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SUMMARY

1. We tested how strongly aquatic macroinvertebrate taxa richness and composition were

associated with natural variation in both flow regime and stream temperatures across

streams of the western United States.

2. We used long-term flow records from 543 minimally impacted gauged streams to

quantify 12 streamflow variables thought to be ecologically important. A principal

component analysis reduced the dimensionality of the data from 12 variables to seven

principal component (PC) factors that characterised statistically independent aspects of

streamflow: (1) zero flow days, (2) flow magnitude, (3) predictability, (4) flood duration, (5)

seasonality, (6) flashiness and (7) base flow. K-means clustering was used to group streams

into 4–8 hydrologically different classes based on these seven factors.

3. We also used empirical models to estimate mean annual, mean summer and mean

winter stream temperatures at each stream site. We then used invertebrate data from 63

sites to develop Random Forest models to predict taxa richness and taxon-specific

probabilities of capture at a site from flow and temperature. We used the predicted taxon-

specific probabilities of capture to estimate how well predicted assemblages matched

observed assemblages as measured by RIVPACS-type observed ⁄expected (O ⁄E) indices

and Bray–Curtis dissimilarities.

4. Macroinvertebrate taxon richness was only weakly associated with streamflow and

temperature variables, implying that other factors more strongly influenced taxa

richness.

5. In contrast to taxa richness, taxa composition was strongly associated with

streamflow and temperature. Predictions of taxa composition (O ⁄E and Bray–Curtis)

were most precise when both temperature and streamflow PC factors were used,

although predictions based on either streamflow PC factors or temperature alone were

also better than null model predictions. Of the seven aspects of the streamflow regime

we examined, variation in baseflow conditions appeared to be most directly associated

with invertebrate biotic composition. We were also able to predict assemblage

composition from the conditional probabilities of hydrological class membership

nearly as well as Random Forests models that were based directly on continuous PC

factors.
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6. Our results have direct implication for understanding the relative importance of

streamflow and temperature in regulating the structure and composition of stream

assemblages and for improving the accuracy and precision of biological assessments.
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Introduction

A major goal of stream ecology is to understand the

environmental factors that structure natural commu-

nities. Natural flows are thought to be critical to the

maintenance of healthy stream ecosystems (Poff et al.,

1997; Bunn & Arthington, 2002), but currently less is

known about the effects of flow on the distribution of

stream invertebrates than that of temperature (e.g.

Hawkins et al., 1997; Poff & Zimmerman, 2009).

Moreover, little is known about the relative or

interactive effects of these two factors on stream

invertebrates. The aspects of streamflow thought to

influence ecological processes in rivers include: flow

magnitude, duration, frequency, timing and rate of

change (Poff, 1996; Poff et al., 1997; Puckridge et al.,

1998). A large number of streamflow regime variables

have been defined in efforts to quantify these factors

(Richter et al., 1996; Puckridge et al., 1998; Snelder &

Biggs, 2002; Sanz & Del Jalon, 2005; Sanborn &

Bledsoe, 2006). In particular, Olden & Poff (2003)

listed 171 flow variables assumed to be of ecological

relevance.

Several researchers have developed catchment clas-

sifications based in whole or part on differences

among streams in flow regime, often with the purpose

of aiding understanding of how flow regime affects

stream ecosystems and their biota (Snelder & Biggs,

2002; Sanborn & Bledsoe, 2006; Snelder et al., 2009).

Poff (1996) used 10 streamflow variables to classify

806 relatively undisturbed streams in the continental

U.S.A. into groups of sites that differed in their flow

regimes. The underlying assumption of his classifica-

tion is that flow regime is an important aspect of the

environmental template that influences the abun-

dance and distribution of stream biota, hence such a

classification could aid in explaining and predicting

the distribution of different stream taxa.

Although understanding of how streams differ in

terms of their flow regimes has greatly improved over

the last 15 years, considerable uncertainty still exists

regarding how different aspects of flow variation

influence either specific stream biota or the overall

ecological structure and function of streams (Poff &

Zimmerman, 2009; Snelder & Lamouroux, 2009),

particularly with respect to variation among streams

within and across regions. Several studies have

considered the general relevance of regional variation

in streamflow regimes for stream ecosystems, but they

have not directly quantified relationships between

flow regime and biotic assemblages (e.g. Poff & Ward,

1989; Poff, 1996; Sanz & Del Jalon, 2005; Sanborn &

Bledsoe, 2006; Snelder et al., 2009). Other studies have

tested specific hypotheses regarding the effects of

differences in hydrological regimes on various eco-

logical properties of streams (Poff & Allan, 1995;

Clausen & Biggs, 1997; Konrad, Brasher & May, 2008;

Monk et al., 2008). However, such studies have often

relied on aggregate biological measures, such as LIFE

scores (e.g. Extence, Balbi & Chadd, 1999), to sum-

marise biotic responses to differences in flow regime

rather than more direct measures of taxonomic com-

position and richness. Furthermore, most of these

studies have focused on the short-term response of

stream biota to specific flow disturbances (e.g. Bick-

erton, 1995; Ilg et al., 2009). These single-site or single-

hydrological-event studies have established the

importance of aspects of the streamflow regime for

stream biota, but it remains difficult to draw general

inferences as to how biotic assemblages will vary

across large, hydrologically variable regions.

In this study, our goal was to understand how

aquatic macroinvertebrate taxonomic composition

and richness varied with differences in both stream-

flow regime and stream temperature at the sub-

continental scale of the western United States. Our

specific objectives were to quantify the variation in

flow regime in terms of statistically independent flow-

related factors, to classify streams to describe major

aspects of hydrological variability based on these

factors and to determine the relative and interactive

importance of flow regime and stream temperature as

predictors of the composition and richness of stream

invertebrate assemblages.
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Methods

General approach to characterising flow regimes

We characterised flow regimes across the western

United States by analysing daily flow data from 543

relatively unimpaired streams in 13 western United

States (Fig. 1). Catchment areas spanned 15–114

793 km2. Based on a review of the literature and our

own experience and judgment, we selected 12 flow

variables (Appendix S1, Table 1) that we deemed

sufficient to characterise those flow regime properties

important to stream biota. We then used principal

component analysis (PCA) to identify a set of derived

variables (factors) that were statistically independent

of one another. Factor scores from the PCA were used

in a K-means cluster analysis to classify streams into 4,

5, 6, 7 and 8 streamflow regime classes.

