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Abstract (150 words) 

A downscaling tool was developed to provide sub-daily high spatial resolution surfaces of 

weather variables for distributed hydrologic modeling from NASA Modern Era Retrospective-

Analysis for Research and Applications reanalysis products. The tool uses spatial interpolation 

and physically based relationships between the weather variables and elevation to provide inputs 

at the scale of a gridded hydrologic model, typically smaller (~100m) than the scale of weather 

reanalysis data (~20 to 200 km). Nash-Sutcliffe efficiency (NSE) measures greater than 0.70 

were obtained for direct tests of downscaled daily temperature and monthly precipitation at 173 

SNOTEL sites.  In an integrated test driving the Utah Energy Balance (UEB) snowmelt model, 

80% of these sites gave NSE > 0.6 for snow water equivalent.  These findings motivate use of 

this tool in data sparse regions where ground based observations are not available and 

downscaled global reanalysis products may be the only option for model inputs. 
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Software Availability  

 

Name of software: MERRA Spatial Downscaling for Hydrology (MSDH) 

Developers: Avirup Sen Gupta and David Tarboton 

Contact address:  

Avirup Sen Gupta 

AIR Worldwide 

131 Dartmouth Street 

Boston, MA 02116. USA 

Email: avirup.sengupta@aggiemail.usu.edu 

 

Year first available:  2013 

Hardware:  PC running Microsoft Windows 

Availability:  Free and open source under the GNU General Public License version 3, 

http://www.gnu.org/licenses/gpl-3.0.html from https://bitbucket.org/AvirupSenGupta/msdh.usu/ 

Dependencies:  netCDF Operators (http://nco.sourceforge.net/), Climate Data Operators 

(https://code.zmaw.de/projects/cdo), GTK+ (http://www.gtk.org/), R (http://www.r-project.org/)   

Program language: R 

 

Highlights 

ω Tool to generate downscaled hydrologic model inputs from NASA MERRA reanalyses. 

ω Tested directly at 173 SNOTEL sites across the western US (NSE > 0.70). 

ω Tested as integrated input to an energy balance snowmelt model (NSE > 0.6).  

ω Open source R implementation with user friendly graphical interface. 

ω Useful in data sparse regions where ground based observations are not available.  

  

mailto:avirup.sengupta@aggiemail.usu.edu
http://www.gnu.org/licenses/gpl-3.0.html
https://bitbucket.org/AvirupSenGupta/msdh.usu/
http://nco.sourceforge.net/
https://code.zmaw.de/projects/cdo
http://www.gtk.org/
http://www.r-project.org/


4 

 

1. Introduction  

 

High resolution weather data are increasingly used in distributed hydrologic modeling 

studies to simulate hydrological responses in heterogeneous areas. The outcomes of these studies 

are critical for water resources management decisions related to agricultural water supply, 

ecosystem services and hydropower production. While computer models in hydrology vary 

widely in purpose, complexity and spatial-temporal scale, physically based distributed models 

require as input continuous and complete time-varying weather data at each grid point or model 

element (Jeffrey et al., 2001). Moreover, physically based energy balance models often require 

incoming radiation fluxes and wind speed, which are not measured at all weather stations, 

especially in developing countries. Globally available climate reanalysis data provides an option 

for obtaining hydrologic model inputs where surface observations are limited or not available.  

However climate reanalysis data is often at a scale that is much coarser, typically 20 to 200 km, 

than the grid scale of physically based distributed hydrologic models, 100 m or less, derived 

from digital elevation models and scaled to represent topographic variability.  There is thus a 

need for tools to produce inputs at the scale of hydrologic models from climate reanalysis data.   

In this study, we developed a spatial downscaling tool for generating 3-hourly grid 

surfaces of weather data over a complex terrain using reanalysis and satellite based precipitation 

data. The tool was developed to address the problem of obtaining sufficiently accurate input data 

to apply the Utah Energy Balance Snowmelt Model (UEB) to the melting of glaciers in the 

Himalaya region (Brown et al., 2014; Sen Gupta, 2014; Sen Gupta et al., 2015; Sen Gupta and 

Tarboton, 2013).  The tool was designed to take inputs from large-grid reanalysis products such 

as NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) 

(Rienecker et al., 2011), and NOAA's Rainfall Estimation (RFE2) (Bajracharya et al., 2014; 

2015; Shrestha et al., 2013; Xie and Arkin, 1996; Xie et al., 2002) products.  UEB is an energy 

and mass balance snowmelt model designed for distributed application over a watershed at a grid 

scale fine enough to quantify topographic and vegetation variability including the variability in 

elevation, slope and aspect that are important for radiation inputs (Luce and Tarboton, 2010; 

Mahat and Tarboton, 2012; Tarboton and Luce, 1996).  Typically the scale is chosen based on 

the scale of a digital elevation model (30 to 100 m), a scale we refer to as the hydrological scale.  

