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Abstract 

The Utah Energy Balance (UEB) model supports gridded simulation of snow 
processes over a watershed.  To enhance computational efficiency, we developed two 
parallel versions of the model, one using the Message Passing Interface (MPI) and the 
other using NVIDIA’s CUDA code on Graphics Processing Unit (GPU). Evaluation of 
the speed-up and efficiency of the MPI version shows that the effect of input/output (IO) 
operations on the parallel model performance increases as the number of processor cores 
increases. As a result, although the computation kernel scales well with the number of 
cores, the efficiency of the parallel code as a whole degrades. The performance improves 
when the number of IO operations is reduced by reading/writing larger data arrays. The 
CUDA GPU implementation was done without major refactoring of the original UEB 
code, and tests demonstrated that satisfactory performance could be obtained without a 
major re-work of the existing UEB code.   

Keywords—Utah Energy Balance snowmelt model (UEB); Message Passing Interface 
(MPI); Compute Unified Device Architecture (CUDA); Graphics Processing Unit (GPU); 
Parallel IO. 

Highlights 
• The Utah Energy Balance snowmelt model computational kernel is highly

parallelizable
• Input/Output was the major efficiency bottleneck in parallelization
• GPU implementation was achieved without major refactoring of existing UEB

code
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Software Availability 

Program name: UEB Parallel. 

Description: Parallel version of the Utah Energy Balance snowmelt model (UEB). 

Platform: Platform independent. Tested on Microsoft Windows & Linux (CentOS 6.x). 

Source language: C++ / CUDA. 

Cost/License: Free / Open source, GNU General Public License. 

Developers: Tarboton research group, Utah State University. 

Availability: http://github.com/dtarb/ueb   

1. Introduction  

Hydrological models are used to predict environmental flow of water under 

diverse drivers of change that are complex and heterogeneous. One of the prime 

motivators of current hydrological research is the need to understand and quantify the 

possible impacts on water resources of changes in climate, land cover, land use, 

population and urbanization (Fowler et al., 2007). Such studies may require modeling of 

the hydrologic processes at various scales, ranging from headwater watersheds to river 

basins scales. As the terrestrial water cycle is affected by its interactions with 

atmospheric and oceanic processes, hydrological models at river basin or global scale 

may also need to consider the various pathways of water in the global cycle and 

magnitudes of feed-backs between different layers/components of the cycle (Levine and 

Salvucci, 1999; Maxwell et al., 2014; Paniconi and Putti, 2015). A few years ago, Wood 

et al. (2011) made a call for "Hyperresolution global land surface modeling” to 

sufficiently resolve local processes in a model of global or continental scale.  

This task of modeling the hydrologic cycle at large scale with sufficient resolution 

of individual processes poses multiple challenges. One of these challenges is the desire to 

use high-performance computing (HPC) resources to reduce computational time or 

http://github.com/dtarb/ueb
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increase the level of detail (and hence complexity) at which these problems are 

investigated. On the other hand, the availability of HPC resources is increasing. This, 

coupled with the recognition of the scientific needs for undertaking large scale hydrologic 

simulation, has led to development of simulation models that implement parallel 

processing technologies. For example, Kollet et al., (2010) present results of a study 

where an integrated multi-dimensional modeling problem with a number of unknowns in 

the order of 109 was solved within a feasible simulation time. The challenge for 

hydrological modelers is thus shifting from the lack of computing resources to 

reconfiguring their modeling software to be able to take advantage of these new 

resources.  

It should be noted here that parallel programming in hydrological and 

environmental modeling is not a new opportunity or issue (e.g., Paglieri et al., 1997; Rao, 

2004).  However, in the past two decades a strong argument has been made that the basic 

approach to software development should incorporate concurrency (multi-processes) 

programming because of the “power wall,” i.e., the upper limit imposed on the clock 

speed of single core due to overheating of high-frequency cores and other 

efficiency/optimization considerations (Brodtkorb et al., 2013; Sutter, 2005; Sutter and 

Larus, 2005). Concurrency programing has also been spurred by the definition of 

standard programing interfaces that abstract away most of the low level operations and a 

number of library implementations of these interfaces, thereby freeing a research 

programmer to focus on domain-specific modeling issues (e.g., MPI http://www.mpi-

forum.org/, OpenMP http://openmp.org/wp/).  

Given the desire to apply more physically based, distributed, high-resolution 

http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://openmp.org/wp/
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hydrologic models, and given the opportunities offered by the parallel programing 

standards and libraries, the question has then become what method to choose for a given 

model and what factors affect efficient scaling of the modeling code. In this study, we 

evaluated parallel processing implementations of the Utah Energy Balance (UEB) snow 

accumulation and melt model. We evaluated two implementations: one using the 

MPICH2 library of the Message Passing Interface (MPI) specification (Gropp et al., 

2005), and the other using NVIDIA’s Compute Unified Device Architecture (CUDA) 

code on Graphics Processing Units (GPUs) (Nickolls et al., 2008). The MPI is a 

distributed memory programming approach that promises good efficiency for the 

distributed UEB model that requires independent data for different model grid cells. On 

the other hand, the CUDA code, with its compatibility to C++, enhances the accessibility 

of general-purpose GPUs that have ability to handle compute-intensive tasks.  