Flow data

The Hydro Climatic Data Network (HCDN) is a

streamflow data set for the U.S.A. that is relatively

free from anthropogenic influences and has been

developed for studying natural variations in surface-

water conditions (Slack & Landwehr, 1992). The

HCDN data cumulatively span the years 1874–1988,

but the periods of record differ between sites and not

all sites were considered by the United States Geologic

Survey (USGS) (Slack & Landwehr, 1992) to be not

significantly impacted by flow regulation for their

entire record. Fifty-one HCDN sites within our study

area were excluded for one or more of the following

reasons: (i) closer examination revealed that they

drained reservoirs, (ii) flows were unimpaired for less

than 10 water years, or (iii) the HCDN database

comments indicated that only monthly streamflow

estimates were considered free of human influence.

We included flow data from an additional 32 gauged

sites at which benthic invertebrate samples were

collected by the USGS and that Carlisle et al. (2009)

indicated also had unimpaired streamflow. To calcu-

late values of the 12 flow variables for each site, we

used daily streamflow records only for the period

identified as having unimpaired flows.

The record lengths for 540 sites ranged between 10

and 103 years with mean record length 43 years.

However, three sites for which we had invertebrate

samples had less than 10 years of data (6, 7 and

Fig. 1 Locations of 543 streamflow gauge sites used in this study. Five hundred and eleven sites are from the Hydro Climate Data

Network (HCDN) and an additional 32 sites with benthic invertebrate data are from Carlisle et al. (2009). Numbers indicate regime

class for K = 4 classification. Sites with NAWQA benthic invertebrate samples are also indicated.
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8 years). Because we were concerned that records

<10 years in length would not adequately characterise

long-term flow patterns (and hence biological associ-

ations), we conducted preliminary analyses both with

and without these three sites. In fact, there were no

significant differences between these two data sets in

terms of model performance (described later), and we

therefore present results based on the full data set.

At 34 sites with biological data, sampling was

conducted outside (after) the period of record that

was included in the HCDN database (that ended in

1988). We were concerned that the streamflow regime

may have changed and thus influenced macroinver-

tebrates at these sampling sites. We checked this

concern by computing streamflow regime variables

for the periods where streamflow was designated by

the USGS as unimpaired as well as for the subsequent

period up to the most recent data available. The

correlation coefficients between HCDN unimpaired

and post-HCDN periods for 11 of the streamflow

variables varied between 0.85 and 0.99. The correla-

tion coefficient for ZERODAYS was somewhat lower

(0.64), but these results generally allayed concern that

potential changes in the streamflow regime might bias

analyses.

Quantifying and classifying flow regimes

We used PCA (Jackson, 1991) with varimax rotation

(Kaiser, 1958) based on the correlations between the

12 flow variables to identify the major statistically

independent axes of hydrological variation across

stream gauge sites. We followed the recommenda-

tions of Wilkinson, Blank & Gruber (1996) that the

variables used in PCA should be normally distributed

and not skewed prior to calculating principal compo-

nents. Skewness can affect principal components and

their interpretation (e.g. Reid & Spencer, 2009).

Because the 12 hydrology variables exhibited various

types and magnitudes of deviation from a normal

distribution, we could not use a single, simple

transformation (e.g. log values) to achieve near nor-

mal distributions for all variables. We therefore used

the Box & Cox (1964) transformation with parameters

chosen to maximise the W-statistic in a Shapiro–Wilks

normality test (Royston, 1982).

PCA produces NV principal components (PC)

where NV is the number of original variables. How-

ever, generally, a relatively small number of the NV

possible PCs are associated with most of the variation

exhibited by the raw variables. Selection of a subset of

the PCs for further analysis can focus on either

selecting those first nv < NV PCs associated with

most of the variability in the original raw variables or

identifying those PCs that provide unique informa-

tion. Traditionally, choice of the subset of PCs used in

analyses has followed the first approach (Kaiser’s rule:

Lattin, Carroll & Green, 2003). However, we agree

with Monk et al. (2007) that such traditional methods

for PC selection may not represent all the important

aspects of the streamflow regime. We therefore

selected PCs based on how well they identified

independent and unique aspects of the flow regime

that we considered to be ecologically important.

We first chose a minimum number of PCs to work

with by selecting those PCs with eigenvalues >1. We

then used varimax rotation on the selected PCs to

obtain factors such that each variable was maximally

aligned with a single factor. We inspected the result-

ing factors to assess the degree to which they

represented each of the 12 variables as quantified by

the variable factor loadings. If one or more variables

were not well represented (loading ‡0.6) in the initial

set of rotated factors, we repeated the analysis after

adding the PC from the original analysis with the next

highest eigenvalue. This process was continued until

we achieved a set of rotated PCs that included each of

the 12 flow variables with loadings ‡0.6.

We used the R kmeans function (R Development

Core Team, 2007) to conduct a K-means cluster

analysis (Gordon, 1999) on the rotated PC factor

scores to identify streamflow regime classes. K-means

classification requires a priori specification of the

number of classes, K. Because we had no a priori sense

of how many classes would be optimal in terms of

partitioning flow variability relevant to stream inver-

tebrates, we examined a range of K values (K = 4–8).

The number of classes we could examine was

constrained by both resolution of flow information

and sample size. K < 4 would not provide enough

classes to discriminate all the streamflow regime

characteristics of interest, whereas too few observa-

tions occurred per class when K was >8.