UEB requires inputs of precipitation, air temperature, downwelling long and short wave 
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radiation, air humidity and wind speed at the scale and elevation of its grid cells.  UEB inputs 

include slope and aspect and it adjusts internally for the effect of these on radiation, but 

adjustments due to processes in the atmosphere above the surface are not modeled within UEB 

and should be accounted for in inputs provided to UEB.  These include adjustments in 

temperature and humidity due to lapse rates and the differences in elevation between the 

observation sites or nominal elevation of a meteorological model or reanalysis input.  

Precipitation, radiation and wind are also elevation dependent.  This paper addresses the 

hydrometeorological downscaling required to adjust inputs from the scale of a meteorological 

model or reanalysis to the scale of the hydrological grid.  Hydrometeorological downscaling is 

not unique to the application of UEB.  It is required for any fine scale (DEM scale) hydrological 

model.  It is distinct from the statistical or dynamical downscaling (e.g. Weather Research and 

Forecasting Model, nested within a General Circulation Model) used to go from climate model 

scale (~ 0.5 to 2 degree) to regional model scale (~ 2 to 100 km) (Benestad, 2004; Fowler et al., 

2007; Wilby et al., 2002; Xu, 1999).  Existing approaches for hydrometeorological downscaling 

include MTCLIM (Hungerford et al., 1989), Integrated Runoff Model Bultot (IRMB, Gellens et 

al., 2000), Daymet (Thornton et al., 2012), MicroMet (Liston and Elder, 2006) and TopoSCALE 

(Fiddes and Gruber, 2014). 

Sparse meteorological data in the Himalayan region motivated developing a methodology 

for driving UEB using downscaled globally available reanalysis data.  However there was 

insufficient data there to evaluate and validate the downscaling approaches described here. 

Instead, the methodology was evaluated at sites in the Western US where there is more data 

available.  Precipitation and temperature were directly compared at 173 SNOTEL sites in Utah, 

Nevada, Idaho and California.  Radiation and wind downscaling, data for which is less widely 

available, was tested using data from the Utah State University Doc Daniel site (NRCS, 2014) in 

the Logan River watershed from October 2009 to June 2010 where we had access to additional 

detailed field observations. The downscaled data were also used in an integrated test to drive the 

UEB snowmelt model to simulate the spatial and temporal variability of Snow Water Equivalent 

(SWE) at these SNOTEL sites.  This tests the integral effect of downscaled inputs in the context 

of the UEB model.  Results do depend on the sensitivity of the model to inputs, and thus this test 

may not reveal discrepancies in inputs to which the model is less sensitive, but ultimately it is the 
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performance of the model that we are interested in, so discrepancies in these variables are less 

important in this context.    

The code for the tool we developed, called MERRA Spatial Downscaling for Hydrology 

(MSDH), is open source and available in a public bitbucket repository 

(https://bitbucket.org/AvirupSenGupta/msdh.usu/). In developing the tool described here we 

drew upon ideas in prior work (Fiddes and Gruber, 2014; Hungerford et al., 1989; Liston and 

Elder, 2006; Thornton et al., 2012), but new code was developed and made open source as we 

needed a tool that can produce hydrologic model inputs from globally available climate 

reanalysis data, and that can be freely distributed and is easy to use. Micromet (Liston and Elder, 

2006) incorporates much, but not all of the physics we wanted, but operates on point data and the 

code for MicroMet is only available for a fee.  The recent Fiddes and Gruber (2014) article has 

elements in common with our approach, but does not report on code availability and appeared 

after we had substantially developed MSDH.  The contributions of this paper include the 

physically based hydrometeorological downscaling methodology, open source R code 

implementation and graphical user interface software that embeds direct access to MERRA and 

RFE2 data sources used as input. 

In this paper we next give background on reanalysis data available from climate models 

(section 2.1), notably the NASA Modern-Era Retrospective Analysis for Research and 

Applications (MERRA) model used in our study and review current hydrometeorological 

approaches for the generation of gridded data from point observations that provide the 

foundation for our approach (section 2.2).  Section 2.3 describes the UEB snow and glacier melt 

model. We then describe the hydrometeorological downscaling methodology (section 3) and 

software implementation of the downscaling tool (section 4). We then describe the data from the 

western US (sections 5.1 to 5.3) and results (section 5.4) from evaluation of the methodology. 

Sections 6 and 7 give discussions and conclusions respectively. Technical model details are 

given in appendix A. 

 

2. Background 

2.1. Literature Review on Climate Reanalysis Data  

 

https://bitbucket.org/AvirupSenGupta/msdh.usu/
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Climate reanalysis datasets are commonly used to complement a limited observational 

record. Climate reanalysis data is produced by re-analyzing historic observations using a climate 

model that has unchanging parameters and equations based on known physics.  They assimilate 

measurements of different atmospheric variables (temperature, pressure, precipitation etc.) from 

many sources to produce spatially complete, gridded meteorological variables at a continental or 

global scale (Kucera et al., 2013; Rienecker et al., 2011). Most reanalysis data are also 

temporally complete during the satellite era (1979 to present) and are typically generated at a 

resolution (hourly, 3-hourly and 6-hourly) sufficient to capture the diurnal variability (Rienecker 

et al., 2011). There are a number of reanalysis datasets available including from European Centre 

for Medium-Range Weather (Dee et al., 2011), NOAA/NCEP (Kanamitsu et al., 2002), Japanese 