The computational performance of the parallel codes was evaluated using 

simulations of the Logan River Watershed, Utah, for a period of five years. For the 

implementation with MPI, we evaluated the speed-up and efficiency of the code with 

increasing number of processor cores and compared the speed-up with the ideal speed-up 

computed based on Amdahl’s law (Amdahl, 1967, 2007). With regard to the application 

of GPUs, Neal et al. (2010) had found earlier that, even though their GPU code was faster 

and more efficient than their MPI implementation, the development time it required was 

prohibitive. In contrast, Tristram et al. (2014) reported that not only were GPUs more 

cost efficient for their application, but also achieving satisfactory speed-up with GPUs 

did not require major refactoring of their existing code. For the CUDA implementation of 

the UEB code in this study, we also evaluated if satisfactory performance could be 
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achieved by the GPU code without major refactoring of the code. 

This paper is organized as follows. In the next section, a brief discussion of 

factors to consider in parallel programing based on review of literature is given (focusing 

on hydrologic models). In Section 3, Methods, we describe the UEB model, the 

algorithms for the parallel implementations, the modeling case study to test the 

performance of the parallel codes, and the performance metrics. Results from the 

performance tests and discussion are given in Section 4, followed by conclusions in 

Section 5.  

2. Factors to Consider in Parallel Programing  

The choice of a particular parallel programing approach may depend on a number 

of factors including familiarity with the programing interface, ease of adaptation of 

existing serial code to a parallel version, and the data and memory configuration of the 

problem being modeled. Neal et al., (2010) investigated the application for 2D flood 

inundation modeling of three of the commonly used programming methods: shared 

memory Open Multi-Processing (OpenMP), distributed memory Message Passing 

Interface (MPI), and Graphics Processing Unit (GPU). They tested the three approaches 

with respect to applicability to a given problem solution, parallel code efficiency 

achieved, and required implementation effort (development time). They concluded that 

the MPI approach was the most suitable compromise between the efficiency achieved and 

programming complexity involved. They found that, even though the GPU code was the 

fastest and most efficient, the development time it required was prohibitive.  

Another important factor in parallel programming of simulation models is 

domain/data decomposition among processes. Data partitioning schemes often try to 
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address the issue of load balancing between multiple processes. A good example is a 2D 

flood inundation model where some of the grid cells in the flood plain remain dry for part 

of the model run time, resulting in some idle process time. Data partitioning schemes 

should strive to minimize such idle times (Brodtkorb et al., 2012; Sanders et al., 2010). 

With respect to hydrological models, domain decomposition is related to the flow 

dependencies (upstream-to-downstream) between computational sub-domains, where the 

computational sub-domain can be a Representative Elementary Watershed (REW), 

Hydrologic Response Unit (HRU), a structured or unstructured grid cell, or a river reach. 

In addition, load imbalance may arise from the spatial variability of processes considered 

such as areas covered with snow versus those with no snow, upstream hillslope versus 

riparian area or river channel, presence and type of vegetation, etc. Some of the 

approaches used in recent research are described below.  

The first one is the use of multiple layers in which simulation units (grids) are 

divided based on their degree of dependency on upstream units. Accordingly, units that 

do not depend on other units are placed at highest priority layer, and units that depend 

only on a single unit are placed in the second highest priority layer, and so on (Liu et al., 

2014). Another approach involves dynamic (run-time) allocation of a data partition to an 

available idle process once the partition no longer depends on upstream processes (Li et 

al., 2011). Dividing a 2D model domain into strips where the only inter-process 

communications are at the boundaries between two adjacent sub-domains is another 

approach (Tarboton et al., 2009c; Tesfa et al., 2011). A different approach, particularly 

useful for a model with a tightly coupled set of processes, is collecting all the governing 

equations into a global system of equations which are solved by a matrix solver (Qu and 
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Duffy, 2007). Such a matrix solver may divide the global matrix into sub-matrices that 

are mapped onto multiple processes. The examples above do not form an exhaustive list; 

however, they indicate that, generally, the choice of a given domain decomposition 

would be dictated by the specific modeling problem (Small et al., 2013). Presently, a 

researcher or a modeler has to consider their own problem domain and decide whether to 

use a method similar to those listed above or develop their own. The ability to 

automatically choose from certain domain decomposition methods, given a problem 

domain type, is a potential area of future study 

The extent to which a parallel program’s performance increases with increased 

availability of computing resources (e.g., number of processor cores) depends primarily 

on the fraction of code that must be executed in serial. This is the essence of Amdahl’s 

law (Amdahl, 1967, 2007) based on which the maximum possible speed-up for a given 

problem is computed as a function of the number of cores and the serial fraction of the 

code. The effect of the serial fraction of the code becomes more important with 

increasing parallelization. Yavits et al., (2014) review a number of research works that 

dealt with the effect of data transfer between the serial and parallel portions of the code 

and the inter-process communications on the maximum speed-up determined from 

Amdahl’s law. They provide models that revise Amdahl’s law, incorporating terms that 

represent arithmetic intensity—the ratio of total compute operations to data transfer 

computations, data transfer synchronization between the serial and parallel portions of the 

program, and inter-process communication and synchronization. Accordingly, the 

amount of inter-process communication and/or serial to parallel data synchronization in a 

program might inhibit its suitability for extensive parallelization. For problems with 
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relatively high inter-process communication and data synchronization, they suggest using 

fewer large cores rather than many small cores.   