Temperature data

We included three measures of water temperature in

our analyses: mean annual temperature (MAT), mean

Macroinvertebrates and stream flow regimes 1251

� 2010 Blackwell Publishing Ltd, Freshwater Biology, 56, 1248–1265



summer (June, July, August) temperature (MST) and

mean winter (December, January, February) temper-

ature (MWT), derived from stream temperature

models (root mean square error = 0.86, 2.2 and

1.7 �C, respectively) developed for the western United

States (see Appendix S2). Because aspects of flow and

temperature may co-vary, we used backward step-

wise multiple linear regression to assess the relation-

ships between these three temperature measures and

each of the rotated PC factors. We selected regression

models based on those combinations of predictor

variables (PC factors) that produced the lowest

Akaike’s Information Criterion (AIC) value (Burnham

& Anderson, 2002). We also used ANOVAANOVA to assess

how much variation in stream temperature was

associated with the flow classes.

Invertebrate data

Between 1992 and 2003, USGS National Water-Quality

Assessment Program (NAWQA) personnel collected

benthic invertebrate samples at 63 of the 543 gauged

sites (Fig. 1) we used to characterise flow regimes (see

Appendix S3 for details regarding NAWQA sampling

procedures and how we treated the sample data).

Samples for 59 of these sites were collected between

June and September. For four of the sites, samples

were collected in October, December or January.

Carlisle et al. (2009) indicated that streamflow was

unimpaired at all these sites, but that the catchments

of 30 sites were not in pristine condition, meaning that

various land use alterations might have influenced

macroinvertebrate assemblages through effects such

as nutrient or sediment additions. These effects would

emerge as unaccounted for variation in our analyses

and thus potentially obscure variation in invertebrate

richness and assemblage composition associated with

differences in flow and temperature. However, by

including these 30 non-reference sites, our results

should be conservative with respect to the detection of

biota relationships with both flow and temperature.

Assessing relationships between taxa composition, flow

and temperature

We used RIVPACS-type niche models (Moss et al.,

1987; Hawkins, Cao & Roper, 2009) to assess the

associations between macroinvertebrate taxonomic

composition and both continuous measures of flow

variability (PC factors) and flow classes. Predictive

models like RIVPACS are frequently used in bioas-

sessment programs to evaluate the degree to which

observed taxonomic composition matches the compo-

sition expected under specific reference conditions

(Moss et al., 1987; Wright, Furse & Armitage, 1993;

Hawkins, 2006). The RIVPACS approach generally

consists of the following steps (Moss et al., 1987): (1)

classification of sites into groups based on their

taxonomic composition (presence–absence data), (2)

estimation of the frequencies of occurrence of differ-

ent taxa within each group, (3) prediction of the

probability of group membership for a site from

environmental factors and (4) estimation of probabil-

ities of capture of specific taxa as the taxon occurrence

frequency within each group combined with proba-

bilities of group membership.

We classified the 63 invertebrate sites based on their

compositional similarity (Sørensen index). We used

the flexible b hierarchical clustering method (b = )0.5)

in the PC-ORD� software package (Mccune & Grace,

2002) to identify different biologically defined classes

of sites. To facilitate interpretation of the resulting

dendrogram, compositional dissimilarity between

sites and groups of sites was scaled by Wishart’s

(1969) objective function expressed as the percentage

of information remaining. Wishart’s objective function

is a measure of information loss as clustering pro-

ceeds. It is calculated as the sum of squares of the

distances between the centroids of each group to the

items in those groups. From the sample data in each

group, we estimated the mean richness per group, the

frequency of occurrence of each taxon within each

group and the richness and composition expected at

individual sites. We illustrated the biological differ-

ences among groups of sites by identifying the specific

indicator taxa representative of each group following

the method of Dufrêne & Legendre (1997) but applied

to presence–absence data.

We used both Random Forests (RF) models (Brei-

man, 2001) and conditional probability (CP) models to

predict the probabilities that a site belonged to each of

the biologically defined groups (macroinvertebrate

groups) as a function of three different combinations

of continuous flow (PC factors) and temperature data

and the 5 flow classifications. As described earlier,

prediction of group membership is an intermediate

step in the prediction of taxa composition in RIVP-

ACS-type models (Moss et al., 1987; Hawkins et al.,
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2009). We used the randomforest package (Liaw &

Wiener, 2002) in the R software (R Development Core

Team, 2007) to develop the RF predictive models. RF

models make no assumptions regarding the type of

relationships (linear or nonlinear) between predictor

and response variables, can use both continuous and

categorical predictors and have been shown to per-

form well in a number of ecological settings (Prasad,

Iverson & Liaw, 2006; Cutler et al., 2007; Hawkins

et al., 2009). When RF models are used to predict class

membership (classification mode), the importance of

predictive variables is quantified by the Gini index

score, a measure of the homogeneity at RF splits based

on that variable (Breiman et al., 1984). CP models

predict the probabilities that a site belongs to different

macroinvertebrate groups directly from a contingency

table, which gives the number of sites in each macro-

invertebrate group occurring in a given streamflow

regime class. For a given streamflow regime classifi-

cation, we computed the probability of a site belong-

ing to different macroinvertebrate groups (Pb) directly

from the contingency table.

Agreement between observed and predicted assem-

blage composition can be measured as either the O ⁄E
ratio (where O is the number of taxa observed in the

sample that were predicted to occur and E is the

number of predicted taxa, see Moss et al., 1987) or by a

Bray–Curtis (BC) type measure of compositional

dissimilarity between observed and expected.

The performance of RIVPACS-type models is typ-

ically assessed by determining how well the taxa

predicted to occur under reference conditions match

the observed taxa (Hawkins, Olson & Hill, 2010).