55-year Reanalysis (Ebita et al., 2011) and NASA Modern-Era Retrospective Analysis for 

Research and Applications (MERRA) (Rienecker et al., 2011). These datasets have proven to be 

valuable research tools in meteorology, climatology, and ecology (Rienecker et al., 2011) and an 

important source  for obtaining forcing variables to drive hydrological models in data scarce 

regions such as the Himalayas in South Asia (Xie et al., 2007) and the Blue Nile Basin in Africa 

(Dile and Srinivasan, 2014). However, reanalysis precipitation and surface þuxes contain 

uncertainty because of model biases in long term climatology and limitations in reproducing the 

diurnal cycle. A recent study by Kishore et al. (2013) shows that the mean difference between 

the seasonal precipitation from various reanalysis datasets in the Western Himalayas can be as 

high as 86% from the observed value. This study also shows that the performance of reanalysis 

precipitation substantially varies over different seasons and regions in India. Thus, the accuracy 

of the reanalysis data must be taken into account before using them in hydrologic applications. 

This need motivated us to evaluate the accuracy of downscaled meteorological data in the 

context of it being used to drive an energy balance snow melt model. 

This work was done as part of a NASA applications project (Brown et al., 2014; Sen 

Gupta, 2014; Sen Gupta et al., 2015) whose goal was to evaluate and apply NASA technology in 

the developing Himalayan region.  This dictated the use of MERRA and RFE2 (Southern Asia 

Daily Rainfall Estimate) products as primary data sources for the downscaling and hydrologic 

modeling.   

MERRA is a near-real-time global climate reanalysis product developed by NASAôs 

Global Modeling and Assimilation Ofýce providing data covering the satellite era (1979 to 
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present).  MERRA is derived from the Goddard Earth Observing System version 5 (GEOS-5), 

NASA general circulation model (Rienecker et al., 2011; Suarez et al., 2008) and National 

Centers for Environmental Prediction (NCEP) Gridpoint Statistical Interpolation (GSI) analysis 

(Wu et al., 2002). Hourly temperature, wind speed, and relative humidity are available at a 

spatial resolution of 2/3ę longitude by 1/2ę latitude, and 3-hourly incoming shortwave and 

longwave radiation are available at a coarser resolution of 1.0ę by 1.25ę (Lucchesi, 2012).  

Assimilation of satellite precipitation and in-situ information reduces the uncertainty in climate 

variable fields in MERRA and makes the data more useful for a variety of applications including 

flood and drought studies (Kucera et al., 2013).  

Given shortcomings in MERRA precipitation fields, RFE2 is an alternative source for 

precipitation data.  The merits of precipitation data from these two datasets (i.e. RFE2 and 

MERRA) are discussed by Shrestha et al. (2008) and Reichle et al. (2011), respectively. RFE2 

was favored in our Himalayan application due to its adoption by our regional collaborators 

(Shrestha et al., 2013).  RFE2 is a NOAA high resolution (0.1°  0.1°) daily observation-based 

precipitation product over South Asia (Bajracharya et al., 2014; 2015; Shrestha et al., 2013; Xie 

and Arkin, 1996; Xie et al., 2002).  Rainfall Estimation (RFE2) daily total precipitation estimates 

are constructed using four observational input data sources: approximately 280 GTS stations, 

geostationary infrared cloud top temperature fields, polar orbiting satellite precipitation estimate 

data from SSM/I, and AMSU-B microwave sensors (Xie et al., 2002). Near real-time daily 

rainfall estimations are available for the Southern Asian domain (70ę-110ę East; 5ę-35ę North) at 

a spatial resolution of 0.1ę by 0.1ę beginning on May 01, 2001.  

 

2.2. Literature Review on Hydrometeorological Downscaling  

 

The Parameter-elevation Regressions on Independent Slopes Model (PRISM) is a widely 

used approach to produce high-resolution climate data in North America. PRISM generates 

gridded estimates of annual, monthly, and event-based climatic variables such as maximum and 

minimum temperature, precipitation, and humidity using observational data at point locations, 

DEM, other spatial data, and local information (Daly et al., 1994; 1997; 2000; 2008). Variables 

at a target site are calculated by using linear regression, with regression weighting factors 

estimated based on elevation, terrain aspect, coastal proximity, and vertical air mass layering 
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(Hunter and Meentemeyer, 2005).  The spatial scale of PRISM outputs can be as fine as 800 m, 

reducing the adjustments required for application at the hydrological scale (~100 m).  PRISM 

was not considered for this study, due to its products being limited to the US.  We nevertheless 

anticipate that the methodology developed in this paper for MERRA and RFE2 data could be 

used with PRISM data to produce model inputs at the hydrologic scale within the US. 