Finally, the cost efficiency of the parallel method will have to be considered.  As 

indicated earlier, Neal et al., (2010) concluded that the developer time for programming 

using graphics cards was prohibitive in their modeling case. However, total cost should 

also include the price of the computing hardware units and operating costs. Tristram et 

al., (2014) reported results from a parallel hydrologic uncertainty model with multiple 

ensembles using GPUs. They compared the CPU and GPU performances with respect to 

speed-up, the cost of processors, and the cost of power usage, and found GPUs to be 

more cost efficient for their application. Regarding programmer’s time, they showed that 

to achieve satisfactory speed-up with GPUs, major refactoring of their existing code was 

not necessary. In addition, the performance was further enhanced with an optimization 

involving memory access configuration. The general purpose programming toolkits such 

as CUDA (https://developer.nvidia.com/cuda-toolkit) and OpenCL 

(https://www.khronos.org/opencl/) coupled with the cheap graphics cards on commodity 

computers make GPU programming more accessible to scientific research programmers 

(Garland et al., 2008). However, realizing the full benefits still requires learning efficient 

program organization and optimizations such as latency hiding by overlapping 

computation with Input Output (IO) operations, wise management of register and caches, 

and memory layout configuration (De La Asunción et al., 2012; Tristram et al., 2014) 

which requires more effort and time (Brodtkorb et al., 2013).   
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3. Methods 

 Utah Energy Balance (UEB) Snowmelt Model 

The Utah Energy Balance (UEB) snowmelt model tracks the accumulation and 

ablation of a single snow layer at the ground surface by energy and mass balance 

computations (Tarboton and Luce, 1996). In forested watersheds, the model accounts for 

canopy snow interception, partitioning of incoming solar and atmospheric radiation 

through the canopy layer, and turbulent fluxes of latent and sensible heat within and 

below the canopy layer (Mahat and Tarboton, 2012, 2013; Mahat et al., 2013). The snow 

surface temperature is computed using the modified Force-Restore method that 

characterizes the conduction of heat into the snowpack as a function of the temperature 

gradient between the snow surface and the average temperature of the snowpack, and by 

taking into account the temperature profile of the snowpack in the past 24 hours (Luce 

and Tarboton, 2010; You et al., 2014). In addition, glacier melt processes were modeled 

with UEB (Sen Gupta and Tarboton, 2013). The model equations and further descriptions 

can be found in previous publications (Mahat and Tarboton, 2012; Mahat et al., 2013; 

Tarboton and Luce, 1996). 

UEB is a point model in that the equations describing the state-flux relationships 

are applicable for a model element with uniform (or representative) values of terrain 

characteristics (slope, aspect, etc.), canopy variables, and meteorological forcing. For 

spatially distributed modeling, earlier research explored the use of depletion curves to 

deal with sub-watershed variability (Luce et al., 1999). Work by Sen Gupta and Tarboton 

(2013) configured the model to be run as fully distributed using Cartesian grids. In the 

gridded model, the model computations are carried out separately on individual grid cells 

with the only interaction between grid cells occurring when aggregating outputs from 
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watersheds (or sub-watersheds). This configuration makes UEB amenable to parallel 

computation with domain decomposition that is constrained only by the aggregation 

operations.  

The UEB model is driven by air temperature, precipitation, radiation, humidity, 

and wind speed. The Network Common Data Form (NetCDF), a data format that enables 

storage and manipulation of multi-dimensional arrays (http://www.unidata.ucar.edu/) is 

used as the input/output format for UEB. NetCDF includes a set of libraries and tools that 

enable array-oriented data access with advantages that include concurrent access 

(multiple readers), platform independence, efficient sub-setting, and data appending (i.e., 

additional data are added to a file without rewriting it or copying the entire contents).  A 

NetCDF file is self-contained as the metadata to describe the contents of the data and 

other ancillary information are stored within the file (Rew et al., 2014). A benefit of using 

NetCDF is that many array-oriented datasets come in some form of gridded binary format 

compatible with NetCDF. The choice to use NetCDF as input/output format for UEB was 

driven by the vision to couple the model with data sources and other models that follow 

the same standard. 