Agreement can be quantified in terms of either the

number of predicted taxa that were observed (O ⁄E,

see Moss et al., 1987) or by a BC type measure of

compositional dissimilarity (Van Sickle, 2008). We

used both measures to assess differences among

models in their performance as influenced by the

inclusion of different predictors. Comparison with a

null model provides further context for evaluating

whether the inclusion of predictor variables result in

meaningful improvement in predictions of taxa com-

position (e.g. Van Sickle et al., 2005). Because rare taxa

cannot be predicted well, we included only those taxa

with predicted probabilities of capture > 0.5 (Hawkins

et al., 2000; Van Sickle, Larsen & Hawkins, 2007;

Hawkins, Cao & Ropper, 2009). Null models predict

the same taxonomic composition at all sites within a

population of sites. The 10th percentile of the distri-

bution of O ⁄E values across sample sites is an

arbitrary but useful measure of model precision that

is less affected by outliers than estimates of the

standard deviation (Van Sickle, 2008). Models that

predict well should have O ⁄E 10th percentile values

close to 1. The 10th percentile values were used to

assess model performance relative to the null model

and to quantify how well flow and temperature

variables predicted assemblage composition. When

evaluating differences in models based on BC, 90th

percentile values close to 0 (greater similarity) indicate

a better fit between observed and predicted assem-

blages values (Van Sickle, 2008).

Assessing relationships between taxa richness, flow and

temperature

We also used RF and CP models to predict taxa

richness. In both cases, we developed models with the

same set of predictors as used for predicting taxa

composition. When RF models are used in regression

mode, they predict the values of the response variable

given different combinations of predictor variable

values. In regression mode, RF models quantify the

importance of each predictor variable by the percent-

age increase in the mean square error (MSE) when the

variable is left out of the model. The fit between

observed and expected values can be expressed as R2,

which describes the fraction of variance in the

response variable associated with the predictor vari-

ables. To predict taxa richness with the CP models, we

computed the probability of a site belonging to

different macroinvertebrate groups (Pb) directly from

the contingency table as we did for taxa composition.

The expected taxa richness for a site was then

estimated by
PB

b¼1

eb � Pb (i.e. the weighted-average

taxonomic richness across all the macroinvertebrate

groups), where B is the total number of macroinverte-

brate groups and eb is the mean richness of macroin-

vertebrate group b.

Results

Independent components of flow variability

Our PCA identified seven statistically independent

axes that represent different types of flow variation
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among sites (Table 1): (1) zero flow days, (2) magni-

tude, (3) predictability, (4) flood duration, (5) season-

ality, (6) flashiness and (7) baseflow. Before varimax

rotation, ten of the 12 variables had loadings on the

first PC (50% of total variation) that ranged from 0.61

to 0.95, which made the interpretation of that PC

extremely difficult. Following varimax rotation, the

PC associated with the maximum proportion of the

total variance (29.4%) was easily resolved as a flow

magnitude component (Table 1). The seven rotated

factors accounted for 98% of the total variance in the

flow data. The traditional approach to PC selection

based on Kaiser’s rule (eigenvalues greater than 1)

would have retained only the first three components

(77% of the total variance in the flow data) and would

have provided information on only the magnitude,

flood duration and predictability aspects of the

streamflow regime.

Hydrological classification

When conducting the K-means analyses, we found

that as K was incremented from 4 to 8, each

subsequent classification resulted in the addition of

a new class while retaining classes with attributes

very similar to the previous ones. Examination of the

distribution of flow factors for each of these classes

identified the dominant factors that characterised each

class. We present factor distribution results from the

K = 8 classification only, because it broadly encom-

passes the other classifications (Fig. 2). Other classifi-

cation factor distributions are given in supplementary

material (Appendix S4).

The distribution of values for each of the different

flow factors within and among classes (Fig. 2) facili-

tated characterisation and interpretation of streamflow

regime classes. The eight group classification consisted

of (1) seasonal streams, (2) smaller predictable inter-

mittent streams with low baseflow, (3) mid-size peren-

nial streams with low seasonality (4) big streams with

low predictability and short flood duration, (5) base-

flow dominated streams, (6) big seasonal streams with

high flood duration, (7) small unpredictable streams

with high flood duration and (8) small flashy streams

with high susceptibility to drying. Even though for a

given class the dominant flow factors were similarly

distributed for K = 4–8, other factors did differ in their

distribution across K (Appendix S4).

Plots of the 5th, 50th and 95th percentiles of average

daily flows in each month for the different classes

illustrate some of the major differences in patterns of

flow among the K = 8 classes (Fig. 3). The monthly

mean values for the typical stream in each class

(stream located closest to the centroid in the factor

space of each class) illustrated similar, although not

identical, patterns to class 50th percentiles (Fig. 3).

Spatial structure was evident in some, but not all,

streamflow classes (Fig. 1 & 4). Sites in the first and

the sixth classes occurred mostly in the Rocky Moun-

tains and were characterised by high seasonality, but

differed in magnitude. The second streamflow class

dominated the relatively dry landscape of North and

Table 1 Streamflow variables and their varimax principal component (PC) factor loadings. High loadings are in bold font

Variable name 1 2 3 4 5 6 7

Base flow index, BFI )0.299 0.006 )0.175 0.157 0.060 0.097 0.895

Daily coefficient of

variation, DAYCV

0.045 )0.215 0.336 )0.125 )0.316 )0.210 )0.769

Average daily flow, Q mean )0.091 0.928 )0.204 )0.017 0.152 0.141 0.207

Average number of zero

flow days, ZERODAYS

0.813 )0.235 0.174 0.012 )0.221 )0.162 )0.408

Bank full flow, Q1.67 )0.080 0.951 )0.120 )0.199 0.115 0.122 0.035

Flood duration, FLDDUR 0.002 )0.181 0.040 0.967 0.043 0.005 0.171

Colwell’s index of predictability, P 0.078 )0.144 0.930 0.014 0.181 )0.152 )0.203