Physically based hydrometeorological downscaling techniques such as MTCLIM 

(Hungerford et al., 1989), DAYMET (Thornton et al., 2012), MicroMet (Liston and Elder, 2006) 

and TopoSCALE (Fiddes and Gruber, 2014) distribute point-measured information over a 

modeling domain or downscale from either regional or global information to a distributed local 

modeling domain.  MTCLIM  provides algorithms for extrapolating meteorological forcing 

variables such as daily air temperature, precipitation, solar radiation, and relative humidity at a 

location of interest by using point measurements at weather stations (Zimmermann and Roberts, 

2001). This approach constructs climate data at any elevation by adjusting the observed data 

collected at lower elevation climate stations. Meteorological variables are adjusted for elevation 

difference between the weather station and target site, slope, aspect, east-west orientation and 

leaf area index (LAI). The main objective of developing MTCLIM was to provide inputs to an 

ecological model for simulating plant growth in mountainous regions where observed data is 

sparse. DAYMET extends MTCLIM algorithms to produce gridded daily meteorological 

variables by interpolating observations at multiple sites across larger regions (Thornton et al., 

1997; Thornton et al., 2012; Zimmermann and Roberts, 2001). MicroMet is a quasi-physically 

based spatial and temporal downscaling model capable of producing high-resolution (30 to 1000 

m) climate data over a wide range of landscapes (Liston and Elder, 2006). Using ground-based 

observations of air temperature, precipitation, relative humidity, wind speed, and direction within 

or near the area of interest, MicroMet calculates high-resolution gridded air temperature, 

precipitation, pressure, relative humidity, wind speed and direction, and shortwave and longwave 

radiation. Spatial interpolations use the Barnes objective analysis scheme (Barnes, 1964) and 

adjustments are made for elevation, topography, and cloudiness (Liston and Elder, 2006). The 

TopoScale model (Fiddes and Gruber, 2014) does not use point observations as input.  Instead it 

takes input from ERA-Interim gridded data (Dee et al., 2011) using interpolation of pressure 

level data according to a high-resolution DEM elevation.  The physical concepts in TopoScale 

are quite similar to those of MicroMet, and those that we implemented here, but an important 



10 

 

idea introduced with TopoScale is the quantification of lapse rates from information at higher 

levels in the reanalysis data, rather than relying on climatological averages or values estimated 

from ground stations.  This allows lapse rate adjustments to be time varying based on re-

analyzed atmospheric conditions at each time step. 

 

2.3. Utah Energy Balance Snow and Glacier Melt Model 

 

The Utah Energy Balance model is a spatially distributed model that uses energy balance 

formulations to simulate the snowmelt and SWE over a watershed, driven by gridded weather 

inputs (Luce and Tarboton, 2010; Mahat and Tarboton, 2012; Tarboton et al., 1995; Tarboton 

and Luce, 1996; You, 2004). UEB is physically-based and tracks point energy and mass balances 

to model snow accumulation and melt. UEB has four state variables: surface snow water 

equivalent, WS (m); surface snow and substrate energy content, US (kJ m-2 hr-1); the 

dimensionless age of the snow surface ɖ; and the snow water equivalent of canopy intercepted 

snow, WC, (m). The model is driven by time-varying air temperature, precipitation, wind speed, 

relative humidity, and incoming shortwave and longwave radiation at time steps sufficient to 

resolve the diurnal cycle. Sen Gupta et al. (2015) provides a detailed description of the 

distributed version of UEB. 

 

3. Downscaling Methodology 

 

MSDH was developed to generate 3-hourly grid surfaces of temperature, precipitation, 

relative humidity, wind speed, and shortwave and longwave radiation over a complex terrain 

watershed using MERRA and RFE2 reanalysis inputs and a high-resolution digital elevation 

model (DEM) of the target area or watershed. The choice of DEM resolution is left to the user 

based on the watershed area, source of the DEM, availability of computer disk space, resource 

constraints, and use of the data. Our choice of a 3-hourly time step was largely influenced by the 

need for the input variables in a physically based energy balance snowmelt model to quantify the 

diurnal cycle.  This is a common requirement in the computation of surface energy balance so we 

anticipate that this approach has broad applicability.  The model is capable of producing spatially 

distributed weather data without requiring any ground-based observations, which makes it 
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suitable for use in data scarce watersheds. However, when observed data is available it can be 

used to derive location specific precipitation and/or lapse rate adjustment coefficients and bias 

correction factors that improve the quality of the downscaled data. Post processing bias 

correction adjustments can also be applied to other variables when there is data available to 

support such adjustments. While developing the tool, we considered the following criteria. 

(1) Given the target application in data scarce remote locations, often in developing 

countries, the tool should be based on a free and open source software solution.  

(2) The tool should have an easy-to-use graphical user interface to hide internal codes and 

file-folder complexity and to provide an intuitive visual environment.  

(3) The data should be stored in a standard file format that can be accessed by readily 

available software tools.  

(4) The computational complexity should be limited so that the software tool can be used on 

a personal computer (PC) 

 

The MERRA variables used in this study are listed in Table 1 and can be accessed and 

downloaded from NASAôs Goddard Earth Science Data and Information Services Center 

website. RFE2 data are available in gridded binary format via NOAAôs National Centers for 

Environmental Protection (NCEP) ftp website (ftp://ftp.cpc.ncep.noaa.gov/fews/S.Asia/).  