 UEB Parallel   

The flow chart for the parallel version of the UEB model with MPI 

implementation developed in this work is shown in Figure 1. Many of the tasks, including 

the weather forcing IO operations, are contained in a code block named “Run UEB in the 

grid cell for all time steps.” This step loops through all grid cells and runs the model for 

all time steps of the simulation period for a given grid cell. The operations at each grid 

cell are carried out independently from the other grid cells. This block of code takes more 

than 99% the total simulation time. This code block was, therefore, parallelized with MPI 
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in which the active grid cells, excluding the no-compute cells, were divided into the total 

number of processes. When the total number of grid cells is not evenly divisible by the 

number of processes, some processes may be allocated an extra grid, leaving the others 

with an idle time of one grid cell computation. For large sized problems, this idle time is 

expected to be small.  

At the end of the simulation, the processes collectively write results to output 

NetCDF files, one output file for each output variable. This NetCDF write requires 

synchronization among the processes as they access the NetCDF file simultaneously. One 

factor we evaluated in this study was the extent to which the IO operations can be 

parallelized, and the degree to which the synchronized access to data in NetCDF files by 

multiple processes can affect the overall performance of the parallel codes. For this 

implementation of the UEB model with MPI, we compared an IO reading/writing in 

which multiple arrays of data were handled at once to the ‘looping through the grids’ 

approach mentioned above that accesses a single array at a time (multiple arrays versus 

one-array-at-a-time).  
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Figure 1: Flow chart for the parallel version of the UEB model (UEB Parallel) with MPI. 
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Figure 2: Flow chart for the parallel version of UEB model (UEB Parallel) with GPU. 

 

The flow chart for the model implementation with GPU is shown in Figure 2. In 

this case, a UEB class was defined first as a class that encapsulates watershed, terrain, 

and canopy variables as data members and the UEB simulation functions as methods 

(member functions). This results in an array of active grid cells consisting of an array of 

UEB class instances (objects). This configuration was chosen because it was easier to 

copy arrays of objects/structures between the host/CPU and device/GPU nodes than 

copying individual variable arrays. The CPU (host) allocates GPU (device) memory and 

copies the data to the device. All the snow accumulation and ablation computations are 

carried out by the GPU functions, i.e., kernels, and outputs are copied back to the CPU 

node that writes them into NetCDF output files. In this case, in contrast to the MPI 
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implementation, only a few CPU nodes carry out the IO operations. We implemented the 

CUDA code in such a way that the changes to the UEB MPI code were kept minimal, as 

can be seen from comparison of Figures 1 and 2. The total number of code lines in the 

MPI version was 4930. Of these, 572 lines (11%) were modified in the GPU version 

which generally involved edits to ensure compatibility with CUDA devices, while 303 

lines (6%) were removed and 570 new lines (11%) were added. The objective here was to 

evaluate if the observation by Tristram et al., (2014) that implementing GPU code with 

satisfactory performance may not necessarily require major re-work on an existing 

programming code also applies to UEB. 

An important difference between the GPU implementation and the one with MPI 

is that in the GPU case the time loop is outside of the grid cell loop, i.e., simulations at all 

grid cells are carried out for a few time steps (typically a few days) before advancing to 

the next step. This way, the highly parallel nature of individual grid cell computations is 

taken advantage of without having to copy all the weather forcing data to the device at 

once. Copying weather forcing data for all time steps at once would require large 

memory at the device that could be difficult to allocate.  

The flow chart in Figure 2 was drawn assuming that the total number of GPU 

threads that can be scheduled equals or exceeds the total number of model grid cells, 

which was the case here. This assumption is unlikely to be an issue for most modeling 

cases like the one tested in this paper because the upper limit on the number of threads 

per device is quite large.  Where the number of grid cells exceeds the number of CUDA 

threads available, a strategy similar to the assignment of grid cells to threads used in the 

MPI approach of Figure 1, would be needed. In the MPI implementation, the active grid 
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cells were evenly distributed among MPI processes, when that was possible. In both 

versions of the UEB model, there is spatial variability in grid cell properties, such as 

vegetation covered versus no vegetation and snow covered versus no snow, that affects 

the number of iterations to converge to a particular solution in a given cell, and that 

introduces some variability in the total compute time among processes/threads. This is 

considered to be part of simulation overhead and will diminish the efficiency in both 

parallel implementations, compared to the ideal case of uniform grid cells. Two other 

sources of overhead are reading configuration files at the beginning of the program and 

an outputs aggregation step where watershed average or total quantities are computed. 

The aggregation operations involve inter-process communication where all processes 

transfer the values of the aggregated variables to the root process. Note that input forcing 

data reading and output writing are handled by the NetCDF IO and, in this study, are not 

considered part of the inter-process communication. 