Colwell’s index of constancy, C 0.127 )0.268 0.822 0.060 )0.350 )0.139 )0.272

Colwell’s index of contingency, M )0.157 0.225 )0.004 0.047 0.927 0.101 0.209

Average 7 day minimum flow, 7Qmin )0.200 0.672 )0.250 0.049 0.182 0.185 0.582

Average 7 day maximum flow, 7Qmax )0.071 0.981 )0.084 )0.086 0.080 0.089 0.005

Average number of flow reversals, R )0.135 0.274 )0.238 0.005 0.119 0.885 0.226

% variance explained by each factor 7.3 29.4 15.8 8.6 10.5 8.3 18.2

Interpretation Zero flow

days

Magnitude Predictability Flood

duration

Seasonality Flashiness Baseflow
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South Dakota and the coastal regions of central and

southern California. The third class occurred in

Arizona, New Mexico, the plains east of the Rocky

Mountains, and some arid parts of California. The

fourth class occurred mostly in the Washington,

Oregon and northern California coastal ranges.

Streams belonging to the seventh class occurred most

frequently in the interior plateaus of Utah and

Nevada and the plains east of the Rocky Mountains.

Classes 5, 6 and 8 did not have an obvious regional

structure.

Relationships between flow regime and stream

temperature

The regression of stream temperature on flow regime

factors showed that stream temperature co-varied

with several aspects of flow. Mean annual stream

temperature varied most strongly and negatively with

flow seasonality (factor 5, standardised regression

coefficient SRC = )0.66) and less strongly and nega-

tively with baseflow (factor 7, SRC = )0.26) (adjusted

R2 = 0.40). Mean summer temperature varied nega-

tively with five flow factors (seasonality, baseflow,

predictability, flashiness and zero flow days) with

seasonality showing the strongest single association

(SRC = )0.77, )0.31, )0.26, )0.25 and )0.22, respec-

tively, adjusted R2 = 0.56). Mean winter temperature

was less strongly related to streamflow regime factors,

but increased with increasing predictability (factor 3,

SRC = 0.39) and decreased with both increasing flood

duration (factor 4, SRC = )0.36) and seasonality (fac-

tor 6, SRC = )0.39) (adjusted R2 = 0.37). Flow regime

classes showed similar associations with temperature.

K = 4–8 classifications accounted for 42, 43, 44, 58 and

52% of the variation in mean annual temperature; 34,

39, 27, 52 and 44% of mean summer temperature; and

19, 27, 25, 40 and 38% of mean winter temperature,

respectively.

Invertebrate composition and richness

Taxa composition and richness were highly variable

among sites as illustrated by the cluster diagram

(Fig. 5), the specific taxa representative of each group

and the range of taxa richness values among sites. For

modelling purposes, we identified six groups (see

dashed line in Fig. 5) that represented a compromise

between maximising average within-group composi-

tional similarity and the number of sites per group. The
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Fig. 2 Box plots showing the distribution of varimax-rotated principal component (PC) factors across different flow regime classes for

K = 8 (the numbers on top of each plot represent the class number and the class size).
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indicator species analyses showed that these groups

were taxonomically and ecologically distinct from one

another. Indicator taxa for groups A (Micropsectra,

Zapada, Chloroperlidae, Rhyacophila, Arctopsyche,

Brillia, Heterlimnius, Epeorus, Cleptelmis, Perlodidae,

Hesperoperla, Baetis, Simuliidae) and B (Lepidostoma,

Claassenia, Athericidae, Drunella, Deuterophlebia, Acent-

rella, Hexatoma, Zaitzevia) are known to require cold,

fast-flowing water. Groups C (Eukiefferiella) and D

(Psephenus, Pteronarcys, Glossoma, Microcylloepus, Rheoc-

ricotopus, Protoptila, Pyralidae, Rheotanytarsus, Optio-

servus, Antocha) indicator taxa require somewhat

warmer, less swift streams, and indicator taxa for

groups E (Dryopidae, Hydropsyche, Chimarra) and F

(Paratanytarsus, Dubiraphia, Caenis, Dicotendipes, Saethe-

ria, Thienemannimyia) are more typical of warmer,

slowly moving streams. Taxonomic richness varied

from 13 to 44 taxa per sample across the 63 study

streams (mean = 31).

Contingency table analyses

Invertebrate-defined classes (Fig. 5) were non-ran-

domly associated with flow regime classes for all

classifications (Table 2, chi-square test P < 0.00004).

This analysis showed that in many cases, the proba-

bility that a streamflow regime class was associated

with a single macroinvertebrate group was >60%.

Associations between taxa composition, streamflow

regime and temperature

All models predicting taxa composition performed

substantially better than their respective null models

as measured by both the 10th percentile of O ⁄E values

and the 90th percentiles of BC values (Table 3).

Models incorporating both flow regime and temper-

ature performed best. Streamflow variables alone

performed better than the three temperature variables

Fig. 3 Fifth, 50th and 95th percentiles of average monthly flows for each flow regime class and mean flow for streams closest to class

centroids. The map shows the site nearest to the centroid of each flow regime class.
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alone in terms of O ⁄E, but temperature alone per-

formed better than flow variables alone in terms

of BC. RF predictions based on flow classes

were generally slightly worse than those based on

continuous flow variables. The importance scores of

flow factors in predicting taxa composition differed

from those for predicting richness (Fig. 6). Variation in

baseflow was most useful in predicting composition

followed by flow seasonality, flood duration, flow

magnitude, flow predictability, zero flow day factor

and flashiness. When flow and temperature predictors

were combined, summer temperature was the most

important variable followed by baseflow and mean

annual temperature (Fig. 6f). Mean winter tempera-

ture, flow magnitude, flood duration, flow seasonality,

flow predictability, flow flashiness and zero flow day

factor (in that decreasing order) were less important to

RF predictions. Predictions based on the conditional

probability models were generally better than RF

models based on only flow variables as measured by

both O ⁄E and BC measures of precision.

