortwave radiation,
wind speed, relative humidity, and precipitation with respect to measured data at the USU Doc
Daniel SNOTEL site. A time series pl@eft) and scatter plot (right) of observed and downscaled
data are shown for each variable.
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5.3 Broad Evaluation AcrossSNOTEL Sites

Downscaling of daily maximum, minimum and mean air temperature (4
4 ), ard daily and monthly precipitation was evaluated at SNOTEL sites for water year 2010.
Figure5 gives scatter plots of observed data at SNOTEL sites and downscaled data at DEM grid
cells where those sites are located. Table 3 shows NSE, RMSE and BIAS hibevekserved
and downscaled data for all the sites. Table 3 also reports these statistics between the observed
and bilinearly interpolated MERRA data, without elevation adjustmélttis. difference reflects
the value added due to application of the dowatisg using high resolution topography data.
each variable, the downscaled data performed better which illustrateddibe value of the
downscaling approach over simple bilinear interpolatBwth daily Tmaxand Tmeanshow NSE of
about 0.85. MSDH denscaling methods improve the dailyak simulation by NSE of 0.63 and
RMSE by 5.79. For Daily fin and Tmeanthe improvements from the downscaling are relatively
small. Downscaled fin shows slightly lower NSE (0.74) compared to daibad@nd Tmean
indicating slightly lower performance in reproducing daily minimum temperature. Monthly
aggregated downscaled precipitation also performs well against the observed SNOTEL
measurements with NSE of 0.72 and RMSE of 23.83 mm. However, at daily time steps,
precigtation simulation incorporates moderate to high uncertainty, especially during the late
winter and early spring season. The relatively low NSE value (0.44) for daily precipitation
(Table 3) indicates high uncertainty in precipitation downscaling at shionte step. However,
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the performance improvement is significant when compared with the bilinearly interpolated
MERRA precipitation, both at daily and monthly scale (table 3).

°C
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Figure5. Comparison of the downscaled dataagys) for daily mean, minimurand maximum
temperature, daily and monthly precipitation with observed da#xi§y at 173 SNOTEL sites
for water year 2010 (Oct 01 200%ep 30 2010)The straight line at 45 degrees indicates

complete agreement between the observed and simulated data.

Table 3.Comparison between thlineaily interpolated MERRA and downscalddily mean,
minimum and maximum temperature and daily and monthly precipitatitve BRCS SNOTEL
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sites.NashSutcliffe Efficiency (NSE, BIAS and RMSEare used as performanoea&iation

statistics for the comparison.

Daily mean | Daily Daily Daily Monthly
temperature | minimum maximum Precipitation | Precipitation
(°C) temperature | temperature | (mm/day) (mm/month)
°C) {®)
Satistical | 3|8 3|8 3|8 | 8 3 3 |8
e zs g 22 B (2SR 2TIE 2T G
mE | QO mE | QD mE| QD mE | Q0 mE | O
NSE 083 |0.84 |0.71 |0.74 |0.23 [0.86 |<O 044 |0.11 |0.72
RMSE 412 398 490 |4.72 [9.99 420 [4.11 |3.73 |41.54 |23.83
BIAS -2.92 |-1.18 {294 |-1.86 |-9.96|-0.52 |-0.81 | 0.008 | -24.41 | 0.21
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