 Test Case Study: The Logan River Watershed  

We used simulations of snow accumulation and melt for five years—October 1, 

2007- September 30, 2012—in the Logan River watershed, Utah, to evaluate the 

performance of the parallel codes. The Logan River watershed is a 554 km2 watershed 

located in the Bear River Range of Utah in the western U.S. The watershed elevation 

ranges from 1497 to 3025 m with mean elevation of 2271 m. Most of the upland 

watershed is covered by shrubs, grass, and forest and is primarily used for grazing while 

the lower reaches of the river support irrigation. The average precipitation varies between 

450 – 1500 mm per year with most of it in the form of snow. The river peaks late in the 

spring from snowmelt. Figure 3 shows the location map of the Logan River watershed 

and its digital elevation map.   
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Figure 3: Study area - Location map of the Logan River watershed and its elevation 

(DEM). 

 

The input data were setup as follows. The watershed domain was delineated from 

the 30m USGS National Elevation Dataset Digital Elevation Model (NED DEM) using 

the terrain analysis software TauDEM (Tarboton et al., 2009a; Tarboton, 2015; Tesfa et 

al., 2011). Terrain variables slope and aspect were calculated from the DEM in ESRI’s 

ArcGIS software (www.esri.com). The canopy leaf area index (LAI) were obtained from 

the Moderate Resolution Imaging Spectroradiometer (MODIS) product MOD15A2. The 

other vegetation variables including canopy height and fraction of the grid cell covered 

by vegetation were determined using the National Land Cover Database 2011 (NLCD 

2011) (Homer et al., 2015). Weather forcing data were obtained from SNOTEL stations 

in and nearby the watershed. These data were gridded with the bilinear interpolation 

method to grid size of 120m, the model resolution, and downscaled (adjusted for 

http://www.esri.com/
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elevation) using a methodology descripted by Sen Gupta and Tarboton (2016). The focus 

of this study was evaluation of the performance of the parallel codes; thus, no calibration 

or validation of model parameters was performed apart from verification to make sure the 

parallel models’ outputs are consistent with those of the original serial version. The UEB 

model input data for the Logan River Watershed used for testing the parallel models in 

this paper are provided as a HydroShare resource (Gichamo and Tarboton, 2019). 

 Description of Computing Resources  

Both versions of the UEB Parallel model were written as a platform independent 

code with the C++ programming language. The GPU version uses CUDA for the device 

codes. Performance tests were made in a Linux clusters with up to 128 cores for the MPI 

version, while the GPU code was tested on a Linux machine with a CPU node linked to 

GPU node. Both these implementations were compared to a simulation with a single MPI 

process on a desktop PC. The specifications of the computing resources are as follows: 

• Linux cluster for MPI: Intel(R) Xeon(R) CPU E5-4620 0 @ 2.20GHz (maximum Turbo 

Boost frequency 2.60 GHz) with 8 cores per CPU and 4 CPUs per node for a total of 

32 cores per node (64 threads per node with hyper-threading enabled) and up to 1 TB  

memory per node.   

• Linux nodes with GPU: Intel(R) E5-2670 (Sandy Bridge) CPU + NVIDIA K20x GPU 

with 2688 processor cores and processor core clock of 732 MHz. 

• Desktop PC with Intel(R) Core™ i7-3770: 4 cores with 3.40 GHz (maximum Turbo 

Boost frequency 3.90 GHz) and hyper-threading; 32 GB RAM.  

 Performance Metrics  

Total simulation time, speed-up, and efficiency were used to test the performance 

of the parallel codes.  Speed-up is computed as the ratio of the total simulation time by a 
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single core to that by multiple cores (P number of cores). Speed-up varies with the total 

number of cores. Efficiency is the speed-up divided by the number of cores (Eager et al., 

1989). For a given unit of work, the efficiency may change with the number of cores due 

to an increased overhead, inter-process communication, and/or increased 

synchronization. According to Amdahl’s law (Amdahl, 1967, 2007), the maximum 

possible speed-up (ideal speed-up) is constrained by the fraction of the code that has to be 

executed serially, and hence is executed by all cores. For the UEB model, this was 

assumed to be the code outside of the “Loop through active grid cells” portion of the code 

described above. In reality, however, some of the codes inside the loop could also 

contribute to it. These are generally considered ‘overhead,’ and this is partly why the 

“ideal speed-up” is called “ideal”—because, in practice, the overheads further reduce the 

speed-up. 

Note that in an MPI implementation, multiple processes can be executed on a 

single core. In this study, the tests were carried out to evaluate the performance (speed-up 

and efficiency) as a function of the number of processor cores; hence, the number of MPI 

processes equals the number of cores assigned.  

Equations 1 - 3 below give Speed-up, Efficiency, and representation of Amdahl’s 

law, given a number of cores P. Equations 1 and 3 represent the ratio of two similar units, 

often computed as the simulation time per one core divided by simulation time per 

multiple cores. Both equations (1 & 3) apply to processor cores that are of uniform type, 

of similar core size and speed. The units of the numerator and the denominator in 

equation 3 can thus be considered as that of time per unit core. 