Associations between taxa richness, streamflow regime

and temperature

The Random Forests models showed that taxonomic

richness was only weakly (R2 values <0.24, Table 3)

associated with flow, temperature or streamflow class,

although these values were statistically higher than that

Fig. 4 Spatial distribution of sites within

each flow regime classes for K = 8.

Fig. 5 Dendrogram produced by the hierarchical clustering

showing dissimilarities between individual sites and groups of

sites based on invertebrate taxonomic composition. The

compositional distance between sites and groups of sites was

scaled by Wishart’s (1969) objective function expressed as the

percentage of information remaining.
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of the null model. Seasonality of flow and the zero flow

day factors were the most important flow regime

predictors of invertebrate richness in the RF models

when flow predictors were used alone, and mean

summer temperature was the most important temper-

ature predictor (Fig. 6a,b). When flow and temperature

factors were used together, summer temperature fol-

lowed by seasonality of flow and zero flow day factor

were the most important predictors. Partial dependency

plots (not shown) showed that richness decreased with

increasing summer temperature, increased with sea-

sonality and decreased with increasing values of the

zero flow days factor. Conditional probability models

for prediction of taxa richness based on 4, 5 and 7 classes

accounted for slightly more (20 – 24%) of the variation.

However, models based on 6 and 8 classes accounted

for less (�11%) of the variation in taxa richness.

Discussion

Choice of streamflow variables and scaling magnitude-

related variables

A critical step in quantifying which aspects of natu-

rally occurring flow regimes most strongly affect

Table 2 Probability that a site belongs to one of the macroinvertebrate groups given that its streamflow regime class is known. Nf is

the number of sites in each streamflow regime class and Nb is the number of sites in each macroinvertebrate group. Probabilities of

macroinvertebrate group membership >0.5 are highlighted in bold font. PS is the proportion of sites in each macroinvertebrate group,

and eb is the mean taxa richness in each streamflow regime class

K Streamflow Class

Macroinvertebrate groups

Nf ebA B C D E F

4 1 0.22 0.61 0.17 0.00 0.00 0.00 18 35.6

2 0.00 0.00 0.11 0.00 0.22 0.67 9 24.9

3 0.09 0.09 0.43 0.09 0.17 0.13 23 28.8

4 0.38 0.23 0.15 0.15 0.00 0.08 13 32.7

5 1 0.19 0.69 0.12 0.00 0.00 0.00 16 35.2

2 0.00 0.00 0.11 0.00 0.22 0.67 9 24.9

3 0.12 0.06 0.29 0.12 0.24 0.18 17 28.0

4 0.36 0.21 0.21 0.14 0.00 0.07 14 32.7

5 0.14 0.14 0.71 0.00 0.00 0.00 7 32.9

6 1 0.17 0.75 0.08 0.00 0.00 0.00 12 33.7

2 0.00 0.00 0.12 0.00 0.25 0.62 8 25.3

3 0.11 0.00 0.33 0.00 0.22 0.33 9 28.4

4 0.50 0.20 0.00 0.20 0.00 0.10 10 33.1

5 0.33 0.00 0.67 0.00 0.00 0.00 3 34.1

6 0.10 0.24 0.43 0.10 0.10 0.05 21 31.3

7 1 0.18 0.73 0.09 0.00 0.00 0.00 11 33.1

2 0.00 0.00 0.00 0.00 0.29 0.71 7 24.9

3 0.00 0.00 0.12 0.00 0.50 0.38 8 25.0

4 0.44 0.22 0.00 0.22 0.00 0.11 9 33.4

5 0.33 0.00 0.67 0.00 0.00 0.00 3 34.0

6 0.11 0.26 0.53 0.11 0.00 0.00 19 32.0

7 0.33 0.17 0.33 0.00 0.00 0.17 6 32.0

8 1 0.22 0.67 0.11 0.00 0.00 0.00 9 32.3

2 0.00 0.00 0.00 0.00 0.00 1.00 4 27.8

3 0.00 0.00 0.14 0.00 0.57 0.29 7 25.1

4 0.38 0.25 0.00 0.25 0.00 0.12 8 33.5

5 0.33 0.00 0.67 0.00 0.00 0.00 3 34.0

6 0.10 0.38 0.43 0.10 0.00 0.00 21 33.0

7 0.25 0.00 0.50 0.00 0.00 0.25 4 33.8

8 0.29 0.00 0.14 0.00 0.29 0.29 7 25.1

PS 0.18 0.25 0.25 0.06 0.10 0.16

Nb 11 16 16 4 6 10
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stream ecosystems is identifying the flow variables

that are most useful in understanding ecological

patterns and processes from the many variables

available. The streamflow variables that we selected

influenced the subsequent quantification and classifi-

cation of flow regimes. It was not, however, obvious

from previous studies which variables should have

been selected. We selected variables based on insights

from previous studies, discussions with colleagues

and our own experience. The number of variables was

kept small (12) to facilitate interpretation. We con-

cluded it would be increasingly difficult to interpret

and understand the physical characteristics of classi-

fications based on more variables. The use of PCA also

reduced redundancy among the variables, which

helped with both physical and ecological interpreta-

tions. We also treated magnitude-related streamflow

variables differently than previous researchers. Previ-

ous work has often characterised flow magnitude in

terms of unit discharge by scaling discharge variables

either by catchment area or mean flow (e.g. Poff, 1996;

Monk et al., 2007). Because of this standardisation,

previous classifications would potentially group small

and large streams together. Our use of unscaled

magnitude-related variables resulted in a magnitude

factor (factor 2) that discriminated between small and

large streams, which we showed was related to

variation in invertebrate assemblage composition.

Stream size, often measured as catchment area, is

well known to be strongly associated with both

variation in taxonomic composition and ecosystem

processes (e.g. Vannote et al., 1980).