 

ftp://ftp.cpc.ncep.noaa.gov/fews/S.Asia/
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Table 1. Input MERRA variables used for downscaling 

MERRA 

Variable 
Description 

Spatial 

resolution 

(longitude  

latitude) 

Temporal 

Resolution 

t2m Temperature at 2 m above the ground (K) 0.67ę  0.5ę hourly 

v2m Northward wind at 2 m above the ground (m s-1) 0.67ę  0.5ę hourly 

u2m Eastward wind at 2 m above the ground (m s-1) 0.67ę  0.5ę hourly 

ps Time averaged surface pressure (Pa) 0.67ę  0.5ę hourly 

qv2m Specific humidity at 2 m above the ground (kg kg-1) 0.67ę  0.5ę hourly 

swgdwn Surface downward shortwave flux (W m-2) 1.25ę  1.0ę 3-hourly 

t850 Temperature at 850 hPa (K) 0.67ę  0.5ę hourly 

t500 Temperature at 500 hPa (K) 0.67ę  0.5ę hourly 

t250 Temperature at 250 hPa (K) 0.67ę  0.5ę hourly 

h850 Elevation at 850 hPa (m) 0.67ę  0.5ę hourly 

h500 Elevation at 500 hPa (m) 0.67ę  0.5ę hourly 

h250 Elevation at 250 hPa (m) 0.67ę  0.5ę hourly 

 

To start, MSDH automatically downloads the coarse scale MERRA and RFE2 input data 

for the range of dates and spatial bounding box specified by a user.  Next, MSDH interpolates 

this data to the finer scale of the hydrologic grid.  Bilinear interpolation is used and coordinate 

transformations are done at this step.  This includes interpolation of the geo-potential height that 

is the reference elevation for re-analysis data.  Then the difference in elevation between the DEM 

and interpolated geo-potential height is used to adjust each of the variables being modeled.  For 

temperature, a lapse rate is calculated based on the MERRA surface temperature and the two 

nearest elevations above the MERRA surface elevation at each time step and grid point.  This is 

used to adjust MERRA surface temperature to the elevation of the DEM.  There is also an option 

for a user to input the lapse rate to be used, for example from nearby station data.   

For humidity, MERRA specific humidity is used to calculate the dew point temperature, 

which is then adjusted for DEM elevations using a monthly vapor pressure coefficient and 

parameters in the saturation vapor pressure function for ice, relying on the relatively linear 
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relationship between dew point temperature and elevation  We then evaluate actual vapor 

pressure from air temperature and saturated vapor pressure from dew point temperature (Liston 

and Elder, 2006). Relative humidity is quantified as the ratio of these two quantities.  

Horizontal wind speed magnitude was obtained from eastward and northward wind 

components from MERRA and was interpolated bilinearly and projected to the DEM grid 

resolution. Then, the effect of slope, aspect and curvature on wind speed was accounted for 

following Liston and Sturm (1998).  

For solar radiation, a pressure based atmospheric attenuation coefficient was calculated 

for each time step and used to adjust MERRA incoming solar-radiation to the grid DEM 

elevation. Incoming longwave radiation was estimated based on downscaled air temperature, 

cloud cover and atmospheric emissivity.  

Precipitation is adjusted, following Liston and Elder (2006) using the following non-

linear relationship between elevation and precipitation  

02#0  02#0
    

    
 (1) 

where 02#0  is the MERRA or RFE2 reanalysis precipitation interpolated at DEM cell 

location, and ʆ is a coefficient that quantifies how precipitation varies with elevation.  Liston 

and Elder (2006) provided a table (Table A1, Appendix A) that gives globally averaged monthly 

ʆ values that we use as defaults.  We also provide the capability for users to input values fit for 

their location from observations.   

Appendix A gives full details of the downscaling methodology.   

 

4. Software Implementation 

4.1. Implementing Downscaling Algorithms in R 

 

R is a statistical software and scripting language initially developed for statistical analysis 

such as hypothesis testing, time series analysis and plotting, and linear and nonlinear modeling 

(Carslaw and Ropkins, 2012). R is also extensively used in environmental data analysis, 

visualization, and modeling. Open source, highly optimized coding functionality, extensibility, 

and simplicity contributed significantly to the large popularity of R. Users can extend its 

functionality by writing R packages, collections of well-structured reusable functions and data. 
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These packages can be distributed to the entire R user group through a single web repository 

(Horsburgh and Reeder, 2014; Pinheiro et al., 2011). In this study, we used several existing R 

packages such as utils, ncdf (Pierce, 2011), rgdal (Keitt et al., 2011), and raster (Hijmans et al., 

2013). We also used NetCDF Operators (NCO) (Zender, 2008) and Climate Data Operators 

(CDO) (Schulzweida et al., 2006) tools for efficient manipulation of netCDF files. NCO and 

CDO are both collections of operators for statistical and arithmetic processes, subsetting, 

interpolation, extrapolation, and transformation of geospatial time series data stored in netCDF 

files. The windows version of NCO and CDO program executables are called from R using the 

system() function. 