     𝑆𝑝 =  
𝑇1

𝑇𝑝
                          (1) 
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     𝐸𝑝 =  
𝑆𝑝

𝑃
                          (2) 

𝑆𝑝𝑚𝑎𝑥 =  
1

𝑓𝑠 + 
1 − 𝑓𝑠

𝑃

         (3) 

Where: Sp = Speed-up by P number of cores 

T1 = Execution time for a single core 

Tp = Execution time for P number of cores 

Ep = Efficiency for P number of cores 

P = number of cores 

Spmax = maximum speed-up based on Amdahl’s law 

fs = Fraction of code that can only be executed serially.  

In the case of UEB with MPI, with much of the code in the parallelizable “Loop 

through active grid cells” block as described earlier, speed-up approaching the number of 

cores (P) is to be expected given little model setup overhead, inter-process 

communications that occurs only at the output aggregation step, and few blocking 

operations that force processes to wait for each other. Some degradation from maximum 

efficiency is expected due to variability in the processing time for each cell. An increase 

in the workload by increasing the size of the watershed and/or the duration of simulation 

would primarily increase the tasks inside the loop and is expected to increase the speed-

up per total number of cores (i.e., efficiency). 

When computing the ideal speed-up and efficiency using Amdahl’s law above, we 

considered the inter-process communications time to be part of the fraction of the code 

executed in serial and assumed that IO operations were parallelizable. An alternative 

analysis is to consider the inter-process communications and IO operations separately. In 
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such a situation, we have UEB code sections for model setup (run in serial), inter-process 

communication (unlikely to be parallelizable), IO operations (possibly parallelizable), 

and model computational kernel (expected to be highly parallelizable). To demonstrate 

the effect of IO operations on the parallel performance of UEB, we use Equation 4, which 

is a slightly modified equation from Yavits et al., (2014 p. 7 Eqn 13) for symmetric 

compute cores of uniform compute ability. The modification in Equation 4 here from 

Equation 13 of Yavits et al., (2014) is that we assume the inter-process communication to 

be negligible in UEB, hence the term for inter-process communication was dropped.  

𝑆𝑝𝑚𝑎𝑥𝑟 =  
1

(1 − 𝑓𝑝) +  
𝑓𝑝

𝑃 +  
𝑇𝑠

𝑇1

              (4) 

Where: fp = Fraction of code that can be executed in parallel 

P = number of cores   

T1 = Execution time for a single core  

Ts = IO synchronization time (Sequential-to-parallel data synchronization time in 

Yavits et al., (2014)) 

Spmaxr = maximum speed-up based on Amdahl’s law, revised to account for IO.  

The term  𝑇𝑠

𝑇1
  in equation (4)  is referred to as “Synchronization Intensity” in 

Yavits et al., (2014). Here, it accounts for the time spent reading input forcing data and 

writing UEB outputs from or to NetCDF files. The operations of file access and 

partitioning of data to the respective processes (synchronizing) are considered separate 

from the inter-process communication in this study. The effect of Synchronization 

Intensity is to decrease the ideal speed-up, and its importance increases for larger number 

of parallel cores.  
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4. Results and Discussion  

Figure 4 shows plots of the total simulation time, speed-up, efficiency, and ratio 

of IO time to total simulation time as a function of the number of MPI processes (same as 

number of cores). These values were computed after running the model twice for each 

case (number of processes) and taking the average of the two simulation times. It can be 

seen that the slope of the speed-up curve decreases with increase in the number of 

processes. Figure 4b also compares the speed-up against the maximum speed-up based on 

Amdahl’s law. Excluding the code inside the “loop through the grids” which also 

includes IO, the remaining part of the code takes less than 0.01% of the total simulation 

time. This initially suggested a highly parallelizable code, which led to expectation of 

speed-up close to the ideal speed-up. The actual speed-up curve, however, is much lower 

than the ideal speed-up curve, and its slope decreases with increasing number of 

processes.  

Figures 4b and 4c also include speed-up and efficiency plots for the model 

computational kernel, i.e., excluding IO operations. As can be seen from the figures, the 

speed-up of the computational kernel is closer to the ideal speed-up.  The reason for the 

poor performance of the total code compared to the computational kernel is that the IO is 

not as readily parallelizable as the rest of the code. For the serial version of the program, 

the IO takes about 1.7 % of the total execution time of the code. Because this fraction of 

code ended up not being parallelized, contrary to the assumption in equation (3), it affects 

the performance of the whole model with increasing importance as the number of 

processes is increased, as shown in Figure 4d.  

The deviation of the computational kernel speed-up from the ideal line can be 



22 
 

caused by any of, or a combination of, the factors that were considered “overhead” during 

the design in Section 2. In addition, after the total active grid cells were evenly divided 

between the processes, a few processes would be allocated one additional grid cell to 

simulate. This means some processes may have to stay idle for a duration of one grid cell 

computation. The time it takes for a full computation of one grid cell, on average, is 

about 2.5 seconds. 

 

 
Figure 4: Total simulation time (a), speed-up (b), efficiency (c), and ratio of IO time to 

total time (d) vs the number of processes (same as number of cores) for the MPI 

implementation. 