Pre-treatment of data and use of PCA

We applied PCA in our analyses because we wanted

to identify independent axes of flow variation. PCA

is a statistical tool for reducing the dimensionality of

multivariate data and facilitating interpretation of

major aspects of variation within such data. How-

ever, the effectiveness of this approach presumes that

the additional complexity involved with applying

PCA provides more interpretable and robust results

than analyses based on the original variables. It

could be argued that a PCA that reduces 12 original

variables to just seven derived variables might not

accomplish much and might hinder interpretation

rather than improve it. We therefore conducted

additional flow regime classifications and inverte-

brate-flow regression analyses with the 12 original

flow variables as independent variables and com-

pared the results from these analyses with those

derived from the PCA-based flow factors. We found

that analyses based on the PCA-derived flow factors

yielded both more easily interpretable flow regimes

(classes) and better invertebrate-flow models. We

provide the details of these additional analyses in

Appendix S5.

Use of PCA does not strictly require that input

variables be normally distributed, but the Pearson’s

Table 3 Performance of the Random Forests (RF) and conditional probability (CP) models in predicting taxa richness and taxonomic

composition. R2 measures the strength of relationships between taxa richness and streamflow and temperature predictors. The 10th

quantile of O ⁄ E values and the 90th quantile of Bray–Curtis (BC) values measure how well streamflow and temperature predict

taxonomic composition

Model type Predictors

Taxa richness Taxa composition

R2 10th quantile of O ⁄ E 90th quantile of BC

Null – 0.000 0.576 0.460

RF 7 flow factors 0.142 0.725 0.418

RF 7 flow factors + 3 temperature variables 0.148 0.795 0.344

RF 3 temperature variables 0.108 0.665 0.398

RF 4 flow classes 0.145 0.638 0.449

RF 5 flow classes 0.097 0.696 0.406

RF 6 flow classes )0.044 0.669 0.460

RF 7 flow classes 0.017 0.675 0.427

RF 8 flow classes )0.028 0.678 0.412

CP 4 flow classes 0.237 0.756 0.391

CP 5 flow classes 0.223 0.753 0.389

CP 6 flow classes 0.111 0.749 0.422

CP 7 flow classes 0.198 0.755 0.390

CP 8 flow classes 0.115 0.742 0.397
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correlation coefficient used in PCA, and hence the

principal components, is sensitive to non-normality,

skewness and outliers (White, Richman & Yarnal,

1991). Use of non-normal variables may lead to

erroneous interpretations of the PC data structure

(Norris, 1971; Clark, 1973). Simple transformations

such as log(x) can often produce sufficiently normal

distributions for use in PCA, but such transformations

can also increase skewness rather than reduce it (e.g.

Reid & Spencer, 2009). In such cases, each variable

may require a unique transformation. The Box–Cox

transformation that we applied is useful in such

situations, although the loss of a simple, universal

transformation complicates understanding of how the

transformed variables scale with one another.

The effectiveness of PCA in our study depended on

how well it revealed ecologically meaningful variation

in different aspects of flow. Simple PCA can be

ineffective in revealing ecologically important varia-

tion in data if many uncorrelated variables load

strongly on one PC. In our study, this approach to

PC selection would have led to the identification of

only three axes of streamflow variation and the use of

only 77% of the information in the raw data. Our use

of varimax rotation, a widely used orthogonal rotation

(White et al., 1991), yielded a simpler, more interpret-

able structure (Wilkinson et al., 1996) that greatly

improved interpretability, while reducing the dimen-

sionality of the flow data. Without the rotation, we

would have missed some important aspects of

streamflow regime, and it would have been difficult

to interpret each PC axis as a distinct characteristic of

the streamflow regime.

Flow regime classifications

At the scale of the western U.S.A., climate has a major

influence on the spatial structure of streamflow

regime classes (Figs 1 & 4). However, streams belong-

ing to different classes were also often found in close

proximity to each other. Such close proximity of

different stream types arose, in part, because magni-

tude was a factor in the classifications. This result

implies that even though climate has a major influ-

ence on streamflow regimes, it will not be possible to

identify geographically contiguous hydroregions

(comparable to ecoregions) that are spatially discrete.

Rather, stream segments will need to be individually

characterised in recognition of the diversity of eco-

logically relevant flow regimes (or classes) that can

occur within any climatic region.

Many previous studies have developed classifica-

tions of streamflow, but the classification presented

here differs in the choice of underlying variables and

the inclusion of flow magnitude as a factor in

classification. When used to predict macroinverte-

Fig. 6 Variable-importance plots from Random Forests models

for predicting taxa richness (a, b and c) and macroinvertebrate

group (d, e and f). Flow predictors only (a, d); temperature

predictors only (b, e); and both flow and temperature predictors

(c, f). Predictor variables are ordered in the same sequence for

both taxa richness and macroinvertebrate group to facilitate

comparisons. MAT, Mean Annual Temperature, MST, Mean

Summer Temperature (Jun, Jul, Aug) and MWT, Mean Winter

Temperature (Dec, Jan, Feb).
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brate assemblage composition, Random Forests mod-

els with continuous streamflow factors appeared to be

slightly better than models based on categorical

variables (Table 3). However, predictions based on

direct conditional probabilities derived from classifi-

cations also performed relatively well (e.g. model type

CP in Table 3). The better performance of the contin-

uous factors is probably due to the fact that some

information is always lost when we collapse contin-

uous factors into categorical classes. However, classi-

fications are attractive to ecosystem managers because

they are generally easier to communicate and imple-

ment. Our results showed that the use of flow regime

classifications may not significantly compromise mod-

els when predicting taxonomic composition. Because

the variables upon which this classification was based

are relatively general descriptors of the stream envi-

ronment, this classification may have applicability

beyond macroinvertebrate composition.