First, a R function was developed to download MERRA and RFE2 files for the variables 

listed in Table 1 for a specified spatial and temporal extent using the binary file transfer method 

provided in the function download.file() from utils package. Next, for each netCDF file, all the 

MERRA and RFE2 variables are aggregated into three hourly time steps. Hourly MERRA data, 

such as temperature, is averaged over a three-hourly time step using NCOôs ncra command. 

Then, daily RFE2 precipitation is uniformly distributed into three-hourly time steps using CDOôs 

arithmetic process capability on netCDF datasets (Schulzweida et al., 2006). 

A TIFF or image file of the DEM is read into R using rgdalôs readGDAL() function and 

converted into a RasterLayer object. A RasterLayer object is single layer of raster data described 

by a set of parameters, such as number of columns and rows, spatial resolution, the coordinates 

of its spatial extent, and map projection. The DEM RasterLayer represents the domain and 

modeling grid that is the target for the downscaling.  Then MERRA and RFE2 variables such as 

temperature and precipitation are read from netCDF files for each time step as a two-dimensional 

array. Using latitude and longitude bounding box information, the array is projected into another 

RasterLayer, then the netCDF RasterLayer is projected to the DEM RasterLayer using the 

projectRaster() function from raster package. This function of the raster package bilinearly 

interpolates the values of the netCDF RasterLayer to the extent and resolution of the DEM and 

transforms its projection to the DEMôs projection (coordinate reference system, CRS). MERRA 

Geo-potential height in netCDF files are converted to a MERRA height RasterLayer with the 

resolution and spatial extent of the DEM. The conversion of multiple two-dimensional data 

objects to a uniform RasterLayer eases the implementation of the topographical adjustment 

algorithms described in Appendix A. Once the adjustment algorithms are implemented, the final 
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RasterLayer of each output variable is converted into a two-dimensional matrix in R and 

appended onto a designated netCDF file that holds the downscaled result. 

 

4.2. Output Data Storage in netCDF 

 

The input and output gridded data used in MSDH are stored in netCDF files. NetCDF is a 

binary, multidimensional format commonly used by the oceanographic and atmospheric 

scientific communities for storing and managing scientific data. NetCDF4 (Rew et al., 2006) is a 

machine-independent format that allows direct access, shared access, visualization, and 

appending of new data to portable binary files. The output netCDF files of MSDH are always 

three-dimensional: (a) X (m), (b) Y (m) and (c) time (hours). Since the weather variables are 

produced at the surface, altitude is not a required dimension. The performance of reading the 

data from the files depends on the ordering of dimensions within the file and the programming 

language used to read the data. In MSDH we provide an option to the users to choose the order 

of the dimensions in the file. 

Each of the six weather variables is associated with six attributes, such as short name, 

long name, unit, a numeric value to represent the missing data, and a plausible range of values. 

All six variables are stored in the same netCDF file with a data array for each variable 

corresponding to the same set of dimension vectors. A large volume of data might be generated 

if the program is run for multiple years or at a very high spatial resolution or combination of 

these two. To avoid storing a large volume of data in a single netCDF file, a separate file is 

created for each month. The temporal sequence of the data between multiple files is maintained 

by incrementing the time dimension from ñtime of originò or start time. The units of time 

dimension stores the start time in each file. 

 

4.3. MSDH Graphical User Interface  

 

Using R packages is a relatively straightforward task for experienced users, but it can be 

challenging, with a steep learning curve, for beginners with no prior programming experience. 

We, therefore, developed a GUI in order to create a visual environment for the users to enter 
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inputs and execute the R functions. The GUI was coded in R using the RGtk package and the R 

script runs from a C# wrapper program. Thus, the MSDH GUI hides the R code from the user 

and enables data downloading and downscaling tasks while eliminating the complexity of 

creating or editing codes, files, and folders. 

The MSDH has three main tabs: (1) data download, (2) coefficient calculations and (3) 

data downscale. The ñdata downloadò tab (Figure 1) provides an option for the users to 

download data for the variables listed in Table 1 using Rôs utils package. Precipitation can be 

downloaded from either RFE2 or MERRA. MERRA data is available globally, while RFE2 

covers only the South Asian region, but with better resolution.  

The ñcoefficients calculationsò tab performs the optional task of calculating time varying 

lapse rate and precipitation adjustment coefficient using observational data from the site network 

within the target domain or a watershed. 

The ñdata downscaleò tab performs the four-step downscaling methodology described in 

Appendix A. The user only needs to specify a DEM of the target spatial domain (in image/TIFF 

format). The user is provided with a capability to choose the source of the precipitation 

adjustment factor from a set of options, such as (1) default specified by Liston  and Elder (2006), 

(2) calculated from the ñCoefficients calculationsò and (3) user input. 
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Figure 1. Graphical User Interface for MERRA Spatial Downscaling for Hydrology (MSDH). 