 

Bridging the gap between the good scaling of the computational kernel and the 

poor scaling of the total model run caused by poor IO scaling is important as the IO starts 

to become dominant with increasing parallelism so much so that increasing the number of 
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processor cores beyond 64 may not be justifiably useful. While the parallel NetCDF4, 

which is based on HDF5’s MPI IO feature, would enable synchronized file access by 

multiple processes, efficient IO scaling requires coupling it with some file access 

strategies that take advantage of the synchronization (Chilan et al., 2006). Figure 5 shows 

the results for a modified UEB IO reading/writing in which multiple arrays of data were 

handled at once instead of the ‘looping through the grids’ approach used in Figure 4. As 

can be seen in Figure 5, the performance improves appreciably, particularly for the higher 

number of cores. For 64 cores, the speed-up increases from 24 to 42 while the efficiency 

increases from about 0.38 to 0.67. Similarly, for 128 cores, the speed-up and efficiency 

increase from 31 to 63 and 0.25 to 0.49 respectively. This approach would reduce the 

total file access operations; however, it may require larger memory per core to be 

effective. 

 
Figure 5: Speed-up (a) and efficiency (b) vs the number of processes (number of cores) 

for the MPI implementation with reduced IO operations. 
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Figure 6: Speed-up and ideal speed-up from Amdahl’s law revised to account for IO 

operation. 

 

Figure 6 is a re-plot of Figure 5a with the ideal speed-up revised according to 

equation (4) to account for the effect of IO operations. This figure indicates that any 

further performance improvement would only come from better IO parallelization.  

The model run times for the GPU version with CUDA code are shown in Table 1 

together with run times on desktop PC with one process. The run time on desktop PC 

with one process is equivalent to that of a serial code on desktop PC. Table 1 reports the 

speed-up with the CUDA GPU relative to the serial code on desktop PC. We do not have 

multiple simulations in GPU, so there are no plots for GPU comparable to those for MPI. 

In the GPU case, the IO operations were carried out by the CPU (host) while the 

numerical simulations were performed by the GPU (device). In addition to IO operations, 
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data synchronization between the host and device is required. Table 1 also includes run 

times from the MPI implementations in Linux cluster with one and 64 processes and their 

respective speed-ups over the serial code on desktop PC.  

The GPU implementation presents a slightly better speed-up when compared to 

the MPI code executed on the CPU cluster of 64 processes (Table 1). Our result leads us 

to a similar observation by Tristram et al., (2014) that, implementing a GPU code with a 

performance comparable to other parallel methods may not necessarily require a major 

re-work of an existing programming code. In our case, the computational kernel and 

much of the data partitioning code remained the same, as it was written in C++, which is 

compatible to the CUDA specification (NVIDIA, 2015). Given the fact that GPUs 

provide superior performance per total resource cost (price of hardware and power usage, 

see e.g., http://www.fmslib.com/mkt/gpus.html), and considering the comparatively short 

developer time for some existing codes like UEB, GPUs appears to be a worthwhile 

alternative to the MPI implementation. 

Table 1 Run times (seconds) and speed-up for different computing resources 

Computing 

Resource  

Model 

setting 

Input 

reading 

Output 

Writing Computation 
 

Host-Device 

data copy 

Total 

* 

Speed-up 

** 

1CPU + 1GPU on 

Linux cluster 
1.2 168.6 43.3 2321.5 109.6 2644.2 10.1 

64 MPI processes 
on CPU Linux 
cluster 

210.2 157.8 595.7 2354.9 NA 3318.7 8.0 

1 MPI process on 

CPU Linux cluster  
1.0 21.1 134.4 141730.0 NA 141886 0.2 

1 process on 

desktop PC (CPU) 
0.1 321.4 451.7 25812.3 NA 26586 1.0 

* Including overhead 
**Compared to one process on desktop PC CPU 

The speed-up shown in the last column of Table 1 is computed in a different way 
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from the speed-ups and efficiencies reported in Figures 4 to 6. While the numbers in 

Figures 4 – 6 help evaluate the performance of the parallel code with increasing cores, the 

speed-up values in Table 1 are measures of the performance enhancement achieved by 

implementing concurrency programming using clusters of CPU and/or GPU resources, 

compared to a serial code on a desktop PC (Brodtkorb et al., 2013). Table 1 shows that 

our parallel implementations achieve speed-ups of 8 – 10 times over a serial code on a 

desktop PC. This represents the actual enhancement to hydrologic research due to 

improved access to high performance computation resources. These results report the 

actual reduction in time spent simulating a UEB model instance using the Linux cluster 

or the GPU resources rather than the desktop PC. Such reduction in modeling time 

facilitates the evaluation and adoption of physically based models like UEB in 

operational settings such as streamflow forecasting where computational time can be 

critical or for studies of effects of climate change which require large scale simulations.  