Temperature and streamflow variables

Temperature is an important variable that regulates

the local and regional composition of macroinverte-

brates (e.g. Sweeney & Vannote, 1981; Hawkins et al.,

1997). Because temperature variables co-varied with

some of the streamflow variables, it was difficult to

differentiate the biological effects of one set of vari-

ables from the other. Although this co-variation

confounds interpretation of the specific ecological

importance of each variable, such co-variation implies

that one type of variable might be used as a surrogate

for the other type for predictive purposes. However,

in our analysis, use of both hydrological and temper-

ature variables resulted in the best predictions of

taxonomic composition, which implies some degree of

independent response of biota to both types of

variables (Table 3). In general, such joint consider-

ation of streamflow and temperature regimes should

provide a more robust characterisation of the stream

environment than either alone (e.g. Harris et al., 2000)

and thus allow more accurate predictions of the

biological potential of different streams.

Relationships between flow regimes and biota

A primary goal of stream ecologists is to understand

the independent and interactive affects of environ-

mental factors on the structure and function of stream

ecosystems (Allan & Castillo, 2007). With such under-

standing, it should be possible to predict the biota

expected to occur under different environmental

conditions and hence assess the degree to which

anthropogenic alteration in those environmental

conditions will affect the ecological condition of

streams (e.g. Hawkins, 2006). Because the hydrolog-

ical regime is a fundamental component of stream

habitat, it is imperative to understand how it affects

both populations and communities of stream organ-

isms.

We used long-term flow variables to quantify

hydrological regime. It is reasonable to ask whether

macroinvertebrate richness and composition are more

a function of recent short-term events than the

predictor variables we used. If short-term variation

in flow is important to biotic richness and composi-

tion, we might expect relatively poor associations

between our long-term flow characterisations and the

biota collected at a site. Such short-term effects may be

one source of the unexplained variability in our

results. However, despite uncertainties in the hydro-

logical data, the marked variation in temperature

among sites and the potential effects of land use

alteration at some sites, the fact that we detected

relationships between streamflow regime and biota

(Table 3 and Fig. 6) supports our underlying hypoth-

esis that long-term flow patterns are part of the

hydrological template that influences which specific

organisms can establish and persist in a specific

stream. Certainly, further exploration of this issue is

warranted as it has implications for both our under-

standing of the relative importance of short-term and

long-term processes in structuring ecological commu-

nities and our ability to accurately specify the range of

biotic conditions that represent natural reference

states in bioassessments.

Our modelling focused on two aspects of stream

invertebrate assemblages: taxa composition and rich-

ness. We observed reasonably strong relationships

between the taxonomic composition at a site and both

flow regime and temperature (90th percentile BC

values in Table 3), perhaps because we focused on

those taxa most common (estimated probabilities of

detection >0.5) at each site. This result was encourag-

ing because it has clear implications both for under-

standing the factors that regulate the specific taxa

occurring in streams and the ability to assess the

effects of landscape and waterway alteration on
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stream ecosystems. Although associations do not

necessarily imply causation, two factors (temperature

and baseflow) stood out as being important in

predicting taxonomic composition (90th percentile

BC values in Table 3). The role of temperature in

structuring stream assemblages is well established,

but we know less about which aspects of flow are

critical in this regard. Several previous studies have

focused on the role of flooding in structuring stream

assemblages (e.g. Boulton et al., 1992; Robinson, Ueh-

linger & Monaghan, 2004), but our results imply that

future studies might profit by focusing on how the

mechanisms associated with variation in baseflow

affect assemblage composition.

Our results showed that overall taxa richness was

not strongly associated with either flow regime or

temperature in spite of the marked variation that

occurred in the number of invertebrate taxa found at

our study streams (Table 3). Other factors must

therefore have been more important in regulating

overall taxa richness in these streams (cf. Vinson &

Hawkins, 1998). The fact that the models predicting

taxa composition (as measured by O ⁄E) performed

well implies that they predicted the number of

common (probabilities of capture >0.5) taxa well.

The low R2 values associated with the predictions of

total taxa must therefore be largely driven by poor

prediction of rare taxa. Assessments of the factors that

influence total taxa richness may be of limited use in

understanding assemblage structure of open ecosys-

tems like streams where many of the observed taxa

may be accidentals that have drifted into lower

reaches from more suitable upstream habitats.

Our results are significant given that prediction of

the taxa expected at a site is a critical component of

bioassessment (e.g. Hawkins, 2006; Stoddard et al.,

2006; Paulsen et al., 2008). The accuracies of the models

developed here are comparable with those in use in

many bioassessment programs. Use of direct estimates

of 7 flow factors and 3 temperature variables produced

a RF model of precision (10th percentile of O ⁄E
values = 0.80) similar to a much more sample rich

(N = 729) model developed by Carlisle & Hawkins

(2008) to assess the condition of western U.S.A.-wide

invertebrate assemblages. The use of flow variables or

the best classification alone resulted in only slightly

less precise RF models (with 10th percentile of O ⁄E
values of 0.73 and 0.70, respectively). These values are

also similar to the 10th percentile values reported for

several other O ⁄E indices (Hawkins, 2006). The use of

direct measures of both flow and temperature should

not only improve model accuracy and precision, but

allow a more direct interpretation of the likely causes

of biological impairment when it is observed.

Improvement of the models used for bioassessment

will require that we be able to estimate both the

hydrological reference condition at ungauged sites

(e.g. Sanborn & Bledsoe, 2006) in the same way that

we estimated the expected thermal environment. The

fact that use of both flow and temperature variables

produced the best models of taxonomic composition

is not surprising considering the frequent reference

to these factors in the stream ecology literature (see

Allan & Castillo, 2007). It is unclear, however, that

their separate effects can be cleanly distinguished

from one another. These issues notwithstanding the

associations between stream biota, flow regime and

temperature that we documented point to the need

to refine the characterisation of both flow and

thermal regimes as they influence stream biota and

their ecosystems.
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