 

5. Evaluation using Western US SNOTEL sites 

5.1. SNOTEL Data Sources 

  

To test the downscaling methodology, software implementation, and test that the GUI 

functioned as intended, MSDH was run for one water year starting from October 2009 to 

September 2010 over the an area between 36.15° to 43.23° N latitude and 108.90° to 121.92° W 

longitude (Figure 2) at 120 m resolution. 173 U.S. Department of Agriculture snowpack 

telemetry (SNOTEL) sites are located within the study area (Appendix B). The elevation of the 

sites ranges from 1777 m to 3816 m, with an average elevation of 2537 m. Daily historical 

minimum, mean, and maximum temperature; daily precipitation; snow depth; and SWE data 

available at these sites was used to test the downscaling. Along with daily temperature and 

precipitation, hourly temperature, precipitation, wind speed, relative humidity, and incoming 
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shortwave radiation were available at the USU Doc Daniel site (Appendix B) from October 2009 

to June 2010 from a separate study by Mahat and Tarboton (2012; 2013) and Mahat et al. (2013). 

This data was used to compare the downscaled relative humidity, solar radiation and wind speed 

data, and to conduct a sensitivity analysis. 

 

 

Figure 2. Locations of the SNOTEL sites used in this study. Blue lines indicate state 

boundaries and red dots symbolize the SNOTEL sites. Utah State University Doc Daniel site is 

shown as a blue dot and 8 sites that are reported in figure 7 and table 4 are shown by their station 

ID number. The Digital Elevation Model (DEM) from the National Elevation Model dataset 

shows the variability in terrain surface elevation (meters)4.2. Evaluation of Downscaling 
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The DEM of the Western United States was divided into a number of small regions to 

prevent MSDH output files from becoming too large. Figure 3 shows the downscaling steps for 

the Logan River watershed in Utah where six SNOTEL sites are located. MERRA temperature 

data was downloaded for the contiguous United States (Figure 3 (a)) and the four grid cells 

spanning the Logan River watershed (Figure 3 (b)) were used in bilinear interpolation to obtain 

gridded temperature at the scale of the DEM (Figure 3 (c)). This involved using Rôs raster library 

projection transformation capability to transform the data into the DEMôs Universal Transverse 

Mercator (UTM) projection system and clip it to the extent of the DEM. This raster layer 

contains bilinearly resampled temperature data, while its spatial domain, resolution, and number 

of rows and columns are exactly the same as the DEM. Next, temperature was adjusted using the 

lapse rate and the difference between MERRA elevation and DEM elevation using the 

methodology described in Section 3.1 and Appendix A. This procedure was repeated for all time 

steps and grid cells. Other variables, such as incoming shortwave radiation and wind speed, were 

also downscaled to the DEM spatial scale using the physically based methodology described in 

Section 3.1.  Precipitation was adjusted using equation (1) and bias corrected using equation A18 

using the average of SNOTEL stations within each MERRA grid cell. 
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Figure 3. Downscaled MERRA temperature (o C) for the Logan River watershed 18:00 UTC on 

Dec 24, 2009 (a) temperature reported in MERRA for Contiguous USA; (b) MERRA grid cells 

spanning Logan River watershed and surrounding areas and (c) downscaled temperature at DEM 

grid resolution. 

 

Nash-Sutcliffe Efficiency (NSE), Root Mean Squared Error (RMSE) and bias (BIAS) 

were used to compare the downscaled variables with observations.  These are defined as follows:   

.3%ρ  
В

В
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where /ÂÓ and 3ÉÍ are observed and simulated values at any time step t, /ÂÓ  is the mean 

of observed values and n is the number of observations.  NSE is a dimensionless metric 

quantifying error relative to variability, while RMSE and BIAS have the units of the quantity 

being evaluated and is representative of the scale of the error.  NSE ranges from 1 for 

observations equal to simulations to 0 if simulations are no better than just picking the mean and 

may extend into negative values for even worse performance.  Guidance on the interpretation of 

NSE is variable, but it is common practice to interpret the ranges < 0.5 as poor, 0.5 to 0.65 

satisfactory, 0.65 to 0.75 good, and > 0.75 as very good  (e.g. Kalra and Ahmad, 2012; Moriasi 

et al., 2007). 

 

5.2. Detailed Evaluation at USU Doc Daniel Site 

 

All five downscaled variables were compared with observations at the USU Doc Daniel 

site for the period October 2009 to June 2010 (Table 2, Figure 4).  

 

Table 2. Nash-Sutcliffe Efficiency (NSE), Root Mean Squared Error (RMSE) and bias (BIAS) 

metrics at USU Doc Daniel site. 