The first column of Table 1 for the “model setting”, which involves reading the 

model domain, terrain, and parameter files by all processes, serially, has a very large 

value for MPI with 64 processes. This large overhead was unexpected and contradicted 

our assumption earlier that the overhead would be negligible with an increase in the 

number of processes. This overhead was likely caused by competitive file reading by 

multiple processes. Having a single (root) process read the model setting files and then 

broadcast the values to all processes reduces the model setting time to 1 second. 

However, the reduction in model setting time does not have a significant effect on the 

total simulation time, and it does not change the conclusion about the overall speed-up.  

An anomaly in the table 1 results is the large computation and hence large total 
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time for a single MPI process on the Linux cluster.  We would have anticipated this to be 

about the same as the desktop PC, but it is about five times slower. This difference cannot 

be explained by the difference in processor core speed between the two resources alone.  

We do not know what the impacts of different amounts of memory are and whether there 

is an overhead involved in addressing the memory available on the nodes of the Linux 

cluster or how comparable the memory access times are across these systems. This 

difference remains a result that we do not fully understand. It is partly because of this 

anomaly that we chose to report speed-up relative to the desktop PC which, although it 

has different hardware, provides a more realistic and honest reporting of the speed up we 

have demonstrated that a researcher will experience. Further investigation is required to 

find out the causes for this difference such as the possible introduction of poorly 

optimized code sections during modification of the serial code to the parallel version and 

the choice of compiling optimization parameters for different platforms. It is possible that 

the MPI implementation in this paper, just like the GPU one, can be further optimized to 

gain even better performance.   

Finally, sample outputs of snow water equivalent (SWE) simulated by the two 

parallel versions of UEB (MPI and CUDA GPU) are shown in Figure 7. This figure 

demonstrates that the outputs from the two implementations are, for practical purposes, 

equivalent.  This is expected since the data types and the computation logic remain 

unchanged in both implementations. As stated earlier, no parameter calibration and/or 

validation by comparison to observations was done given that the objective of this study 

was assessing computational efficiency of the parallel implementations. 
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Figure 7: Simulated Snow Water Equivalent (SWE) using the two parallel 

implementation of UEB. 

5. Summary and Conclusions 

The implementation and evaluation of parallel processing methods in the Utah 

Energy Balance (UEB) distributed snow accumulation and melt model is presented in this 

paper. Two parallel implementations of UEB were evaluated: one using the Message 

Passing Interface (MPI) and the other using CUDA GPU. Continuous simulation of the 

Logan River watershed for five years was used to test the performance of the parallel 

codes, and the speed-up and efficiency as function of number of processor cores and plots 

of speed-up compared to the ideal speed-up based on Amdahl’s law were used as 

performance metrics of the parallel codes.  

For the MPI implementation, results show the importance of input/output (IO) 

operations in the degradation of efficiency with increase in the number of processes. In 
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the serial code, IO accounts for about 1.7% of the code run time. However, as this is not 

reduced by parallelization, its impact becomes more pronounced with increased number 

of processes. This was verified using the revised form of Amdahl’s law (Yavits et al., 

2014) that separately accounts for IO operations and inter-process communications. The 

plot of this revised form of Amdahl’s law indicates that further performance increase of 

the parallel code could only be possible with improved performance of the IO operations. 

The performance of the MPI implementation improves when utilizing an IO strategy that 

reduces the number of file accesses by reading and writing multiple arrays of data in one 

step.  

The CUDA GPU implementation achieves slightly better performance with one 

GPU node when compared with the MPI implementation executed on 64 cores. The GPU 

implementation was done without major refactoring of the original code, as the 

computational kernel and much of the data partitioning code remain the same. This shows 

that, for some models such as UEB, obtaining a CUDA GPU performance comparable to 

other parallel methods does not necessarily require a major re-work of an existing 

programming code. Given the fact that GPUs provide superior performance per total 

resource cost (price of hardware and power usage), this makes it a worthwhile alternative 

to the MPI implementation.  

Overall our parallel implementations help achieve speed-ups of 8 – 10 times over 

a serial code on a desktop PC. This represents the actual speed up available to hydrologic 

researchers from use of high performance computing resources instead of a desktop PC. 

Most distributed physically based hydrological models are data intensive. This 

work demonstrates the importance of including IO operations within the parallelizable 
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code section and using efficient IO handling together with distributed computing 

resources. Efficient IO scaling requires adopting file read/write strategies that take 

advantage of parallel file access or separate files for different processes. The approach we 

used in this paper is a simple one, which involves reading and writing multiple arrays of 

data in one-step, and it could be limited by the availability of memory per core. There is a 

need for more advanced IO strategy that also accounts for the available memory.   

Finally, the modeling work presented here is only for the case of snow 

accumulation and melt. Outputs from this model are used as input to runoff and river 

routing models. We can qualitatively predict that coupling UEB to a runoff model would 

increase the arithmetic intensity because more computations would be done without 

significantly increasing the IO volume. Additional inter-process communications would 

be introduced but would likely be smaller than the added arithmetic operations. 

Therefore, it would be interesting to extend this study to examine if a better efficiency 

may be achieved with the coupled model.  
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