 

Variable Name NSE RMSE  BIAS 

Temperature (°C) 0.87 2.44 0.07 

Shortwave radiation (Wm-2) 0.65 209 17.07 

Wind speed (m/s) 0.16 0.85 -0.06 

Relative Humidity 0.64 0.12 -0.02 

Precipitation (mm/day) 0.28 5.23 -0.171 
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Figure 4 shows that the downscaled data captures the seasonal pattern of low 

temperatures in December and high temperatures in June quite successfully. The very good NSE 

of 0.87 reflects this and demonstrates the modelôs capability to successfully reproduce observed 

temperature. Both downscaled incoming shortwave radiation and relative humidity capture the 

seasonal cycle of the observed data reasonably well; however, they fail to reproduce some short 

term changes and appear to fluctuate at smaller amplitude than the observations at short time 

scales for some months.  This is reflected in their somewhat lower NSE (Table 2). Nevertheless, 

the NSE values obtained indicate the method's capability to reproduce these two variables at a 

ñsatisfactoryò level. Compared to these variables, wind speed and precipitation perform rather 

poorly (i.e., precipitation NSE = 0.28 and wind speed NSE = 0.16). The wind discrepancies 

likely reflect the challenge in representing local (DEM grid scale) wind variability from regional 

information, while precipitation discrepancies originate both in the driving MERRA data and 

downscaling. Although 96% of precipitation events were simulated successfully by MERRA, it 

produces a considerable number of non-observed rainfall events with low magnitudes and fails to 

simulate the magnitude of observed rainfall events (Figure 4, bottom right panel). Less intense 

precipitation events are often overestimated, and moderately heavy events are underestimated. 

Note that in an earlier implementation version (Sen Gupta, 2014) we used linear 

regression between the mean monthly temperature gauge data and gauge elevation to calculate 

the monthly lapse rate. Precipitation adjustments used the same adjustment factor everywhere 

based on a single fitting of gauge precipitation and elevation.  Here we have extended the 

methodology to use atmospheric profile information from MERRA at each time step for 

calculation the lapse rate. The monthly precipitation adjustment factor was calculated for each 

gauge as a nonlinear function of observed precipitation at a gauging stations and their respective 

elevation (compared to the MERRA grid elevation) at the grid cell in which the site is located. 

Quantitatively, the NSE for temperature remained about the same, while the precipitation NSE 

improved indicating the merit in this approach. 
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Figure 4. Comparison of downscaled daily mean temperature, incoming shortwave radiation, 

wind speed, relative humidity, and precipitation with respect to measured data at the USU Doc 

Daniel SNOTEL site. A time series plot (left) and scatter plot (right) of observed and downscaled 

data are shown for each variable. 
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5.3. Broad Evaluation Across SNOTEL Sites 

 

Downscaling of daily maximum, minimum and mean air temperature (4 , 4 , 

4 ), and daily and monthly precipitation was evaluated at SNOTEL sites for water year 2010. 

Figure 5 gives scatter plots of observed data at SNOTEL sites and downscaled data at DEM grid 

cells where those sites are located. Table 3 shows NSE, RMSE and BIAS between the observed 

and downscaled data for all the sites. Table 3 also reports these statistics between the observed 

and bilinearly interpolated MERRA data, without elevation adjustments.  The difference reflects 

the value added due to application of the downscaling using high resolution topography data.  In 

each variable, the downscaled data performed better which illustrates the added value of the 

downscaling approach over simple bilinear interpolation. Both daily Tmax and Tmean show NSE of 

about 0.85. MSDH downscaling methods improve the daily Tmax simulation by NSE of 0.63 and 

RMSE by 5.79. For Daily Tmin and Tmean the improvements from the downscaling are relatively 

small. Downscaled Tmin shows slightly lower NSE (0.74) compared to daily Tmax and Tmean, 

indicating slightly lower performance in reproducing daily minimum temperature. Monthly 

aggregated downscaled precipitation also performs well against the observed SNOTEL 

measurements with NSE of 0.72 and RMSE of 23.83 mm.  However, at daily time steps, 

precipitation simulation incorporates moderate to high uncertainty, especially during the late 

winter and early spring season. The relatively low NSE value (0.44) for daily precipitation 

(Table 3) indicates high uncertainty in precipitation downscaling at shorter time step. However, 
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the performance improvement is significant when compared with the bilinearly interpolated 

MERRA precipitation, both at daily and monthly scale (table 3). 

 

Figure 5. Comparison of the downscaled data (y-axis) for daily mean, minimum and maximum 

temperature, daily and monthly precipitation with observed data (x-axis) at 173 SNOTEL sites 

for water year 2010 (Oct 01 2009 - Sep 30 2010). The straight line at 45 degrees indicates 

complete agreement between the observed and simulated data. 

 

Table 3. Comparison between the bilinearly interpolated MERRA and downscaled daily mean, 

minimum and maximum temperature and daily and monthly precipitation at the NRCS SNOTEL 
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sites. Nash-Sutcliffe Efficiency (NSE), BIAS and RMSE are used as performance evaluation 

statistics for the comparison. 
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NSE 0.83 0.84 0.71 0.74 0.23 0.86 < 0 0.44 0.11 0.72 

RMSE 4.12 3.98 4.90 4.72 9.99 4.20 4.11 3.73 41.54 23.83 

BIAS -2.92 -1.18 2.94 -1.86 -9.96 -0.52 -0.81 0.008 -24.41 0.21 

 

 


























































